A Geodesic convexity

Recall that we are using the notation
P#,Q := PY2(P~1/2QP~1/2)tpPY/2 t€[0,1], and P,Q > 0,

to denote the geodesic between positive definite matrices P and () under the Riemannian metric
gp(X,Y) = tr(P"*XP~'Y). The midpoint of this geodesic is P#1 />Q, and it is customary to
drop the subscript and just write P#Q).

A.1 Proof of Lemma 3.3

Here we prove the log-g-convexity of E, on the set of psd matrices. As far as we are aware, this
result is novel. By continuity, it suffices to prove midpoint log-g-convexity; that is, it suffices to

prove
E((P#Q) < \/E(P)E(Q).

From basic multilinear algebra (see e.g., [5, Ch. 1]) we know that for any n X n matrix P, there
exists a projection matrix W such that E,(P) = tr A’P = tr W*P®"W. [40, Lemma 2.23] shows

that
(P#Q)®" = PE"#Q%".
Thus, it follows that
E (P#Q) = trt W*(P#Q)®"W = tr W*[PE"#Q®"|W
< [tr W*PEMW Y 2 [tr W QO W]/ 2
= [Eo(P)E(Q)]"?,
where the inequality follows from log-g-convexity of the trace map [40, Cor. 2.9]. [

Observe that this result is stronger than the usual log-convexity result, which it yields as a corollary.

A.2 Proof of Corollary 3.4

We present now a short new proof of the log-convexity of the map Z + E,(AT ZA)~'; we assume
that A has full column rank. As before, it suffices to prove midpoint convexity. Let Z, Y > 0. We
must then show that

log By (AT (Z4X) A) ™ < Llog E(ATZA) ™" + Llog E,(ATY A) .

Since (e.g., [6, Ch. 5]) (ATZA)#(ATYA) < w, we get [AT(ZHE)A] <
[(ATZA)#(ATY A)]~L. Since log E; is monotonic in Lowner order (Prop. 2.1-(i)), we see that

log By (AT (25Y) A) ™" <log By ([(AT ZA)#(ATY A) ) =log By[(AT ZA) ' #(ATY A)71).
But from Lemma 3.3 we know that Fy(P#Q) < \/E¢(P)E¢(Q), which allows us to write
log E[(ATZA) " #(ATYA) T < LEW(ATZA) T + SE/(ATY AT

which completes the proof. O

B Bounding the support of the continuous relaxation

As mentioned in the main paper, this proof is identical to the proof provided by [44, Lemma 3.5] for
A-optimal design once we derive V f;(z); we reproduce it here for completeness.

Proof. (Theorem 3.6). It is easy to show from (5.1) and Prop. 2.1-(iii) that

o 1
PE) T U (A = Vem o) e o(N) U,

w
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and that W is positive definite.

Assume now that all choices of m(m + 1)/2 distinct rows of X have their mapping under (ﬁ be
independent. We now consider the Lagrangian multiplier version of (3.2):

Fleyui v ) = fo(2) = 30wz + D (2 = )+ Az — k)

Let z* be the optimal solution, and let A C [n] be the indices ¢ such that 0 < z; < 1. Assume by
contradiction that |A| > m(m + 1)/2. By KKT conditions, we have for i € A,

_Of(=")
8Zi
where ¢ is the mapping defined in Theorem 3.6 and 1) takes the upper triangle of a symmetric matrix

and maps it to a vector of size m(m + 1)/2. Then, (B.1) can be rewritten for m(m + 1)/2 indices
in A as the following linear system of variables:

=z Wa; = (¢(z) [ (W) = (B.1)

¢(x1)
} e <1/)(_W)) =0. (B.2)
¢(xm(77L+1)/2+1)
By hypothesis, the first matrix is invertible and hence ¢ (W) and A must be 0, which contradicts the
strict positive definiteness of . O

C Greedy algorithm details

To analyze our greedy algorithm, we need the following lemma, which is an extension of [2, Lemma
3.9] to all elementary symmetric polynomials:

Lemma C.1. Let X € R™*™(n > m) be a matrix with full column rank, and let k be a budget
m < k < n. Let S be a random variable with probability

B det(XJ Xs)
ZTg[n],m:k det(X7 Xr)

BB ((xixs) )] < ( f ""”“) E((x7x)7). (C.1)

i:lk_m+i

Ps

Then

Proof. The below calculations depend heavily on the Cauchy-Binet formula, of which we reproduce
a special case here for X € R"*"™:

det(XTX)= ) det(XJXq). (C.2)
SC[n),|S|=m

We also use the representation (2.2). By definition we have

sy 2sCin sk det(X g Xs) B ((XQXS)A)
JEICSNIE :
> scn), 5=k det(Xg Xs)

For the denominator, we have

Y det(XgXg)= Y det(XgXg)
SClnl,|S|=k SClnl.|S|=k

w o S det(X X7)

SCInl,|S|=k TCS,|T|=m

<Z::> 3 det(XfXr)

TCS,|T|=m

(@ (n—m T
= det(X ' X
(k_W) (X7 X)

—~
o
=
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where (a) is obtained using the Cauchy-Binet formula (C.2), (b) by noticing that there are (}~")
sets of size k that contain a set 7" of size m, and (c) by reapplying (C.2).

For the numerator, we first use the fact that E¢(A™) = 2+ E,,,_,(A):

3 det(XSTXS)EZ((XSTXS)’l) @ 3 EndX$Xs)

SC[nl,|S|=k SC[nl,|S|=k

= > Y (XXs)LILZ]

SClnl.|S|=k LC[m],|L|=m—

U S det((Y2)§(Y2)s)

SClnl.|S|=k LC[m],[L|=m—t

© Z Z Z det((Y2)r(Y2)7)

SCInl.|S|=k LE[m],|L|=m—£ TCS,|T|=m—t

n—m-+4/¢
(k_mié)@ ) > der(V)i(Yo)r)

m],|L|=m—LTeEn],|T|l=m—~L

@ (mn—m+{ T
= det((Y] Y]
((Zrt) X deowTow)
LC[m].[L]=m—¢
n—m-+/{ T
= X' X)|L|L
(S0 D SIC v il
LC[m].[L]=m—¢
_(n—m+{L T
_<k—m+€>Em_é(X X)

Here, (a) is just (2.2); we have equality if all subsets S of size k produce strictly positive definite
matrices X ST Xg. For (b), we note Y7, the submatrix of X with all columns but those in L removed;
then, (Y2)& (Y7)s = [XJ Xg] for all subsets S. (d) is an application of Cauchy-Binet. Hence,

 sciuisi—s det(XE X5)Er ((x3x5)7")
B > sCn], =k det(Xg Xs)
() B o(XTX)

(P det(XTX)

L .
) <_ Z:ZU B((XTX) )

o [e (650

We can now prove Theorem 4.3:

Proof. We recursively show that greedily removing j items constructs a set S (of size (n — j)) s.t.

B ((x§Xs) ) < (ﬁ n_mﬂ> B ((x7X)7). (C3)

izln—j—m—i—z

(C.3) is trivially true for j = 0. Assume now that (C.3) holds for j > 0, and let S; be the correspond-
ing set of size (n — j). Let now S;;1 be the set of size |\S;| — 1 that minimizes EZ(XSTj+1XSj+1)~

From lemma 4.2, we know that for sets S of size |.S;| — 1 drawn according to dual volume sampling,
¢ )
—1 |S;| —m+1i T -1
E[E ((x$Xs) )] < : , E((X,X.) :
A X)) = (U == ) 2 (5%
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In particular, the minimum of Ey(XZ Xg) over all sets of size |S;| — 1 is upper bounded by the
, , -1
expectancy: Eg(ng;HXS].H) < (Hle %) E, <(X;] XS]) >

By recursion hypothesis applied to S;, we then have

¢ L ) .
T V< n—j)—m-+1 ( T )

() (s )

i=1 i=1

d n—m-+1 -1
= (Hn—(j—Fl)—m—Fi) Ee((XTX) )7

1=

which concludes the recursion. Then, constructing a set of size k amounts to setting j = n — k in
Eq.(C.3), which proves Eq. (4.2). O

D Obtaining the dual formulation

We first show that (5.2) has H >~ 0: by contradiction, assume that there exists « such thatz " Hz < 0

and ||z|| = 1. Then setting A = I — l%rtxxT has g(A) go to infinity with ¢.

Next, g(A) = —+log E¢(A) — tr(HA™!) reaches its maximum on S,/ if || A|| — oo, we easily
have g — —oo. The same holds for A — 9S77.

‘We now derive the dual form:

1
(52) < inf sup —-log Ep(A) — tr(HA™") + tr(HX " Diag(2)X) — u(17z — k)
LS A-0,220 ¢
E mXm

5.2 inf “(_H tr(HX T Di X (1T s
( )<:>;LE]11§I,1HEO [fe( )+i1§8 r( iag(2)X) — u(172 )]

: .l i (T o
(5.2) < penla{llflto [fe( H)+21§O)zi:zz(asz Hz; — p) + pk

(5.2)

!

inf  fy(—H)+kup
x] Hz;<p,
H=0

(52) <= sup —f/(—pH)—kp
xiTHxigl,
H>0,1>0

(5.2) <— sup —fy(—H)

x:Hxigl,
H*>0

Where <= follows from f;(—uH) = sup 4, o — tr(HA) — fo(A/p) = f;(—H) — log p.
Finally, we saw that by definition of a(H ), f}(—H) = g(a(H)) = —Ey(a(H)) —tr(H (a(H)) "),
and that the eigenvalues A of a(H) verify

6[_1(>\1, .. ~7)\i—17>\i+1; .. ,)\m)
eg()\l, ey )\m)

22 =h;, 1<i<m.
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Then,

_ 1
er( Ay -y A) tr(H (a(H))™H :ZY/\feg,l()\l,...,)\i,l,)\Hh...,)\m)
. 3
:Z)\ief—l(/\lw'~7>\i—17)\i+17"'7>\m)
=2 > IIx
i JC[nl,|J|=Lie jET
Each subset J is hence going to appear ¢ times, once for each of its elements; finally
tr(H(@H) ) =0 Y J[N/ecO, . xm) =2
JCn),|J|=£ €T
and hence
1
sup —f;(-H) < sup —g(a(H))= sup -logEi(a(H))+L.

xz] Hz; <1, x] Hz; <1, xz] Hz; <1,
H>0 H>0 H>0

E Additional synthetic experimental results

To compare to [44], we generated the experimental matrix X by sampling n vectors of size m from
the multivariate Gaussian distribution of mean 0 and covariance ¥ = Diag(1™%,...,m~%) for
various sizes of o and multiple budgets k, with m = 50,n = 1000; « controls hows skewed the
distribution is.

Table 4: ||z||o for n = 500, m = 30, ¢ = 15

k=60 k=120 k=180 k=240 £k =300

1 1679 192+6 241+£5 290+4 335+4
2 1604 187£5 240+2 28443 331+6
3 1604 190+£3 2375 281+4 333+3

-
«
-
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Figure 3: Synthetic experiments, n = 500, m = 30, ¢ = 1.
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Figure 4: Synthetic experiments, n = 500, m = 30, £ = 10.
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Figure 5: Synthetic experiments, n = 500, m = 30, £ = 30.

16



—— RELAX SAMPLE —}— GREEDY —— UNIF
6.0 9.0 4
2.5 4 5.5 1 8.5 4
2.0 7 5.0 o 3.0 -
N
= 1.5 7 4.5 7.5
1.0 o 4.0 H 704
0.5 o 3.5 6.5 4
T T T
60 120 180 240 300 60 120 180 240 300 60 120 180 240 300
budget k& budget k& budget k
@a=1 b)a =2 Ca=3

Figure 6: Synthetic experiments, n = 500, m = 30, £ = 1.
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Figure 7: Synthetic experiments, n = 500, m = 30, { = 15.

1.5 - 1.0 1 3.5 4
. —2.0 - 0.5 1 3.0
2
<= 954 0.0 - 2.5

—~3.0 - —0.5 1 2.0 7

T T T
60 120 180 240 300 60 120 180 240 300 60 120 180 240
budget k& budget k& budget k&
@a=1 b)a=2 ©a=3

Figure 8: Synthetic experiments, n = 500, m = 30, ¢ = 30.
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