
Training Quantized Nets: A Deeper Understanding

Hao Li1∗, Soham De1∗, Zheng Xu1, Christoph Studer2, Hanan Samet1, Tom Goldstein1

1Department of Computer Science, University of Maryland, College Park
2School of Electrical and Computer Engineering, Cornell University

{haoli,sohamde,xuzh,hjs,tomg}@cs.umd.edu, studer@cornell.edu

Abstract

Currently, deep neural networks are deployed on low-power portable devices by first training
a full-precision model using powerful hardware, and then deriving a corresponding low-
precision model for efficient inference on such systems. However, training models directly
with coarsely quantized weights is a key step towards learning on embedded platforms that
have limited computing resources, memory capacity, and power consumption. Numerous
recent publications have studied methods for training quantized networks, but these studies
have mostly been empirical. In this work, we investigate training methods for quantized neu-
ral networks from a theoretical viewpoint. We first explore accuracy guarantees for training
methods under convexity assumptions. We then look at the behavior of these algorithms for
non-convex problems, and show that training algorithms that exploit high-precision repre-
sentations have an important greedy search phase that purely quantized training methods
lack, which explains the difficulty of training using low-precision arithmetic.

1 Introduction

Deep neural networks are an integral part of state-of-the-art computer vision and natural language
processing systems. Because of their high memory requirements and computational complexity,
networks are usually trained using powerful hardware. There is an increasing interest in training
and deploying neural networks directly on battery-powered devices, such as cell phones or other
platforms. Such low-power embedded systems are memory and power limited, and in some cases
lack basic support for floating-point arithmetic.

To make neural nets practical on embedded systems, many researchers have focused on training nets
with coarsely quantized weights. For example, weights may be constrained to take on integer/binary
values, or may be represented using low-precision (8 bits or less) fixed-point numbers. Quantized nets
offer the potential of superior memory and computation efficiency, while achieving performance that
is competitive with state-of-the-art high-precision nets. Quantized weights can dramatically reduce
memory size and access bandwidth, increase power efficiency, exploit hardware-friendly bitwise
operations, and accelerate inference throughput [1–3].

Handling low-precision weights is difficult and motivates interest in new training methods. When
learning rates are small, stochastic gradient methods make small updates to weight parameters.
Binarization/discretization of weights after each training iteration “rounds off” these small updates
and causes training to stagnate [1]. Thus, the naïve approach of quantizing weights using a rounding
procedure yields poor results when weights are represented using a small number of bits. Other
approaches include classical stochastic rounding methods [4], as well as schemes that combine
full-precision floating-point weights with discrete rounding procedures [5]. While some of these
schemes seem to work in practice, results in this area are largely experimental, and little work has
been devoted to explaining the excellent performance of some methods, the poor performance of
others, and the important differences in behavior between these methods.

∗Equal contribution. Author ordering determined by a cryptographically secure random number generator.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



Contributions This paper studies quantized training methods from a theoretical perspective, with
the goal of understanding the differences in behavior, and reasons for success or failure, of various
methods. In particular, we present a convergence analysis showing that classical stochastic rounding
(SR) methods [4] as well as newer and more powerful methods like BinaryConnect (BC) [5] are
capable of solving convex discrete problems up to a level of accuracy that depends on the quantization
level. We then address the issue of why algorithms that maintain floating-point representations, like
BC, work so well, while fully quantized training methods like SR stall before training is complete.
We show that the long-term behavior of BC has an important annealing property that is needed for
non-convex optimization, while classical rounding methods lack this property.

2 Background and Related Work

The arithmetic operations of deep networks can be truncated down to 8-bit fixed-point without
significant deterioration in inference performance [4, 6–9]. The most extreme scenario of quantization
is binarization, in which only 1-bit (two states) is used for weight representation [10, 5, 1, 3, 11, 12].

Previous work on obtaining a quantized neural network can be divided into two categories: quantizing
pre-trained models with or without retraining [7, 13, 6, 14, 15], and training a quantized model from
scratch [4, 5, 3, 1, 16]. We focus on approaches that belong to the second category, as they can be
used for both training and inference under constrained resources.

For training quantized NNs from scratch, many authors suggest maintaining a high-precision floating
point copy of the weights while feeding quantized weights into backprop [5, 11, 3, 16], which results
in good empirical performance. There are limitations in using such methods on low-power devices,
however, where floating-point arithmetic is not always available or not desirable. Another widely
used solution using only low-precision weights is stochastic rounding [17, 4]. Experiments show
that networks using 16-bit fixed-point representations with stochastic rounding can deliver results
nearly identical to 32-bit floating-point computations [4], while lowering the precision down to 3-bit
fixed-point often results in a significant performance degradation [18]. Bayesian learning has also
been applied to train binary networks [19, 20]. A more comprehensive review can be found in [3].

3 Training Quantized Neural Nets

We consider empirical risk minimization problems of the form:

min
w∈W

F (w) :=
1

m

m∑
i=1

fi(w), (1)

where the objective function decomposes into a sum over many functions fi : Rd → R. Neural
networks have objective functions of this form where each fi is a non-convex loss function. When
floating-point representations are available, the standard method for training neural networks is
stochastic gradient descent (SGD), which on each iteration selects a function f̃ randomly from
{f1, f2, . . . , fm}, and then computes

SGD: wt+1 = wt − αt∇f̃(wt), (2)
for some learning rate αt. In this paper, we consider the problem of training convolutional neural
networks (CNNs). Convolutions are computationally expensive; low precision weights can be used
to accelerate them by replacing expensive multiplications with efficient addition and subtraction
operations [3, 9] or bitwise operations [11, 16].

To train networks using a low-precision representation of the weights, a quantization function Q(·)
is needed to convert a real-valued number w into a quantized/rounded version ŵ = Q(w). We use
the same notation for quantizing vectors, where we assume Q acts on each dimension of the vector.
Different quantized optimization routines can be defined by selecting different quantizers, and also
by selecting when quantization happens during optimization. The common options are:

Deterministic Rounding (R) A basic uniform or deterministic quantization function snaps a
floating point value to the closest quantized value as:

Qd(w) = sign(w) ·∆ ·
⌊
|w|
∆

+
1

2

⌋
, (3)

2



where ∆ denotes the quantization step or resolution, i.e., the smallest positive number that is
representable. One exception to this definition is when we consider binary weights, where all weights
are constrained to have two values w ∈ {−1, 1} and uniform rounding becomes Qd(w) = sign(w).

The deterministic rounding SGD maintains quantized weights with updates of the form:

Deterministic Rounding: wt+1
b = Qd

(
wtb − αt∇f̃(wtb)

)
, (4)

wherewb denotes the low-precision weights, which are quantized usingQd immediately after applying
the gradient descent update. If gradient updates are significantly smaller than the quantization step,
this method loses gradient information and weights may never be modified from their starting values.

Stochastic Rounding (SR) The quantization function for stochastic rounding is defined as:

Qs(w) = ∆ ·
{
bw∆c+ 1 for p ≤ w

∆ − b
w
∆c,

bw∆c otherwise,
(5)

where p ∈ [0, 1] is produced by a uniform random number generator. This operator is non-
deterministic, and rounds its argument up with probability w/∆ − bw/∆c, and down otherwise.
This quantizer satisfies the important property E[Qs(w)] = w. Similar to the deterministic rounding
method, the SR optimization method also maintains quantized weights with updates of the form:

Stochastic Rounding: wt+1
b = Qs

(
wtb − αt∇f̃(wtb)

)
. (6)

BinaryConnect (BC) The BinaryConnect algorithm [5] accumulates gradient updates using a
full-precision buffer wr, and quantizes weights just before gradient computations as follows.

BinaryConnect: wt+1
r = wtr − αt∇f̃

(
Q(wtr)

)
. (7)

Either stochastic rounding Qs or deterministic rounding Qd can be used for quantizing the weights
wr, but in practice, Qd is the common choice. The original BinaryConnect paper constrains the
low-precision weights to be {−1, 1}, which can be generalized to {−∆,∆}. A more recent method,
Binary-Weights-Net (BWN) [3], allows different filters to have different scales for quantization,
which often results in better performance on large datasets.

Notation For the rest of the paper, we use Q to denote both Qs and Qd unless the situation requires
this to be distinguished. We also drop the subscripts on wr and wb, and simply write w.

4 Convergence Analysis

We now present convergence guarantees for the Stochastic Rounding (SR) and BinaryConnect
(BC) algorithms, with updates of the form (6) and (7), respectively. For the purposes of deriving
theoretical guarantees, we assume each fi in (1) is differentiable and convex, and the domain
W is convex and has dimension d. We consider both the case where F is µ-strongly convex:
〈∇F (w′), w−w′〉 ≤ F (w)−F (w′)− µ

2 ‖w−w
′‖2, as well as where F is weakly convex. We also

assume the (stochastic) gradients are bounded: E‖∇f̃(wt)‖2 ≤ G2. Some results below also assume
the domain of the problem is finite. In this case, the rounding algorithm clips values that leave the
domain. For example, in the binary case, rounding returns bounded values in {−1, 1}.

4.1 Convergence of Stochastic Rounding (SR)

We can rewrite the update rule (6) as:

wt+1 = wt − αt∇f̃(wt) + rt,

where rt = Qs(w
t − αt∇f̃(wt)) − wt + αt∇f̃(wt) denotes the quantization error on the t-th

iteration. We want to bound this error in expectation. To this end, we present the following lemma.
Lemma 1. The stochastic rounding error rt on each iteration can be bounded, in expectation, as:

E
∥∥rt∥∥2 ≤

√
d∆αtG,

where d denotes the dimension of w.

3



Proofs for all theoretical results are presented in the Appendices. From Lemma 1, we see that
the rounding error per step decreases as the learning rate αt decreases. This is intuitive since the
probability of an entry in wt+1 differing from wt is small when the gradient update is small relative
to ∆. Using the above lemma, we now present convergence rate results for Stochastic Rounding (SR)
in both the strongly-convex case and the non-strongly convex case. Our error estimates are ergodic,
i.e., they are in terms of w̄T = 1

T

∑T
t=1 w

t, the average of the iterates.

Theorem 1. Assume that F is µ-strongly convex and the learning rates are given by αt = 1
µ(t+1) .

Consider the SR algorithm with updates of the form (6). Then, we have:

E[F (w̄T )− F (w?)] ≤ (1 + log(T + 1))G2

2µT
+

√
d∆G

2
,

where w? = arg minw F (w).
Theorem 2. Assume the domain has finite diameter D, and learning rates are given by αt = c√

t
, for

a constant c. Consider the SR algorithm with updates of the form (6). Then, we have:

E[F (w̄T )− F (w?)] ≤ 1

c
√
T
D2 +

√
T + 1

2T
cG2 +

√
d∆G

2
.

We see that in both cases, SR converges until it reaches an “accuracy floor.” As the quantization
becomes more fine grained, our theory predicts that the accuracy of SR approaches that of high-
precision floating point at a rate linear in ∆. This extra term caused by the discretization is unavoidable
since this method maintains quantized weights.

4.2 Convergence of Binary Connect (BC)

When analyzing the BC algorithm, we assume that the Hessian satisfies the Lipschitz bound:
‖∇2fi(x) − ∇2fi(y)‖ ≤ L2‖x − y‖ for some L2 ≥ 0. While this is a slightly non-standard
assumption, we will see that it enables us to gain better insights into the behavior of the algorithm.

The results here hold for both stochastic and uniform rounding. In this case, the quantization error r
does not approach 0 as in SR-SGD. Nonetheless, the effect of this rounding error diminishes with
shrinking αt because αt multiplies the gradient update, and thus implicitly the rounding error as well.
Theorem 3. Assume F is L-Lipschitz smooth, the domain has finite diameter D, and learning rates
are given by αt = c√

t
. Consider the BC-SGD algorithm with updates of the form (7). Then, we have:

E[F (w̄T )− F (w?)] ≤ 1

2c
√
T
D2 +

√
T + 1

2T
cG2 +

√
d∆LD.

As with SR, BC can only converge up to an error floor. So far this looks a lot like the convergence
guarantees for SR. However, things change when we assume strong convexity and bounded Hessian.
Theorem 4. Assume that F is µ-strongly convex and the learning rates are given by αt = 1

µ(t+1) .
Consider the BC algorithm with updates of the form (7). Then we have:

E[F (w̄T )− F (w?)] ≤ (1 + log(T + 1))G2

2µT
+
DL2

√
d∆

2
.

Now, the error floor is determined by both ∆ and L2. For a quadratic least-squares problem, the
gradient of F is linear and the Hessian is constant. Thus, L2 = 0 and we get the following corollary.
Corollary 1. Assume that F is quadratic and the learning rates are given by αt = 1

µ(t+1) . The BC
algorithm with updates of the form (7) yields

E[F (w̄T )− F (w?)] ≤ (1 + log(T + 1))G2

2µT
.

We see that the real-valued weights accumulated in BC can converge to the true minimizer of quadratic
losses. Furthermore, this suggests that, when the function behaves like a quadratic on the distance

4



Figure 1: The SR method starts at some location x (in this case 0), adds a perturbation to x, and then rounds.
As the learning rate α gets smaller, the distribution of the perturbation gets “squished” near the origin, making
the algorithm less likely to move. The “squishing” effect is the same for the part of the distribution lying to the
left and to the right of x, and so it does not effect the relative probability of moving left or right.

scale ∆, one would expect BC to perform fundamentally better than SR. While this may seem
like a restrictive condition, there is evidence that even non-convex neural networks become well
approximated as a quadratic in the later stages of optimization within a neighborhood of a local
minimum [21].

Note, our convergence results on BC are for wr instead of wb, and these measures of convergence are
not directly comparable. It is not possible to bound wb when BC is used, as the values of wb may
not converge in the usual sense (e.g., in the +/-1 binary case wr might converge to 0, in which case
arbitrarily small perturbations to wr might send wb to +1 or -1).

5 What About Non-Convex Problems?

The global convergence results presented above for convex problems show that, in general, both
the SR and BC algorithms converge to within O(∆) accuracy of the minimizer (in expected value).
However, these results do not explain the large differences between these methods when applied to
non-convex neural nets. We now study how the long-term behavior of SR differs from BC. Note
that this section makes no convexity assumptions, and the proposed theoretical results are directly
applicable to neural networks.

Typical (continuous-valued) SGD methods have an important exploration-exploitation tradeoff. When
the learning rate is large, the algorithm explores by moving quickly between states. Exploitation
happens when the learning rate is small. In this case, noise averaging causes the algorithm more
greedily pursues local minimizers with lower loss values. Thus, the distribution of iterates produced
by the algorithm becomes increasingly concentrated near minimizers as the learning rate vanishes
(see, e.g., the large-deviation estimates in [22]). BC maintains this property as well—indeed, we saw
in Corollary 1 a class of problems for which the iterates concentrate on the minimizer for small αt.

In this section, we show that the SR method lacks this important tradeoff: as the stepsize gets small
and the algorithm slows down, the quality of the iterates produced by the algorithm does not improve,
and the algorithm does not become progressively more likely to produce low-loss iterates. This
behavior is illustrated in Figures 1 and 2.

To understand this problem conceptually, consider the simple case of a one-variable optimization
problem starting at x0 = 0 with ∆ = 1 (Figure 1). On each iteration, the algorithm computes a
stochastic approximation ∇f̃ of the gradient by sampling from a distribution, which we call p. This
gradient is then multiplied by the stepsize to get α∇f̃ . The probability of moving to the right (or
left) is then roughly proportional to the magnitude of α∇f̃ . Note the random variable α∇f̃ has
distribution pα(z) = α−1p(z/α).

Now, suppose that α is small enough that we can neglect the tails of pα(z) that lie outside the interval
[−1, 1]. The probability of transitioning from x0 = 0 to x1 = 1 using stochastic rounding, denoted
by Tα(0, 1), is then

Tα(0, 1) ≈
∫ 1

0

zpα(z)dz =
1

α

∫ 1

0

zp(z/α) dz = α

∫ 1/α

0

p(x)x dx ≈ α
∫ ∞

0

p(x)x dx,

where the first approximation is because we neglected the unlikely case that α∇f̃ > 1, and the
second approximation appears because we added a small tail probability to the estimate. These

5



-2 0 2 4 6 8

Weight w

0

2

4

6

8

10

12

L
o

s
s
 V

a
lu

e

(a) α = 1.0 (b) α = 0.1 (c) α = 0.01 (d) α = 0.001

Figure 2: Effect of shrinking the learning rate in SR vs BC on a toy problem. The left figure plots the objective
function (8). Histograms plot the distribution of the quantized weights over 106 iterations. The top row of plots
correspond to BC, while the bottom row is SR, for different learning rates α. As the learning rate α shrinks, the
BC distribution concentrates on a minimizer, while the SR distribution stagnates.

approximations get more accurate for small α. We see that, assuming the tails of p are “light” enough,
we have Tα(0, 1) ∼ α

∫∞
0
p(x)x dx as α→ 0. Similarly, Tα(0,−1) ∼ α

∫ 0

−∞ p(x)x dx as α→ 0.

What does this observation mean for the behavior of SR? First of all, the probability of leaving x0 on
an iteration is

Tα(0,−1) + Tα(0, 1) ≈ α
[∫ ∞

0

p(x)x dx+

∫ 0

−∞
p(x)x dx

]
,

which vanishes for small α. This means the algorithm slows down as the learning rate drops off,
which is not surprising. However, the conditional probability of ending up at x1 = 1 given that the
algorithm did leave x0 is

Tα(0, 1|x1 6= x0) ≈ Tα(0, 1)

Tα(0,−1) + Tα(0, 1)
=

∫∞
0
p(x)x dx∫ 0

−∞ p(x)x dx+
∫∞

0
p(x)x dx

,

which does not depend on α. In other words, provided α is small, SR, on average, makes the same
decisions/transitions with learning rate α as it does with learning rate α/10; it just takes 10 times
longer to make those decisions when α/10 is used. In this situation, there is no exploitation benefit in
decreasing α.

5.1 Toy Problem

To gain more intuition about the effect of shrinking the learning rate in SR vs BC, consider the
following simple 1-dimensional non-convex problem:

min
w
f(w) :=


w2 + 2, if w < 1,

(w − 2.5)2 + 0.75, if 1 ≤ w < 3.5,

(w − 4.75)2 + 0.19, if w ≥ 3.5.

(8)

Figure 2 shows a plot of this loss function. To visualize the distribution of iterates, we initialize at
w = 4.0, and run SR and BC for 106 iterations using a quantization resolution of 0.5.

Figure 2 shows the distribution of the quantized weight parameters w over the iterations when
optimized with SR and BC for different learning rates α. As we shift from α = 1 to α = 0.001, the
distribution of BC iterates transitions from a wide/explorative distribution to a narrow distribution
in which iterates aggressively concentrate on the minimizer. In contrast, the distribution produced
by SR concentrates only slightly and then stagnates; the iterates are spread widely even when the
learning rate is small.

5.2 Asymptotic Analysis of Stochastic Rounding

The above argument is intuitive, but also informal. To make these statements rigorous, we interpret
the SR method as a Markov chain. On each iteration, SR starts at some state (iterate) x, and moves to

6












