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Abstract

Statistical performance bounds for reinforcement learning (RL) algorithms can be
critical for high-stakes applications like healthcare. This paper introduces a new
framework for theoretically measuring the performance of such algorithms called
Uniform-PAC, which is a strengthening of the classical Probably Approximately
Correct (PAC) framework. In contrast to the PAC framework, the uniform version
may be used to derive high probability regret guarantees and so forms a bridge
between the two setups that has been missing in the literature. We demonstrate
the benefits of the new framework for finite-state episodic MDPs with a new
algorithm that is Uniform-PAC and simultaneously achieves optimal regret and
PAC guarantees except for a factor of the horizon.

1 Introduction

The recent empirical successes of deep reinforcement learning (RL) are tremendously exciting, but the
performance of these approaches still varies significantly across domains, each of which requires the
user to solve a new tuning problem [1]. Ultimately we would like reinforcement learning algorithms
that simultaneously perform well empirically and have strong theoretical guarantees. Such algorithms
are especially important for high stakes domains like health care, education and customer service,
where non-expert users demand excellent outcomes.

We propose a new framework for measuring the performance of reinforcement learning algorithms
called Uniform-PAC. Briefly, an algorithm is Uniform-PAC if with high probability it simultaneously
for all ε > 0 selects an ε-optimal policy on all episodes except for a number that scales polynomially
with 1/ε. Algorithms that are Uniform-PAC converge to an optimal policy with high probability
and immediately yield both PAC and high probability regret bounds, which makes them superior to
algorithms that come with only PAC or regret guarantees. Indeed,

(a) Neither PAC nor regret guarantees imply convergence to optimal policies with high probability;

(b) (ε, δ)-PAC algorithms may be ε/2-suboptimal in every episode;

(c) Algorithms with small regret may be maximally suboptimal infinitely often.
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Uniform-PAC algorithms suffer none of these drawbacks. One could hope that existing algorithms
with PAC or regret guarantees might be Uniform-PAC already, with only the analysis missing.
Unfortunately this is not the case and modification is required to adapt these approaches to satisfy
the new performance metric. The key insight for obtaining Uniform-PAC guarantees is to leverage
time-uniform concentration bounds such as the finite-time versions of the law of iterated logarithm,
which obviates the need for horizon-dependent confidence levels.

We provide a new optimistic algorithm for episodic RL called UBEV that is Uniform PAC. Unlike its
predecessors, UBEV uses confidence intervals based on the law of iterated logarithm (LIL) which
hold uniformly over time. They allow us to more tightly control the probability of failure events
in which the algorithm behaves poorly. Our analysis is nearly optimal according to the traditional
metrics, with a linear dependence on the state space for the PAC setting and square root dependence
for the regret. Therefore UBEV is a Uniform PAC algorithm with PAC bounds and high probability
regret bounds that are near optimal in the dependence on the length of the episodes (horizon) and
optimal in the state and action spaces cardinality as well as the number of episodes. To our knowledge
UBEV is the first algorithm with both near-optimal PAC and regret guarantees.

Notation and setup. We consider episodic fixed-horizon MDPs with time-dependent dynamics,
which can be formalized as a tuple M = (S,A, pR, P, p0, H). The statespace S and the actionspace
A are finite sets with cardinality S and A. The agent interacts with the MDP in episodes of H time
steps each. At the beginning of each time-step t ∈ [H] the agent observes a state st and chooses an
action at based on a policy π that may depend on the within-episode time step (at = π(st, t)). The
next state is sampled from the tth transition kernel st+1 ∼ P (·|st, at, t) and the initial state from
s1 ∼ p0. The agent then receives a reward drawn from a distribution pR(st, at, t) which can depend
on st, at and t with mean r(st, at, t) determined by the reward function. The reward distribution pR
is supported on [0, 1].2 The value function from time step t for policy π is defined as

V πt (s) := E

[
H∑
i=t

r(si, ai, i)

∣∣∣∣st = s

]
=
∑
s′∈S

P (s′|s, π(s, t), t)V πt+1(s′) + r(s, π(s, t), t) .

and the optimal value function is denoted by V ?t . In any fixed episode, the quality of a policy π is
evaluated by the total expected reward or return

ρπ := E

[
H∑
i=t

r(si, ai, i)
∣∣π] = p>0 V

π
1 ,

which is compared to the optimal return ρ? = p>0 V
?
1 . For this notation p0 and the value functions V ?t ,

V π1 are interpreted as vectors of length S. If an algorithm follows policy πk in episode k, then the
optimality gap in episode k is ∆k := ρ? − ρπk which is bounded by ∆max = maxπ ρ

? − ρπ ≤ H .
We let Nε :=

∑∞
k=1 I{∆k > ε} be the number of ε-errors and R(T ) be the regret after T episodes:

R(T ) :=
∑T
k=1 ∆k. Note that T is the number of episodes and not total time steps (which is HT

after T episodes) and k is an episode index while t usually denotes time indices within an episode.
The Õ notation is similar to the usual O-notation but suppresses additional polylog-factors, that is
g(x) = Õ(f(x)) iff there is a polynomial p such that g(x) = O(f(x)p(log(x))).

2 Uniform PAC and Existing Learning Frameworks

We briefly summarize the most common performance measures used in the literature.

• (ε, δ)-PAC: There exists a polynomial function FPAC(S,A,H, 1/ε, log(1/δ)) such that

P (Nε > FPAC(S,A,H, 1/ε, log(1/δ))) ≤ δ .

• Expected Regret: There exists a function FER(S,A,H, T ) such that E[R(T )] ≤
FER(S,A,H, T ).
• High Probability Regret: There exists a function FHPR(S,A,H, T, log(1/δ)) such that

P (R(T ) > FHPR(S,A,H, T, log(1/δ))) ≤ δ .
2The reward may be allowed to depend on the next-state with no further effort in the proofs. The boundedness

assumption could be replaced by the assumption of subgaussian noise with known subgaussian parameter.
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• Uniform High Probability Regret: There exists a function FUHPR(S,A,H, T, log(1/δ)) such
that

P (exists T : R(T ) > FUHPR(S,A,H, T, log(1/δ))) ≤ δ .

In all definitions the function F should be polynomial in all arguments. For notational conciseness
we often omit some of the parameters of F where the context is clear. The different performance
guarantees are widely used (e.g. PAC: [2, 3, 4, 5], (uniform) high-probability regret: [6, 7, 8];
expected regret: [9, 10, 11, 12]). Due to space constraints, we will not discuss Bayesian-style
performance guarantees that only hold in expectation with respect to a distribution over problem
instances. We will shortly discuss the limitations of the frameworks listed above, but first formally
define the Uniform-PAC criteria
Definition 1 (Uniform-PAC). An algorithm is Uniform-PAC for δ > 0 if

P (exists ε > 0 : Nε > FUPAC (S,A,H, 1/ε, log(1/δ))) ≤ δ ,
where FUPAC is polynomial in all arguments.

All the performance metrics are functions of the distribution of the sequence of errors over the
episodes (∆k)k∈N. Regret bounds are the integral of this sequence up to time T , which is a random
variable. The expected regret is just the expectation of the integral, while the high-probability
regret is a quantile. PAC bounds are the quantile of the size of the superlevel set for a fixed level ε.
Uniform-PAC bounds are like PAC bounds, but hold for all ε simultaneously.

Limitations of regret. Since regret guarantees only bound the integral of ∆k over k, it does not
distinguish between making a few severe mistakes and many small mistakes. In fact, since regret
bounds provably grow with the number of episodes T , an algorithm that achieves optimal regret may
still make infinitely many mistakes (of arbitrary quality, see proof of Theorem 2 below). This is
highly undesirable in high-stakes scenarios. For example in drug treatment optimization in healthcare,
we would like to distinguish between infrequent severe complications (few large ∆k) and frequent
minor side effects (many small ∆k). In fact, even with an optimal regret bound, we could still serve
infinitely patients with the worst possible treatment.

Limitations of PAC. PAC bounds limit the number of mistakes for a given accuracy level ε, but
is otherwise non-restrictive. That means an algorithm with ∆k > ε/2 for all k almost surely might
still be (ε, δ)-PAC. Worse, many algorithms designed to be (ε, δ)-PAC actually exhibit this behavior
because they explicitly halt learning once an ε-optimal policy has been found. The less widely used
TCE (total cost of exploration) bounds [13] and KWIK guarantees [14] suffer from the same issueand
for conciseness are not discussed in detail.

Advantages of Uniform-PAC. The new criterion overcomes the limitations of PAC and regret
guarantees by measuring the number of ε-errors at every level simultaneously. By definition, algo-
rithms that are Uniform-PAC for a δ are (ε, δ)-PAC for all ε > 0. We will soon see that an algorithm
with a non-trivial Uniform-PAC guarantee also has small regret with high probability. Furthermore,
there is no loss in the reduction so that an algorithm with optimal Uniform-PAC guarantees also
has optimal regret, at least in the episodic RL setting. In this sense Uniform-PAC is the missing
bridge between regret and PAC. Finally, for algorithms based on confidence bounds, Uniform-PAC
guarantees are usually obtained without much additional work by replacing standard concentration
bounds with versions that hold uniformly over episodes (e.g. using the law of the iterated logarithms).
In this sense we think Uniform-PAC is the new ‘gold-standard’ of theoretical guarantees for RL
algorithms.

2.1 Relationships between Performance Guarantees

Existing theoretical analyses usually focus exclusively on either the regret or PAC framework. Besides
occasional heuristic translations, Proposition 4 in [15] and Corollary 3 in [6] are the only results
relating a notion of PAC and regret, we are aware of. Yet the guarantees there are not widely used3

3The average per-step regret in [6] is superficially a PAC bound, but does not hold over infinitely many
time-steps and exhibits the limitations of a conventional regret bound. The translation to average loss in [15]
comes at additional costs due to the discounted infinite horizon setting.
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Figure 1: Visual summary of relationship among the different learning frameworks: Expected regret
(ER) and PAC preclude each other while the other crossed arrows represent only a does-not-implies
relationship. Blue arrows represent imply relationships. For details see the theorem statements.

unlike the definitions given above which we now formally relate to each other. A simplified overview
of the relations discussed below is shown in Figure 1.
Theorem 1. No algorithm can achieve

• a sub-linear expected regret bound for all T and

• a finite (ε, δ)-PAC bound for a small enough ε

simultaneously for all two-armed multi-armed bandits with Bernoulli reward distributions. This
implies that such guarantees also cannot be satisfied simultaneously for all episodic MDPs.

A full proof is in Appendix A.1, but the intuition is simple. Suppose a two-armed Bernoulli bandit has
mean rewards 1/2 + ε and 1/2 respectively and the second arm is chosen at most F <∞ times with
probability at least 1− δ, then one can easily show that in an alternative bandit with mean rewards
1/2 + ε and 1/2 + 2ε there is a non-zero probability that the second arm is played finitely often and in
this bandit the expected regret will be linear. Therefore, sub-linear expected regret is only possible if
each arm is pulled infinitely often almost surely.
Theorem 2. The following statements hold for performance guarantees in episodic MDPs:

(a) If an algorithm satisfies a (ε, δ)-PAC bound with FPAC = Θ(1/ε2) then it satisfies for a
specific T = Θ(ε−3) a FHPR = Θ(T 2/3) bound. Further, there is an MDP and algorithm that
satisfies the (ε, δ)-PAC bound FPAC = Θ(1/ε2) on that MDP and has regret R(T ) = Ω(T 2/3)
on that MDP for any T . That means a (ε, δ)-PAC bound with FPAC = Θ(1/ε2) can only be
converted to a high-probability regret bound with FHPR = Ω(T 2/3).

(b) For any chosen ε, δ > 0 and FPAC, there is an MDP and algorithm that satisfies the (ε, δ)-PAC
bound FPAC on that MDP and has regretR(T ) = Ω(T ) on that MDP. That means a (ε, δ)-PAC
bound cannot be converted to a sub-linear uniform high-probability regret bound.

(c) For any FUHPR(T, δ) with FUHPR(T, δ)→∞ as T →∞, there is an algorithm that satisfies
that uniform high-probability regret bound on some MDP but makes infinitely many mistakes
for any sufficiently small accuracy level ε > 0 for that MDP. Therefore, a high-probability
regret bound (uniform or not) cannot be converted to a finite (ε, δ)-PAC bound.

(d) For any FUHPR(T, δ) there is an algorithm that satisfies that uniform high-probability regret
bound on some MDP but suffers expected regret ER(T ) = Ω(T ) on that MDP.

For most interesting RL problems including episodic MDPs the worst-case expected regret grows
with O(

√
T ). The theorem shows that establishing an optimal high probability regret bound does not

imply any finite PAC bound. While PAC bounds may be converted to regret bounds, the resulting
bounds are necessarily severely suboptimal with a rate of T 2/3. The next theorem formalises the
claim that Uniform-PAC is stronger than both the PAC and high-probability regret criteria.
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Theorem 3. Suppose an algorithm is Uniform-PAC for some δ with FUPAC = Õ(C1/ε + C2/ε
2)

where C1, C2 > 0 are constant in ε, but may depend on other quantities such as S, A, H , log(1/δ),
then the algorithm

(a) converges to optimal policies with high probability: P(limk→∞∆k = 0) ≥ 1− δ.

(b) is (ε, δ)-PAC with bound FPAC = FUPAC for all ε.

(c) enjoys a high-probability regret at level δ with FUHPR = Õ(
√
C2T + max{C1, C2}).

Observe that stronger uniform PAC bounds lead to stronger regret bounds and for RL in episodic
MDPs, an optimal uniform-PAC bound implies a uniform regret bound. To our knowledge, there
are no existing approaches with PAC or regret guarantees that are Uniform-PAC. PAC methods such
as MBIE, MoRMax, UCRL-γ, UCFH, Delayed Q-Learning or Median-PAC all depend on advance
knowledge of ε and eventually stop improving their policies. Even when disabling the stopping
condition, these methods are not uniform-PAC as their confidence bounds only hold for finitely many
episodes and are eventually violated according to the law of iterated logarithms. Existing algorithms
with uniform high-probability regret bounds such as UCRL2 or UCBVI [16] also do not satisfy
uniform-PAC bounds since they use upper confidence bounds with width

√
log(T )/n where T is the

number of observed episodes and n is the number of observations for a specific state and action. The
presence of log(T ) causes the algorithm to try each action in each state infinitely often. One might
begin to wonder if uniform-PAC is too good to be true. Can any algorithm meet the requirements? We
demonstrate in Section 4 that the answer is yes by showing that UBEV has meaningful Uniform-PAC
bounds. A key technique that allows us to prove these bounds is the use of finite-time law of iterated
logarithm confidence bounds which decrease at rate

√
(log log n)/n.

3 The UBEV Algorithm

The pseudo-code for the proposed UBEV algorithm is given in Algorithm 1. In each episode it
follows an optimistic policy πk that is computed by backwards induction using a carefully chosen
confidence interval on the transition probabilities in each state. In line 8 an optimistic estimate of the
Q-function for the current state-action-time triple is computed using the empirical estimates of the
expected next state value V̂next ∈ R (given that the values at the next time are Ṽt+1) and expected
immediate reward r̂ plus confidence bounds (H− t)φ and φ. We show in Lemma D.1 in the appendix
that the policy update in Lines 3–9 finds an optimal solution to maxP ′,r′,V ′,π′ Es∼p0 [V ′1(s)] subject
to the constraints that for all s ∈ S, a ∈ A, t ∈ [H],

V ′t (s) = r(s, π′(s, t), t) + P ′(s, π′(s, t), t)>V ′t+1 (Bellman Equation) (1)

V ′H+1 = 0, P ′(s, a, t) ∈ ∆S , r′(s, a, t) ∈ [0, 1]

|[(P ′ − P̂k)(s, a, t)]>V ′t+1| ≤ φ(s, a, t)(H − t)
|r′(s, a, t)− r̂k(s, a, t)| ≤ φ(s, a, t) (2)

where (P ′ − P̂k)(s, a, t) is short for P ′(s, a, t)− P̂k(s, a, t) = P ′(·|s, a, t)− P̂k(·|s, a, t) and

φ(s, a, t) =

√
2 ln ln max{e, n(s, a, t)}+ ln(18SAH/δ)

n(s, a, t)
= O

(√
ln(SAH ln(n(s, a, t))/δ)

n(s, a, t)

)
is the width of a confidence bound with e = exp(1) and P̂k(s′|s, a, t) = m(s′,s,a,t)

n(s,a,t) are the empirical
transition probabilities and r̂k(s, a, t) = l(s, a, t)/n(s, a, t) the empirical immediate rewards (both
at the beginning of the kth episode). Our algorithm is conceptually similar to other algorithms based
on the optimism principle such as MBIE [5], UCFH [3], UCRL2 [6] or UCRL-γ [2] but there are
several key differences:

• Instead of using confidence intervals over the transition kernel by itself, we incorporate the
value function directly into the concentration analysis. Ultimately this saves a factor of S in
the sample complexity, but the price is a more difficult analysis. Previously MoRMax [17]
also used the idea of directly bounding the transition and value function, but in a very different
algorithm that required discarding data and had a less tight bound. A similar technique has
been used by Azar et al. [16].

5



Algorithm 1: UBEV (Upper Bounding the Expected Next State Value) Algorithm
Input : failure tolerance δ ∈ (0, 1]

1 n(s, a, t) = l(s, a, t) = m(s′, s, a, t) = 0; ṼH+1(s′) := 0 ∀s, s′ ∈ S, a ∈ A, t ∈ [H]
2 for k = 1, 2, 3, . . . do

/* Optimistic planning */
3 for t = H to 1 do
4 for s ∈ S do
5 for a ∈ A do
6 φ :=

√
2 ln ln(max{e,n(s,a,t)})+ln(18SAH/δ)

n(s,a,t) // confidence bound

7 r̂ := l(s,a,t)
n(s,a,t) ; V̂next := m(·,s,a,t)>Ṽt+1

n(s,a,t) // empirical estimates

8 Q(a) := min {1, r̂ + φ}+ min
{

max Ṽt+1, V̂next + (H − t)φ
}

9 πk(s, t) := arg maxaQ(a), Ṽt(s) := Q(πk(s, t))

/* Execute policy for one episode */
10 s1 ∼ p0;
11 for t = 1 to H do
12 at := πk(st, t), rt ∼ pR(st, at, t) and st+1 ∼ P (st, at, t)
13 n(st, at, t)++; m(st+1, st, at, t)++; l(st, at, t)+= rt // update statistics
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Figure 2: Empirical comparison of optimism-based algorithms with frequentist regret or PAC bounds
on a randomly generated MDP with 3 actions, time horizon 10 and S = 5, 50, 200 states. All
algorithms are run with parameters that satisfy their bound requirements. A detailed description of
the experimental setup including a link to the source code can be found in Appendix B.

• Many algorithms update their policy less and less frequently (usually when the number of
samples doubles), and only finitely often in total. Instead, we update the policy after every
episode, which means that UBEV immediately leverages new observations.

• Confidence bounds in existing algorithms that keep improving the policy (e.g. Jaksch et al.
[6], Azar et al. [16]) scale at a rate

√
log(k)/n where k is the number of episodes played so far

and n is the number of times the specific (s, a, t) has been observed. As the results of a brief
empirical comparison in Figure 2 indicate, this leads to slow learning (compare UCBVI_1
and UBEV’s performance which differ essentially only by their use of different rate bounds).
Instead the width of UBEV’s confidence bounds φ scales at rate

√
ln ln(max{e, n})/n ≈√

(log log n)/n which is the best achievable rate and results in significantly faster learning.

4 Uniform PAC Analysis

We now discuss the Uniform-PAC analysis of UBEV which results in the following Uniform-PAC
and regret guarantee.
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Theorem 4. Let πk be the policy of UBEV in the kth episode. Then with probability at least 1− δ
for all ε > 0 jointly the number of episodes k where the expected return from the start state is not
ε-optimal (that is ∆k > ε) is at most

O

(
SAH4

ε2
min

{
1+εS2A,S

}
polylog

(
A,S,H,

1

ε
,

1

δ

))
.

Therefore, with probability at least 1− δ UBEV converges to optimal policies and for all episodes T
has regret

R(T ) = O
(
H2(
√
SAT + S3A2) polylog(S,A,H, T )

)
.

Here polylog(x . . . ) is a function that can be bounded by a polynomial of logarithm, that is, ∃k,C :
polylog(x . . . ) ≤ ln(x . . . )k+C. In Appendix C we provide a lower bound on the sample complexity
that shows that if ε < 1/(S2A), the Uniform-PAC bound is tight up to log-factors and a factor of H .
To our knowledge, UBEV is the first algorithm with both near-tight (up to H factors) high probability
regret and (ε, δ) PAC bounds as well as the first algorithm with any nontrivial uniform-PAC bound.

Using Theorem 3 the convergence and regret bound follows immediately from the uniform PAC
bound. After a discussion of the different confidence bounds allowing us to prove uniform-PAC
bounds, we will provide a short proof sketch of the uniform PAC bound.

4.1 Enabling Uniform PAC With Law-of-Iterated-Logarithm Confidence Bounds

To have a PAC bound for all ε jointly, it is critical that UBEV continually make use of new experience.
If UBEV stopped leveraging new observations after some fixed number, it would not be able to
distinguish with high probability among which of the remaining possible MDPs do or do not have
optimal policies that are sufficiently optimal in the other MDPs. The algorithm therefore could
potentially follow a policy that is not at least ε-optimal for infinitely many episodes for a sufficiently
small ε. To enable UBEV to incorporate all new observations, the confidence bounds in UBEV must
hold for an infinite number of updates. We therefore require a proof that the total probability of all
possible failure events (of the high confidence bounds not holding) is bounded by δ, in order to obtain
high probability guarantees. In contrast to prior (ε, δ)-PAC proofs that only consider a finite number
of failure events (which is enabled by requiring an RL algorithm to stop using additional data), we
must bound the probability of an infinite set of possible failure events.

Some choices of confidence bounds will hold uniformly across all sample sizes but are not sufficiently
tight for uniform PAC results. For example, the recent work by Azar et al. [16] uses confidence

intervals that shrink at a rate of
√

lnT
n , where T is the number of episodes, and n is the number of

samples of a (s, a) pair at a particular time step. This confidence interval will hold for all episodes,
but these intervals do not shrink sufficiently quickly and can even increase. One simple approach for
constructing confidence intervals that is sufficient for uniform PAC guarantees is to combine bounds
for fixed number of samples with a union bound allocating failure probability δ/n2 to the failure case
with n samples. This results in confidence intervals that shrink at rate

√
1/n lnn. Interestingly we

know of no algorithms that do such in our setting.

We follow a similarly simple but much stronger approach of using law-of-iterated logarithm (LIL)
bounds that shrink at the better rate of

√
1/n ln lnn. Such bounds have sparked recent interest in

sequential decision making [18, 19, 20, 21, 22] but to the best of our knowledge we are the first to
leverage them for RL. We prove several general LIL bounds in Appendix F and explain how we use
these results in our analysis in Appendix E.2. These LIL bounds are both sufficient to ensure uniform
PAC bounds, and much tighter (and therefore will lead to much better performance) than

√
1/n lnT

bounds. Indeed, LIL have the tightest possible rate dependence on the number of samples n for a
bound that holds for all timesteps (though they are not tight with respect to constants).

4.2 Proof Sketch

We now provide a short overview of our uniform PAC bound in Theorem 4. It follows the typical
scheme for optimism based algorithms: we show that in each episode UBEV follows a policy that is
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optimal with respect to the MDP M̃k that yields highest return in a set of MDPsMk given by the
constraints in Eqs. (1)–(2) (Lemma D.1 in the appendix). We then define a failure event F (more
details see below) such that on the complement FC , the true MDP is inMk for all k.

Under the event that the true MDP is in the desired set, the V π1 ≤ V ?1 ≤ Ṽ
πk
1 , i.e., the value Ṽ πk1 of πk

in MDP M̃k is higher than the optimal value function of the true MDP M (Lemma E.16). Therefore,
the optimality gap is bounded by ∆k ≤ p>0 (Ṽ πk1 − V πk1 ). The right hand side this expression is then
decomposed via a standard identity (Lemma E.15) as

H∑
t=1

∑
(s,a)∈S×A

wtk(s, a)((P̃k − P )(s, a, t))>Ṽ πkt+1 +

H∑
t=1

∑
(s,a)∈S×A

wtk(s, a)(r̃k(s, a, t)− r(s, a, t)),

where wtk(s, a) is the probability that when following policy πk in the true MDP we encounter
st = s and at = a. The quantities P̃k, r̃k are the model parameters of the optimistic MDP M̃k For
the sake of conciseness, we ignore the second term above in the following which can be bounded by
ε/3 in the same way as the first. We further decompose the first term as∑

t∈[H]
(s,a)∈Lctk

wtk(s, a)((P̃k − P )(s, a, t))>Ṽ πkt+1 (3)

+
∑
t∈[H]

(s,a)∈Ltk

wtk(s, a)((P̃k − P̂k)(s, a, t))>Ṽ πkt+1 +
∑
t∈[H]

(s,a)∈Ltk

wtk(s, a)((P̂k − P )(s, a, t))>Ṽ πkt+1 (4)

where Ltk =
{

(s, a) ∈ S ×A : wtk(s, a) ≥ wmin = ε
3HS2

}
is the set of state-action pairs with

non-negligible visitation probability. The value of wmin is chosen so that (3) is bounded by ε/3.
Since Ṽ πk is the optimal solution of the optimization problem in Eq. (1), we can bound

|((P̃k−P̂k)(s, a, t))>Ṽ πkt+1| ≤ φk(s, a, t)(H − t) = O

(√
H2 ln (ln(ntk(s, a))/δ)

ntk(s, a)

)
, (5)

where φk(s, a, t) is the value of φ(s, a, t) and ntk(s, a) the value of n(s, a, t) right before episode k.
Further we decompose

|((P̂k − P )(s, a, t))>Ṽ πkt+1| ≤ ‖(P̂k − P )(s, a, t)‖1‖Ṽ πkt+1‖∞ ≤ O

√SH2 ln lnntk(s,a)
δ

ntk(s, a)

 ,(6)

where the second inequality follows from a standard concentration bound used in the definition of the
failure event F (see below). Substituting this and (5) into (4) leads to

(4) ≤ O

 H∑
t=1

∑
s,a∈Ltk

wtk(s, a)

√
SH2 ln(ln(ntk(s, a))/δ)

ntk(s, a)

 . (7)

On FC it also holds that ntk(s, a) ≥ 1
2

∑
i<k wti(s, a) − ln 9SAH

δ and so on nice episodes where
each (s, a) ∈ Ltk with significant probability wtk(s, a) also had significant probability in the past,
i.e.,

∑
i<k wti(s, a) ≥ 4 ln 9SA

δ , it holds that ntk(s, a) ≥ 1
4

∑
i<k wti(s, a). Substituting this into

(7), we can use a careful pidgeon-hole argument laid out it Lemma E.3 in the appendix to show
that this term is bounded by ε/3 on all but O(AS2H4/ε2 polylog(A,S,H, 1/ε, 1/δ)) nice episodes.
Again using a pidgeon-hole argument, one can show that all but at most O(S2AH3/ε ln(SAH/δ))
episodes are nice. Combining both bounds, we get that on FC the optimality gap ∆k is at most ε
except for at most O(AS2H4/ε2 polylog(A,S,H, 1/ε, 1/δ)) episodes.

We decompose the failure event into multiple components. In addition to the events FNk that a
(s, a, t) triple has been observed few times compared to its visitation probabilities in the past, i.e.,
ntk(s, a) < 1

2

∑
i<k wti(s, a) − ln 9SAH

δ as well as a conditional version of this statement, the
failure event F contains events where empirical estimates of the immediate rewards, the expected
optimal value of the successor states and the individual transition probabilites are far from their true
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expectations. For the full definition of F see Appendix E.2. F also contains event FL1 we used in
Eq. (6) defined as{
∃k, s, a, t : ‖P̂k(s, a, t)− P (s, a, t)‖1 ≥

√
4

ntk(s,a)

(
2 llnp(ntk(s, a)) + ln 18SAH(2S−2)

δ

)}
.

It states that the L1-distance of the empirical transition probabilities to the true probabilities for
any (s, a, t) in any episode k is too large and we show that P(FL1) ≤ 1 − δ/9 using a uniform
version of the popular bound by Weissman et al. [23] which we prove in Appendix F. We show in
similar manner that the other events in F have small probability uniformly for all episodes k so that
P(F ) ≤ δ. Together this yields the uniform PAC bound in Thm. 4 using the second term in the min.

With a more refined analysis that avoids the use of Hölder’s inequality in (6) and a stronger notion of
nice episodes called friendly episodes we obtain the bound with the first term in the min. However,
since a similar analysis has been recently released [16], we defer this discussion to the appendix.

4.3 Discussion of UBEV Bound

The (Uniform-)PAC bound for UBEV in Theorem 4 is never worse than Õ(S2AH4/ε2), which
improves on the similar MBIE algorithm by a factor of H2 (after adapting the discounted setting for
which MBIE was analysed to our setting). For ε < 1/(S2A) our bound has a linear dependence on
the size of the state-space and depends on H4, which is a tighter dependence on the horizon than
MoRMax’s Õ(SAH6/ε2), the best sample-complexity bound with linear dependency S so far.

Comparing UBEV’s regret bound to the ones of UCRL2 [6] and REGAL [24] requires care because
(a) we measure the regret over entire episodes and (b) our transition dynamics are time-dependent
within each episode, which effectively increases the state-space by a factor of H . Converting the
bounds for UCRL2/REGAL to our setting yields a regret bound of order SH2

√
AHT . Here, the

diameter is H , the state space increases by H due to time-dependent transition dynamics and an
additional

√
H is gained by stating the regret in terms of episodes T instead of time steps. Hence,

UBEV’s bounds are better by a factor of
√
SH . Our bound matches the recent regret bound for

episodic RL by Azar et al. [16] in the S, A and T terms but not in H . Azar et al. [16] has regret
bounds that are optimal in H but their algorithm is not uniform PAC, due to the characteristics we
outlined in Section 2.

5 Conclusion

The Uniform-PAC framework strengthens and unifies the PAC and high-probability regret perfor-
mance criteria for reinforcement learning in episodic MDPs. The newly proposed algorithm is
Uniform-PAC, which as a side-effect means it is the first algorithm that is both PAC and has sub-
linear (and nearly optimal) regret. Besides this, the use of law-of-the-iterated-logarithm confidence
bounds in RL algorithms for MDPs provides a practical and theoretical boost at no cost in terms of
computation or implementation complexity.

This work opens up several immediate research questions for future work. The definition of
Uniform-PAC and the relations to other PAC and regret notions directly apply to multi-armed bandits
and contextual bandits as special cases of episodic RL, but not to infinite horizon reinforcement
learning. An extension to these non-episodic RL settings is highly desirable. Similarly, a version
of the UBEV algorithm for infinite-horizon RL with linear state-space sample complexity would
be of interest. More broadly, if theory is ever to say something useful about practical algorithms
for large-scale reinforcement learning, then it will have to deal with the unrealizable function
approximation setup (unlike the tabular function representation setting considered here), which is a
major long-standing open challenge.
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