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A Proof of the convergence of p; (x) "= p*(x)

The convergence of p, (x) =50 pT(x) can be derived, inspired by the proof from [1I:
KL[p*(x)||pq ()] < KL[p*(x)|[p; (x)] where KL denotes the Kullback-Leibler divergence
and p(x|y = +1) = p™ (x), under the assumption that classifier at £ + 1 improves over .
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Given the training data and the previously generated pseudo-negative samples are all retained in each
step, we assume that the classifier at ¢ 4- 1 improves over that at ¢. This shows that p;, , (x) converges

to p(x|y = +1) and the convergence rate depends on the classification error at each step.
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