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Abstract

Importance sampling has become an indispensable strategy to speed up optimiza-
tion algorithms for large-scale applications. Improved adaptive variants—using
importance values defined by the complete gradient information which changes
during optimization—enjoy favorable theoretical properties, but are typically com-
putationally infeasible. In this paper we propose an efficient approximation of
gradient-based sampling, which is based on safe bounds on the gradient. The
proposed sampling distribution is (i) provably the best sampling with respect to
the given bounds, (ii) always better than uniform sampling and fixed importance
sampling and (iii) can efficiently be computed—in many applications at negligible
extra cost. The proposed sampling scheme is generic and can easily be integrated
into existing algorithms. In particular, we show that coordinate-descent (CD) and
stochastic gradient descent (SGD) can enjoy significant a speed-up under the novel
scheme. The proven efficiency of the proposed sampling is verified by extensive
numerical testing.

1 Introduction

Modern machine learning applications operate on massive datasets. The algorithms that are used
for data analysis face the difficult challenge to cope with the enormous amount of data or the vast
dimensionality of the problems. A simple and well established strategy to reduce the computational
costs is to split the data and to operate only on a small part of it, as for instance in coordinate
descent (CD) methods and stochastic gradient (SGD) methods. These kind of methods are state of
the art for a wide selection of machine learning, deep leaning and signal processing applications [9,
11, 35, 27]. The application of these schemes is not only motivated by their practical preformance,
but also well justified by theory [18, 19, 2].

Deterministic strategies are seldom used for the data selection—examples are steepest coordinate
descent [4, 34, 20] or screening algorithms [14, 15]. Instead, randomized selection has become
ubiquitous, most prominently uniform sampling [27, 29, 7, 8, 28] but also non-uniform sampling based
on a fixed distribution, commonly referred to as importance sampling [18, 19, 2, 33, 16, 6, 25, 24].
While these sampling strategies typically depend on the input data, they do not adapt to the information
of the current parameters during optimization. In contrast, adaptive importance sampling strategies
constantly re-evaluate the relative importance of each data point during training and thereby often
surpass the performance of static algorithms [22, 5, 26, 10, 21, 23]. Common strategies are gradient-
based sampling [22, 36, 37] (mostly for SGD) and duality gap-based sampling for CD [5, 23].

The drawbacks of adaptive strategies are twofold: often the provable theoretical guarantees can be
worse than the complexity estimates for uniform sampling [23, 3] and often it is computationally
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inadmissible to compute the optimal adaptive sampling distribution. For instance gradient based
sampling requires the computation of the full gradient in each iteration [22, 36, 37]. Therefore one
has to rely on approximations based on upper bounds [36, 37], or stale values [22, 1]. But in general
these approximations can again be worse than uniform sampling.

This makes it necessary to develop adaptive strategies that can efficiently be computed in every
iteration and that come with theoretical guarantees that show their advantage over fixed sampling.

Our contributions. In this paper we propose an efficient approximation of the gradient-based
sampling in the sense that (i) it can efficiently be computed in every iteration, (ii) is provably better
than uniform or fixed importance sampling and (iii) recovers the gradient-based sampling in the full-
information setting. The scheme is completely generic and can easily be added as an improvement to
both CD and SGD type methods.

As our key contributions, we

(1) show that gradient-based sampling in CD methods is theoretically better than the classical fixed
sampling, the speed-up can reach a factor of the dimension n (Section 2);

(2) propose a generic and efficient adaptive importance sampling strategy that can be applied in CD
and SGD methods and enjoys favorable properties—such as mentioned above (Section 3);

(3) demonstrate how the novel scheme can efficiently be integrated in CD and SGD on an important
class of structured optimization problems (Section 4);

(4) supply numerical evidence that the novel sampling performs well on real data (Section 5).

Notation. For x ∈ Rn define [x]i := 〈x, ei〉 with ei the standard unit vectors in Rn. We abbreviate
∇if := [∇f ]i. A convex function f : Rn → R with L-Lipschitz continuous gradient satisfies

f(x+ ηu) ≤ f(x) + η 〈u,∇f(x)〉+ η2Lu

2 ‖u‖2 ∀x ∈ Rn,∀η ∈ R , (1)

for every direction u ∈ Rn and Lu = L. A function with coordinate-wise Li-Lipschitz continuous
gradients1 for constants Li > 0, i ∈ [n] := {1, . . . , n}, satisfies (1) just along coordinate directions,
i.e. u = ei, Lei = Li for every i ∈ [n]. A function is coordinate-wise L-smooth if Li ≤ L for
i = 1, . . . , n. For convenience we introduce vector l = (L1, . . . , n)> and matrix L = diag(l). A
probability vector p ∈ ∆n := {x ∈ Rn≥0 : ‖x‖1 = 1} defines a probability distribution P over [n]
and we denote by i ∼ p a sample drawn from P .

2 Adaptive Importance Sampling with Full Information

In this section we argue that adaptive sampling strategies are theoretically well justified, as they
can lead to significant improvements over static strategies. In our exhibition we focus first on CD
methods, as we also propose a novel stepsize strategy for CD in this contribution. Then we revisit the
results regarding stochastic gradient descent (SGD) already present in the literature.

2.1 Coordinate Descent with Adaptive Importance Sampling

We address general minimization problems minx f(x). Let the objective f : Rn → R be convex with
coordinate-wise Li-Lipschitz continuous gradients. Coordinate descent methods generate sequences
{xk}k≥0 of iterates that satisfy the relation

xk+1 = xk − γk∇ikf(xk)eik . (2)

Here, the direction ik is either chosen deterministically (cyclic descent, steepest descent), or randomly
picked according to a probability vector pk ∈ ∆n. In the classical literature, the stepsize is often
chosen such as to minimize the quadratic upper bound (1), i.e. γk = L−1

ik
. In this work we

propose to set γk = αk[pk]−1
ik

where αk does not depend on the chosen direction ik. This leads to

1|∇if(x+ ηei)−∇if(x)| ≤ Li |η| , ∀x ∈ Rn, ∀η ∈ R.
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directionally-unbiased updates, like it is common among SGD-type methods. It holds

Eik∼pk
[f(xk+1) | xk]

(1)

≤ Eik∼pk

[
f(xk)− αk

[pk]ik
(∇ikf(xk))

2
+
Likα

2
k

2[pk]2ik
(∇ikf(xk))

2 | xk
]

= f(xk)− αk ‖∇f(xk)‖22 +

n∑
i=1

Liα
2
k

2[pk]i
(∇if(xk))

2
. (3)

In adaptive strategies we have the freedom to chose both variables αk and pk as we like. We therefore
propose to chose them in such a way that they minimize the upper bound (3) in order to maximize the
expected progress. The optimal pk in (3) is independent of αk, but the optimal αk depends on pk.
We can state the following useful observation.
Lemma 2.1. If αk = αk(pk) is the minimizer of (3), then xk+1 := xk− αk

[pk]ik
∇ikf(xk)eik satisfies

Eik∼pk
[f(xk+1) | xk] ≤ f(xk)− αk(pk)

2
‖∇f(xk)‖22 . (4)

Consider two examples. In the first one we pick a sub-optimal, but very common [18] distribution:
Example 2.2 (Li-based sampling). Let pL ∈ ∆n defined as [pL]i = Li

Tr[L] for i ∈ [n], where
L = diag(L1, . . . , Ln). Then αk(pL) = 1

Tr[L] .

The distribution pL is often referred to as (fixed) importance sampling. In the special case when
Li = L for all i ∈ [n], this boils down to uniform sampling.

Example 2.3 (Optimal sampling2). Equation (3) is minimized for probabilities [p?k]i =
√
Li|∇if(xk)|
‖√L∇f(xk)‖

1

and αk(p?k) =
‖∇f(xk)‖22
‖√L∇f(xk)‖2

1

. Observe 1
Tr[L] ≤ αk(p?k) ≤ 1

Lmin
, where Lmin := mini∈[n] Li.

To prove this result, we rely on the following Lemma—the proof of which, as well as for the claims
above, is deferred to Section A.1 of the appendix. Here |·| is applied entry-wise.

Lemma 2.4. Define V (p,x) :=
∑n
i=1

Li[x]2i
[p]i

. Then arg minp∈∆n V (p,x) = |
√
Lx|

‖√Lx‖
1

.

The ideal adaptive algorithm. We propose to chose the stepsize and the sampling distribution for
CD as in Example 2.3. One iteration of the resulting CD method is illustrated in Algorithm 1. Our
bounds on the expected one-step progress can be used to derive convergence rates of this algorithm
with the standard techniques. This is exemplified in Appendix A.1. In the next Section 3 we develop
a practical variant of the ideal algorithm.

Efficiency gain. By comparing the estimates provided in the examples above, we see that the
expected progress of the proposed method is always at least as good as for the fixed sampling. For
instance in the special case where L = Li for i ∈ [n], the Li-based sampling is just uniform sampling

with αk(punif) = 1
Ln . On the other hand αk(p?k) =

‖∇f(xk)‖22
L‖∇f(xk)‖21

, which can be n times larger than
αk(punif). The expected one-step progress in this extreme case coincides with the one-step progress
of steepest coordinate descent [20].

2.2 SGD with Adaptive Sampling

SGD methods are applicable to objective functions which decompose as a sum

f(x) = 1
n

∑n
i=1 fi(x) (5)

with each fi : Rd → R convex. In previous work [22, 36, 37] is has been argued that the following
gradient-based sampling [p̃?k]i =

‖∇fi(xk)‖2∑n
i=1‖∇fi(xk)‖2

is optimal in the sense that it maximizes the
expected progress (3). Zhao and Zhang [36] derive complexity estimates for composite functions.
For non-composite functions it becomes easier to derive the complexity estimate. For completeness,
we add this simpler proof in Appendix A.2.

2Here “optimal” refers to the fact that p?
k is optimal with respect to the given model (1) of the objective

function. If the model is not accurate, there might exist a sampling that yields larger expected progress on f .
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Algorithm 1 Optimal sampling
(compute full gradient)

Compute∇f(xk)
(define optimal sampling)

Define (p?k, α
?
k) as in Example 2.3

ik ∼ p?k

xk+1 := xk − α?k
[p?k]ik

∇ikf(xk)

Algorithm 2 Proposed safe sampling
(update l.- and u.-bounds)

Update `, u
(compute safe sampling)

Define (p̂k, α̂k) as in (7)
ik ∼ p̂k
Compute∇ikf(xk)

xk+1 := xk − α̂k
[p̂k]ik

∇ikf(xk)

Algorithm 3 Fixed sampling

(define fixed sampling)
Define (pL, ᾱ) as in Example 2.2
ik ∼ pL
Compute∇ikf(xk)

xk+1 := xk − ᾱ
[pL]ik

∇ikf(xk)

Figure 1: CD with different sampling strategies. Whilst Alg. 1 requires to compute the full gradient,
the compute operation in Alg. 2 is as cheap as for fixed importance sampling, Alg. 3. Defining the
safe sampling p̂k requires O(n log n) time.

3 Safe Adaptive Importance Sampling with Limited Information

In the previous section we have seen that gradient-based sampling (Example 2.3) can yield a massive
speed-up compared to a static sampling distribution (Example 2.2). However, sampling according
to p?k in CD requires the knowledge of the full gradient ∇f(xk) in each iteration. And likewise,
sampling from p̃?k in SGD requires the knowledge of the gradient norms of all components—both
these operations are in general inadmissible, i.e. the compute cost would void all computational
benefits of the iterative (stochastic) methods over full gradient methods.

However, it is often possible to efficiently compute approximations of p?k or p̃?k instead. In contrast
to previous contributions, we here propose a safe way to compute such approximations. By this we
mean that our approximate sampling is provably never worse than static sampling, and moreover, we
show that our solution is the best possible with respect to the limited information at hand.

3.1 An Optimization Formulation for Sampling

Formally, we assume that we have in each iteration access to two vectors `k,uk ∈ Rn≥0 that
provide safe upper and lower bounds on either the absolute values of the gradient entries ([`k]i ≤
|∇if(xk)| ≤ [uk]i) for CD, or of the gradient norms in SGD: ([`k]i ≤ ‖∇fi(xk)‖2 ≤ [uk]i). We
postpone the discussion of this assumption to Section 4, where we give concrete examples.

The minimization of the upper bound (3) amounts to the equivalent problem3

min
αk

min
pk∈∆n

[
−αk ‖ck‖22 +

α2
k

2
V (pk, ck)

]
⇔ min

pk∈∆n

V (pk, ck)

‖ck‖22
(6)

where ck ∈ Rn represents the unknown true gradient. That is, with respect to the bounds `k,uk,
we can write ck ∈ Ck := {x ∈ Rn : [`k]i ≤ [x]i ≤ [uk]i, i ∈ [n]}. In Example 2.3 we derived the
optimal solution for a fixed ck ∈ Ck. However, this is not sufficient to find the optimal solution for
an arbitrary ck ∈ Ck. Just computing the optimal solution for an arbitrary (but fixed) ck ∈ Ck is
unlikely to yield a good solution. For instance both extreme cases ck = `k and ck = uk (the latter
choice is quite common, cf. [36, 23]) might be poor. This is demonstrated in the next example.
Example 3.1. Let ` = (1, 2)>, u = (2, 3)>, c = (2, 2)> and L1 = L2 = 1. Then V

(
`
‖`‖1

, c
)

=
9
4 ‖c‖

2
2, V

(
u
‖u‖1

, c
)

= 25
12 ‖c‖

2
2, whereas for uniform sampling V

(
c
‖c‖1

, c
)

= 2 ‖c‖22.

The proposed sampling. As a consequence of these observations, we propose to solve the follow-
ing optimization problem to find the best sampling distribution with respect to Ck:

vk := min
p∈∆n

max
c∈Ck

V (p, c)

‖c‖22
, and to set (αk,pk) :=

(
1
vk
, p̂k
)
, (7)

where p̂k denotes a solution of (7). The resulting algorithm for CD is summarized in Alg. 2.

In the remainder of this section we discuss the properties of the solution p̂k (Theorem 3.2) and how
such a solution can be efficiently be computed (Theorem 3.4, Algorithm 4).

3Although only shown here for CD, an equivalent optimization problem arises for SGD methods, cf. [36].
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3.2 Proposed Sampling and its Properties

Theorem 3.2. Let (p̂, ĉ) ∈ ∆n × Rn≥0 denote a solution of (7). Then Lmin ≤ vk ≤ Tr [L] and

(i) max
c∈Ck

V (p̂, c)

‖c‖22
≤ max

c∈Ck

V (p, c)

‖c‖22
, ∀p ∈ ∆n; (p̂ has the best worst-case guarantee)

(ii) V (p̂, c) ≤ Tr [L] · ‖c‖22, ∀c ∈ Ck. (p̂ is always better than Li-based sampling)
Remark 3.3. In the special case Li = L for all i ∈ [n], the Li-based sampling boils down to uniform
sampling (Example 2.2) and p̂ is better than uniform sampling: V (p̂, c) ≤ Ln ‖c‖22, ∀c ∈ Ck.

Proof. Property (i) is an immediate consequence of (7). Moreover, observe that the Li-based
sampling pL is a feasible solution in (7) with value V (pL,c)

‖c‖22
≡ Tr [L] for all c ∈ Ck. Hence

Lmin ≤
‖
√
Lc‖21
‖c‖22

2.4
= min

p∈∆n

V (p, c)

‖c‖22
≤ V (p̂, c)

‖c‖22

(∗)
≤ V (p̂, ĉ)

‖ĉ‖22

(7)

≤ max
c∈Ck

V (pL, c)

‖c‖22
= Tr [L] , (8)

for all c ∈ Ck, thus vk ∈ [Lmin,Tr [L]] and (ii) follows. We prove inequality (∗) in the appendix, by
showing that min and max can be interchanged in (7).

A geometric interpretation. We show in Appendix B that the optimization problem (7) can
equivalently be written as

√
vk = maxc∈Ck

‖
√
Lc‖1
‖c‖2

= maxc∈Ck
〈
√
l,c〉
‖c‖2

, where [l]i = Li for i ∈ [n].
The maximum is thus attained for vectors c ∈ Ck that minimize the angle with the vector l.

Theorem 3.4. Let c ∈ Ck, p =
√
Lc

‖
√
Lc‖1

and denote m = ‖c‖22 · ‖
√
Lc‖−1

1 . If

[c]i =


[uk]i if [uk]i ≤

√
Lim,

[`k]i if [`k]i ≥
√
Lim,√

Lim otherwise,
∀i ∈ [n] , (9)

then (p, c) is a solution to (7). Moreover, such a solution can be computed in time O(n log n).

Proof. This can be proven by examining the optimality conditions of problem (7). This is deferred to
Section B.1 of the appendix. A procedure that computes such a solution is depicted in Algorithm 4.
The algorithm makes extensive use of (9). For simplicity, assume first L = In for now. In each
iteration t , a potential solution vector ct is proposed, and it is verified whether this vector satisfies all
optimality conditions. In Algorithm 4, ct is just implicit, with [ct]i = [c]i for decided indices i ∈ D
and [ct]i = [

√
Lm]i for undecided indices i /∈ D. After at most n iterations a valid solution is found.

By sorting the components of
√
L−1`k and

√
L−1uk by their magnitude, at most a linear number of

inequality checks in (9) have to be performed in total. Hence the running time is dominated by the
O(n log n) complexity of the sorting algorithm. A formal proof is given in the appendix.

Algorithm 4 Computing the Safe Sampling for Gradient Information `,u

1: Input: 0n ≤ ` ≤ u, L, Initialize: c = 0n, u = 1, ` = n, D = ∅.
2: `sort := sort_asc(

√
L−1`), usort := sort_asc(

√
L−1u), m = max(`sort)

3: while u ≤ ` do
4: if [`sort]` > m then (largest undecided lower bound is violated)
5: Set corresponding [c]index := [

√
L`sort]`; ` := `− 1; D := D ∪ {index}

6: else if [usort]u < m then (smallest undecided upper bound is violated)
7: Set corresponding [c]index := [

√
Lusort]u; u := u+ 1; D := D ∪ {index}

8: else
9: break (no constraints are violated)

10: end if
11: m := ‖c‖22 · ‖

√
Lc‖−1

1 (update m as in (9))
12: end while
13: Set [c]i :=

√
Lim for all i /∈ D and Return

(
c,p =

√
Lc

‖
√
Lc‖1

, v =
‖
√
Lc‖21
‖c‖22

)
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Competitive Ratio. We now compare the proposed sampling distribution p̂k with the optimal
sampling solution in hindsight. We know that if the true (gradient) vector c̃ ∈ Ck would be given to
us, then the corresponding optimal probability distribution would be p?(c̃) =

√
Lc̃

‖
√
Lc̃‖1

(Example 2.3).

Thus, for this c̃ we can now analyze the ratio V (p̂k,c̃)
V (p?(c̃),c̃) . As we are interested in the worst case ratio

among all possible candidates c̃ ∈ Ck, we define

ρk := max
c∈Ck

V (p̂, c)

V (p?(c), c)
= max

c∈Ck

V (p̂, c)

‖
√
Lc‖21

. (10)

Lemma 3.5. Let wk := minc∈Ck
‖
√
Lc‖21
‖c‖22

. Then Lmin ≤ wk ≤ vk, and ρk ≤ vk
wk

(≤ vk
Lmin

).

Lemma 3.6. Let γ ≥ 1. If [Ck]i ∩ γ[Ck]i = ∅ and γ−1[Ck]i ∩ [Ck]i = ∅ for all i ∈ [n] (here [Ck]i
denotes the projection on the i-th coordinate), then ρk ≤ γ4.

These two lemma provide bounds on the competitive ratio. Whilst Lemma 3.6 relies on a relative
accuracy condition, Lemma 3.5 can always be applied. However, the corresponding minimization
problem is non-convex. Note that knowledge of ρk is not needed to run the algorithm.

4 Example Safe Gradient Bounds

In this section, we argue that for a large class of objective functions of interest in machine learning,
suitable safe upper and lower bounds `,u on the gradient along every coordinate direction can be
estimated and maintained efficiently during optimization. A similar argument can be given for the
efficient approximation of component wise gradient norms in finite sum objective based stochastic
gradient optimization.

As the guiding example, we will here showcase the training of generalized linear models (GLMs) as
e.g. in regression, classification and feature selection. These models are formulated in terms of a
given data matrix A ∈ Rd×n with columns ai ∈ Rd for i ∈ [n].

Coordinate Descent - GLMs with Arbitrary Regularizers. Consider general objectives of the
form f(x) := h(Ax) +

∑n
i=1 ψi([x]i) with an arbitrary convex separable regularizer term given

by the ψi : R → R for i ∈ [n]. A key example is when h : Rd → R describes the least-squares
regression objective h(Ax) = 1

2 ‖Ax− b‖
2
2 for a b ∈ Rd. Using that this h is twice differentiable

with ∇2h(Ax) = In, it is easy to see that we can track the evolution of all gradient entries, when
performing CD steps, as follows:

∇if(xk+1)−∇if(xk) = γk〈ai,aik〉 , ∀i 6= ik . (11)

for ik being the coordinate changed in step k (here we also used the separability of the regularizer).

Therefore, all gradient changes can be tracked exactly if the inner products of all datapoints are
available, or approximately if those inner products can be upper and lower bounded. For computa-
tional efficiency, we in our experiments simply use Cauchy-Schwarz |〈ai,aik〉| ≤ ‖ai‖ · ‖aik‖. This
results in safe upper and lower bounds [`k+1]i ≤ ∇if(xk+1) ≤ [uk+1]i for all inactive coordinates
i 6= ik. (For the active coordinate ik itself one observes the true value without uncertainty). These
bounds can be updated in linear time O(n) in every iteration.

For general smooth h (again with arbitrary separable regularizers ψi), (11) can readily be extended to
hold [32, Lemma 4.1], the inner product change term becoming 〈ai,∇2f(Ax̃)aik〉 instead, when
assuming h is twice-differentiable. Here x̃ will be an element of the line segment [xk,xk+1].

Stochastic Gradient Descent - GLMs. We now present a similar result for finite sum problems (5)
for the use in SGD based optimization, that is f(x) := 1

n

∑n
i=1 fi(x) = 1

n

∑n
i=1 hi(a

>
i x).

Lemma 4.1. Consider f : Rd → R as above, with twice differentiable hi : R→ R. Let xk,xk+1 ∈
Rd denote two successive iterates of SGD, i.e. xk+1 := xk − ηk aik∇hik(a>ikxk) = xk + γk aik .
Then there exists x̃ ∈ Rd on the line segment between xk and xk+1, x̃ ∈ [xk,xk+1] with

∇fi(xk+1)−∇fi(xk) = γk ∇2hi(a
>
i x̃) 〈ai,aik〉 ai , ∀ i 6= ik . (12)

6



This leads to safe upper and lower bounds for the norms of the partial gradient, [`k]i ≤ ‖∇fi(xk)‖2 ≤
[uk]i, that can be updated in linear time O(n), analogous to the coordinate case discussed above.4

We note that there are many other ways to track safe gradient bounds for relevant machine learn-
ing problems, including possibly more tight ones. We here only illustrate the simplest variants,
highlighting the fact that our new sampling procedure works for any safe bounds `,u.

Computational Complexity. In this section, we have demonstrated how safe upper and lower
bounds `,u on the gradient information can be obtained for GLMs, and argued that these bounds can
be updated in time O(n) per iteration of CD and SGD. The computation of the proposed sampling
takes O(n log n) time (Theorem 3.4). Hence, the introduced overhead in Algorithm 2 compared
to fixed sampling (Algorithm 3) is of the order O(n log n) in every iteration. The computation of
one coordinate of the gradient, ∇ikf(xk), takes time Θ(d) for general data matrices. Hence, when
d = Ω(n), the introduced overhead reduces to O(log n) per iteration.

5 Empirical Evaluation

In this section we evaluate the empirical performance of our proposed adaptive sampling scheme on
relevant machine learning tasks. In particular, we illustrate performance on generalized linear models
with L1 and L2 regularization, as of the form (5),

min
x∈Rd

1

n

n∑
i=1

hi(a
>
i x) + λ · r(x) (13)

We use square loss, squared hinge loss as well as logistic loss for the data fitting terms hi, and
‖x‖1 and ‖x‖22 for the regularizer r(x). The datasets used in the evaluation are rcv1, real-sim and
news20.5 The rcv1 dataset consists of 20,242 samples with 47,236 features, real-sim contains 72,309
datapoints and 20,958 features and news20 contains 19,996 datapoints and 1,355,191 features. For
all datasets we set unnormalized features with all the non-zero entries set to 1 (bag-of-words features).
By real-sim’ and rcv1’ we denote a subset of the data chosen by randomly selecting 10,000 features
and 10,000 datapoints. By news20’ we denote a subset of the data chose by randomly selecting
15% of the features and 15% of the datapoints. A regularization parameter λ = 0.1 is used for all
experiments.

Our results show the evolution of the optimization objective over time or number of epochs (an epoch
corresponding to n individual updates). To compute safe lower and upper bounds we use the methods
presented in Section 4 with no special initialization, i.e. `0 = 0n, u0 = ∞n.

Coordinate Descent. In Figure 2 we compare the effect of the fixed stepsize αk = 1
Ln (denoted

as “small”) vs. the time varying optimal stepsize (denoted as “big”) as discussed in Section 2.
Results are shown for optimal sampling p?k (with optimal stepsize αk(p?k), cf. Example 2.3), our
proposed sampling p̂k (with optimal stepsize αk(p̂k) = v−1

k , cf. (7)) and uniform sampling (with
optimal stepsize αk(pL) = 1

Ln , as here L = LIn, cf. Example 2.2). As the experiment aligns
with theory—confirming the advantage of the varying “big” stepsizes—we only show the results for
Algorithms 1–3 in the remaining plots.

Performance for squared hinge loss, as well as logistic regression with L1 and L2 regularization is
presented in Figure 3 and Figure 4 respectively. In Figures 5 and 6 we report the iteration complexity
vs. accuracy as well as timing vs. accuracy results on the full dataset for coordinate descent with
square loss and L1 (Lasso) and L2 regularization (Ridge).

Theoretical Sampling Quality. As part of the CD performance results in Figures 2–6 we include
an additional evolution plot on the bottom of each figure to illustrate the values vk which determine
the stepsize (α̂k = v−1

k ) for the proposed Algorithm 2 (blue) and the optimal stepsizes of Algorithm 1
(black) which rely on the full gradient information. The plots show the normalized values vk

Tr[L] , i.e.
the relative improvement over Li-based importance sampling. The results show that despite only
relying on very loose safe gradient bounds, the proposed adaptive sampling is able to strongly benefit
from the additional information.

4Here we use the efficient representation∇fi(x) = θ(x) · ai for θ(x) ∈ R.
5All data are available at www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
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Figure 5: (CD, square loss) Function value vs.
number of iterations on the full datasets.
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Stochastic Gradient Descent. Finally, we also evaluate the performance of our approach when
used within SGD with L1 and L2 regularization and square loss. In Figures 7–8 we report the
iteration complexity vs. accuracy results and in Figure 9 the timing vs. accuracy results. The time
units in Figures 6 and 9 are not directly comparable, as the experiments were conducted on different
machines.

We observe that on all three datasets SGD with the optimal sampling performs only slightly better than
uniform sampling. This is in contrast with the observations for CD, where the optimal sampling yields
a significant improvement. Consequently, the effect of the proposed sampling is less pronounced in
the three SGD experiments.

Summary. The main findings of our experimental study can be summarized as follows:

• Adaptive importance sampling significantly outperforms fixed importance sampling
in iterations and time. The results show that (i) convergence in terms of iterations is almost
as good as for the optimal (but not efficiently computable) gradient-based sampling and
(ii) the introduced computational overhead is small enough to outperform fixed importance
sampling in terms of total computation time.

• Adaptive sampling requires adaptive stepsizes. The adaptive stepsize strategies of Algo-
rithms 1 and 2 allow for much faster convergence than conservative fixed-stepsize strategies.
In the experiments, the measured value vk was always significantly below the worst case
estimate, in alignment with the observed convergence.

• Very loose safe gradient bounds are sufficient. Even the bounds derived from the the very
naïve gradient information obtained by estimating scalar products resulted in significantly
better sampling than using no gradient information at all. Further, no initialization of the
gradient estimates is needed (at the beginning of the optimization process the proposed
adaptive method performs close to the fixed sampling but accelerates after just one epoch).

6 Conclusion

In this paper we propose a safe adaptive importance sampling scheme for CD and SGD algorithms.
We argue that optimal gradient-based sampling is theoretically well justified. To make the computation
of the adaptive sampling distribution computationally tractable, we rely on safe lower and upper
bounds on the gradient. However, in contrast to previous approaches, we use these bounds in a novel
way: in each iteration, we formulate the problem of picking the optimal sampling distribution as a
convex optimization problem and present an efficient algorithm to compute the solution. The novel
sampling provably performs better than any fixed importance sampling—a guarantee which could
not be established for previous samplings that were also derived from safe lower and upper bounds.

The computational cost of the proposed scheme is of the order O(n log n) per iteration—this is on
many problems comparable with the cost to evaluate a single component (coordinate, sum-structure)
of the gradient, and the scheme can thus be implemented at no extra computational cost. This is
verified by timing experiments on real datasets.

We discussed one simple method to track the gradient information in GLMs during optimization.
However, we feel that the machine learning community could profit from further research in that
direction, for instance by investigating how such safe bounds can efficiently be maintained on more
complex models. Our approach can immediately be applied when the tracking of the gradient is
delegated to other machines in a distributed setting, like for instance in [1].
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Appendix

A Efficiency of Adaptive Importance Sampling

In this section of the appendix we present the missing proofs from the main text and also add some
additional comments.

A.1 In Coordinate Descent

In Section 2 we only discussed the expected progress that can be proven using the quadratic upper
bound (1). Here we show how to derive the convergence rate by the standard arguments.

Lemma A.1 (Proposed CD on strongly convex function—one step progress). Let f : Rn → R
µ-strongly convex with coordinate-wise Li-Lipschitz continuous gradient. Let xk,xk+1 ∈ Rn denote
two successive iterates generated by Algorithm 1, i.e. satisfying (2) and (4). Then

E [f(xk+1)− f? | xk] ≤ (f(xk)− f?) · (1− µαk) (14)

where f? = minx∈Rn f(x) and αk = αk(pk) as in Lemma 2.1.

Proof. By strong convexity

1

2µ
‖∇f(xk)‖22 ≥ f(xk)− f? , (15)

and the claim follows directly from (4).

For example for Li-based importance sampling, αk ≡ 1
Tr[L] (Example 2.2) and the statement

simplifies to

E [f(xk+1)− f? | xk] ≤ (f(xk)− f?) ·
(

1− µ

Tr [L]

)
(16)

in alignement with the results in [18, 31]. For the optimal sampling from Example 2.3 it holds
αk(p?k) =

‖∇f(xk)‖22
‖√L∇f(xk)‖2

1

. For instance for L = L · In equation (14) simplifies to

E [f(xk+1)− f? | xk] ≤ (f(xk)− f?) ·

(
1−

µ ‖∇f(xk)‖22
L ‖∇f(xk)‖21

)
. (17)

By Cauchy-Schwarz ‖∇f(xk)‖22 ≤ ‖∇f(xk)‖21 ≤ n ‖∇f(xk)‖22, hence the expected one step
progress (17) is always as least as good as for uniform sampling (16) (we assumed L = L · In), but
the optimal sampling could yield an n times larger progress.

In Section 2 we argued that it is natural to always chose the best possible stepsize in (3), i.e.
αk = αk(pk). Interestingly, even with a fixed stepsize (the worst case αk = 1

Tr[L] ) the optimal
sampling p?k has a slight advantage over the fixed importance sampling pL. (This effect is also
demonstrated in the experiments, cf. Figure 2).

Remark A.2. Let p?k as in Example 2.3. Then for suboptimal αk = 1
Tr[L] it holds

Eik∼pk
[f(xk+1) | xk] ≤ f(xk)− 1

2 Tr [L]
‖∇f(xk)‖22 ·

(
2− ‖

√
L∇f(xk)‖21

Tr [L] ‖∇f(xk)‖22

)
. (18)

The expression in the big bracket is bounded between 1 and 2 − 1
n . Hence the progress is always

better then for the fixed distribution pL, but the speed-up is limited to a factor less than 2. In contrast,
with the optimal αk(p?k) the speed-up can reach a factor of n.
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Proof. It suffices to just evaluate (3) with p?k and αk = 1
Tr[L] .

Proof of Lemma 2.1. For c, d ≥ 0 consider minα−αc + 1
2α

2d. This function is minimized for
α? = c

d with value − c2

2d = −α
?c
2 .

Proof of Example 2.2. We evaluate (3) with pL and find

Eik∼pk
[f(xk+1) | xk] ≤ f(xk)− αk ‖∇f(xk)‖22 +

1

2
α2
k Tr [L] ‖∇f(xk)‖22 (19)

which is minimized for αk = 1
Tr[L] as claimed.

Proof of Example 2.3. This is an immediate consequence of Lemma 2.4. The provided estimates
follow from ‖y‖22 ≤ ‖y‖

2
1 ≤

1
Lmin
‖
√
Ly‖21 and ‖

√
Ly‖21 ≤ Tr [L] ‖y‖22 by Cauchy-Schwarz, for

y ∈ Rn.

Proof of Lemma 2.4. Without loss of generality, assume L = I. The claim is verified by checking
the optimality conditions: −[x]2i + λ[p]2i = 0 for all i ∈ [n] and Lagrange multiplier λ ≥ 0. Thus
λ =

[x]2i
[p]2i

for all i ∈ [n] and this is satisfied for the proposed solution |x|
‖x‖1

∈ ∆n.

A.2 In SGD

SGD methods are applicable to objective functions which decompose as a sum

f(x) = 1
n

∑n
i=1 fi(x) . (20)

Previous work [22, 36, 37] has argued that the gradient based sampling [p̃?k]i =
‖∇fi(xk)‖2∑n
i=1‖∇fi(xk)‖2

is
also optimal in this setting. For the sake of completeness, we will now exhibit how this can be derived
in the simplified setting where we assume f to be µ-strongly convex. The proof presented here is
adapted from [17].
Theorem A.3. Let X ∈ Rd be a convex set, f : X → R µ-strongly convex with the structure
f(x) = 1

n

∑n
i=1 fi(x). Let {xk}k≥0 denote a sequence of iterates satisfying

xk+1 := ΠX

(
xk −

ηk
(n[pk]ik)

∇fik(xk)

)
(21)

for stepsize ηk = 1
µk , where index ik is chosen at random ik ∼ pk for probability vector pk ∈ ∆n

and ΠX denotes the orthogonal projection onto X .

(i) If [pk]i ≡ 1
n for all i ∈ [n] and k (uniform sampling), then

E

[
f

(
1

T

T∑
k=0

xk

)
− f?

]
≤ B2

µ2T
(1 + log T ) . (22)

(ii) If [pk]i = ‖∇fi(xk)‖2∑n
i=1 ‖∇fi(xk)‖2 = [p̃?k]i, for i ∈ [n] (optimal adaptive sampling), then

E

[
f

(
1

T

T∑
k=0

xk

)
− f?

]
≤ B2

1

µ2T
(1 + log T ) . (23)

Where B1 and B2 are constants such that∑n
i=1 ‖∇fi(x)‖2

n
≤ B1

∑n
i=1 ‖∇fi(x)‖22

n
≤ B2 ∀x ∈ X . (24)

It is clear that B2

n ≤ B
2
1 ≤ B2 from Cauchy-Schwarz. Comparing the upper bound we see that the

importance sampling based approach might be n-times faster in convergence.
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Proof. As orthogonal projections contract distances we have

‖xk+1 − x?‖22 ≤ ‖xk − ηk
1

n[pk]ik
∇fik(xk)− x?‖22 (25)

= ‖xk − x?‖22 −
2ηk

n[pk]ik
〈xk − x?,∇fik(xk)〉+

η2
k

n2[pk]2ik
‖∇fik(xk)‖22 . (26)

Thus

E
[
‖xk+1 − x?‖22 | xk

]
≤ ‖xk − x?‖22 − 2ηk〈xk − x?,∇f(xk)〉 (27)

+

n∑
i=1

η2
k

n2[pk]ik
‖∇fik(xk)‖22 . (28)

It can be observed that the right hand side is minimized for probabilities given as follows:

[p̃?k]i :=
‖∇fi(xk)‖2∑n
i=1 ‖∇fi(xk)‖2

. (29)

This justifies why these probabilities are denoted as optimal (cf. Section 3 and [22, 36, 37]).

Hence the expression becomes :

E
[
‖xk+1 − x?‖22 | xk

]
≤ ‖xk − x?‖22 − 2ηk〈xk − x?,∇f(xk)〉

+ η2
k

(
(

∑n
i=1 ‖∇fi(xk)‖2

n

)2 (30)

≤ ‖xk − x?‖22 − 2ηk

[
f(xk)− f? +

µ

2
‖xk − x?‖22

]
+ η2

k

(∑n
i=1 ‖∇fi(xk)‖2

n

)2 (31)

where the last inequality follows from strong convexity. Now we rearrange the terms and utilize the
choice of the step size ηk := 1

µk :

2ηk
[
f(xk)− f?

]
≤ η2

k

(∑n
i=1 ‖∇fi(xk)‖2

n

)2

+ (1− µηk)‖xk − x?‖22

− E
[
‖xk+1 − x?‖22 |xk]

(32)

[
f(xk)− f?

]
≤ 1

2ηk

(∑n
i=1 ‖∇fi(xk)‖2

n

)2

+
1− µηk

2ηk
‖xk − x?‖22

− 1

2ηk
E
[
‖xk+1 − x?‖22 |xk]

(33)

[
f(xk)− f?

]
≤ 1

2µk

(∑n
i=1 ‖∇fi(xk)‖2

n

)2

+
µ(k − 1)

2
‖xk − x?‖22

− µk

2
E
[
‖xk+1 − x?‖22 |xk]

(34)

If we compare the last equation and corresponding expression for uniform sampling then we see
that the per iterate gain by the optimal sampling is approximately of the order of n due to the term(∑n

i=1 ‖∇fi(xk)‖2
n

)2

in our case and 1
n

∑n
i=1 ‖∇fi(xk)‖22 in the uniform sampling.

We now take the expectation and sum the equation (34) for k = 0, . . . T and we get the claim (this
step is analogous as in [13]).

B Sampling

In this section we provide the remaining technical details regarding our proposed sampling scheme.
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B.1 On the solution of the optimization problem

In the proof of Theorem 3.2 we claimed that min and max in (7) can be interchanged. We will prove
this now. This result will also be handy to describe the optimiality conditions of problem (7) in the
proof of Theorem 3.4 below.
Lemma B.1. It holds

vk = min
p∈∆n

max
c∈Ck

V (p, c)

‖c‖22

(∗)
= max

c∈Ck
min
p∈∆n

V (p, c)

‖c‖22
= max

c∈Ck

‖
√
Lc‖21
‖c‖22

. (35)

Proof. The third equality follows directly from Lemma 2.4. By transformation of the variable
[y] := [c]2i for i ∈ [n] we can write the objective function as

V (p, c)

‖c‖22
=

1

‖y‖1
·
n∑
i=1

Li[y]i
[p]i

=: ψ(p,y) . (36)

Let Y ⊂ Rn≥0 denote appropriately transformed set of constraints, Y := C2
k . To prove (∗) we will

now rely on Sion’s minimax theorem [30, 12]. The function ψ(·,y) is convex in p ∈ ∆n and ∆n is
a compact convex subset of Rn. Clearly, Y is convex, and in order to apply the theorem it remains
to show that ψ(p, ·) is quasi-concave. For establish this, it is enough to show that the level sets of
ψ(p, ·) are convex. Let u,v ∈ Y with ψ(p,u) ≥ β, ψ(p,v) ≥ β for some β ≥ 0. Then for any
λ ∈ [0, 1] it holds ψ(p, λu+ (1− λ)v) ≥ β as is verified as follows:

0 ≤ λ

[(
n∑
i=1

[u]iLi
[p]i

)
− β ‖u‖1

]
︸ ︷︷ ︸

≥0

+(1− λ)

[(
n∑
i=1

[v]iLi
[p]i

)
− β ‖v‖1

]
︸ ︷︷ ︸

≥0

(37)

=

(
n∑
i=1

λ[u]iLi + (1− λ)[v]iLi
[p]i

)
− β

λ ‖u‖1 + (1− λ) ‖v‖1︸ ︷︷ ︸
=‖λu+(1−λ)v‖1

 . (38)

This proves the claim.

Proof of Theorem 3.4 – Part I: Structure of the solution. We will now proof that c ∈ Ck of the form

[c]i =


[uk]i if [uk]i ≤

√
Lim,

[`k]i if [`k]i ≥
√
Lim,√

Lim otherwise,
∀i ∈ [n] , (9)

where m = ‖c‖22 · ‖
√
Lc‖−1

1 and probabilities p =
√
Lc

‖
√
Lc‖1

solve the optimization problem (7). By
Lemma B.1 is suffices to consider

arg max
c∈Ck

‖
√
Lc‖21
‖c‖22

= arg max
c∈Ck

‖
√
Lc‖1
‖c‖2

. (39)

We now write the Lagrangian of the problem on the right:

L(c,λ,µ) =
‖
√
Lc‖1
‖c‖2

+

n∑
i=1

[λ]i([uk]i − [c]i) +

n∑
i=1

[µ]i([c]i − [`k]i) (40)

and derive the KKT conditions:

∂L
∂[c]i

=

√
Li ‖c‖22 − [c]i‖

√
Lc‖1

‖c‖32
− [λ]i + [µi] ≤ 0 ; [c]i ≥ 0 ; [c]i

∂L
∂[c]i

= 0 ; (41)

∂L
∂[λ]i

= [uk]i − [c]i ≥ 0 ; [λ]i ≥ 0 ; [λ]i
∂L
∂[λ]i

= 0 ; (42)

∂L
∂[µ]i

= [c]i − [`k]i ≥ 0 ; [µ]i ≥ 0 ; [µ]i
∂L
∂[µ]i

= 0 ; (43)
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For all non-binding constraints, the Lagrange multipliers are zero, and hence from the topmost
equation see that it must hold

√
Li ‖c‖22 − [c]i‖

√
Lc‖1 = 0 (or equivalently [c]i =

√
Lim) for all

variables with non-binding constraints. Furthermore if [c]i <
√
Lim), then [λ]i must be positive,

and hence the upper bound must be binding. And vice versa for the lower bounds. Clearly, the given
c in (9) satisfies these conditions. By Lemma 2.4 we also have p = p(c) =

√
Lc

‖
√
Lc‖1

as claimed.

B.2 Algorithm

Here we argue on the correctness of Algorithm 4.

Proof of Theorem 3.4 – Part II: Algorithm. We now show that Algorithm 4 indeed computes a solu-
tion of the form (9). For this, we have to show that performed optimization steps—the sorting in line
2 and the efficient comparisons in line 4 and 6—do not hamper the correctness for the algorithm. For
clarity, we now introduce iteration indices for the quantities ct (see main text), and mt.

Suppose the check in line 4 is true, i.e. [`sort]` > mt, where mt =
‖ct‖22
‖
√
Lct‖1

. Now we show

mt+1 ∈ [mt, [`
sort]`]. The claim can easily be checked. Let Lτ denote the corresponding Li-value,

i.e. it holds
√
Lτ [`sort]` = [`k]τ .

By assumption [`sort]` >
‖ct‖22
‖
√
Lct‖1

, thus [`sort]` · ‖
√
Lct‖1 + Lτ [`sort]2` > ‖ct‖

2
2 + Lτ [`sort]2` and

consequently mt+1 =
‖ct‖22+Lτ [`sort]2`
‖
√
Lct‖1+Lτ [`sort]`

< [`sort]`. For to show mt+1 > mt we make use of the

assumption [`sort]` >
‖ct‖22
‖
√
Lct‖1

in a similar way. Clearly, Lτ [`sort]2` · ‖
√
Lct‖1 > Lτ [`sort]` · ‖ct‖22

and thus ‖
√
Lct‖1 · ‖ct‖22 + Lτ [`sort]2` · ‖

√
Lct‖1 > ‖

√
Lct‖1 · ‖ct‖22 + Lτ [`sort]` · ‖ct‖22 which

implies mt+1 =
‖ct‖22+Lτ [`sort]2`
‖
√
Lct‖1+Lτ [`sort]`

>
‖ct‖22
‖
√
Lct‖1

= mt.

The inequality mt+1 ≤ [`sort]` implies that the chosen update does not interfere with any previously
made decisions regarding lower bounds, as mt+1 ≤ [`sort]i for i = `+ 1, . . . , n (with this notation,
n + 1, . . . , n just denotes the empty set). The opposite inequality mt+1 ≥ mt implies that the
chosen update does not interfere with any previously made decisions regarding upper bounds, as
mt+1 ≥ [usort]i for i = 1, . . . , u− 1.

If line 6 is executed and the check is true, i.e. [usort]u < mt, then it can be shown that mt+1 ∈
[[usort]u,mt] by analogous arguments.

B.3 Competitive Ratio

Proof of Lemma 3.5. The proof of this lemma is immediate from the definition:

ρk = max
c∈Ck

V (p̂, c)

‖c‖22
·
‖c‖22
‖
√
Lc‖21

≤ max
c∈Ck

V (p̂, c)

‖c‖22
· max
c∈Ck

‖c‖22
‖
√
Lc‖21

≤ vk
wk

. (44)

where wk := minc∈Ck
‖
√
Lc‖21
‖c‖22

. The claimed upper bound wk ≤ vk follows by the observation

vk
(35)
= maxc∈Ck

‖
√
Lc‖21
‖c‖22

.

Proof of Lemma 3.6. As we have relative accuracy, it holds [Ck]i ∩ γ[Ck]i = ∅ and γ−1[Ck]i ∩
[Ck]i = ∅, for all i ∈ [n]. Let c? ∈ Ck denote the vector for which the maximum is attained and let
ĉ ∈ Ck be such that p̂ =

√
Lĉ

‖
√
Lĉ‖1

. It holds V (p̂, c?) ≤ V (p̂, c) for all c ∈ γCk by monotonicity in

each coordinate, especially V (p̂, c?) ≤ V (p̂, γĉ). And similarly ‖
√
Lc?‖21 ≥ ‖γ−1

√
Lĉ‖21. Thus

ρk ≤
V (p̂, γĉ)

‖γ−1
√
Lĉ‖21

=
γ2V (p̂, ĉ)

γ−2‖
√
Lĉ‖21

=
γ2

γ−2
. (45)

which proves the claim.
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C Safe Gradient Bounds in the Proximal Setting

Proof of Lemma 4.1. Observe

∇fi(xk+1)−∇fi(xk) = ∇xhi(a>i xk+1)−∇xhi(a>i xk)

= ai
(
∇hi(a>i xk+1)−∇hi(a>i xk)

)
= ai

(
a>i xk+1 − a>i xk

)
∇2hi(a

>
i x̃) (46)

= ai
(
a>i (xk+1 − xk)∇2hi(a

>
i x̃)

)
= ai

(
a>i γkaik∇2hi(a

>
i x̃)

)
= γk∇2hi(a

>
i x̃)〈ai,aik〉ai ∀ i 6= ik ,

Equation (46) comes from the mean value theorem which says for continuous function f in closed
intervals [a, b] and differentiable on open intervals (a, b), there exists a point c in (a, b) such that :

f ′(c) =
f(b)− f(a)

b− a
. (47)

In Section 4 we have discussed practical safe upper and lower bounds u, ` that can be maintained
efficiently during optimization, also for the SGD setting (finite sum objective). We now argue that
such bounds can also be extended to proximal SGD settings.

We see from Lemma 4.1 that tracking the norm of the gradient of each function can be done easily
for simple updates as given in Lemma 4.1. The approximate update of the component wise gradient
norms for more composite problems can also be done by a little modification, but it is definitely not
as trivial as in the case of coordinate descent. For example, consider a proximal type of update as
xk+1 = proxηkg

(
xk−ηk ·aik∇fik(a>ikxk)

)
which implies thatxk+1 ∈ xk−ηk ·aik∇fik(a>ikxk)−

ηk∂g(xk+1) and thus xk+1 ∈ xk+γk ·aik−ηk∂g(xk+1). If we denote the progress made in the k-th
iteration of the algorithm as δk then the progress equals δk = γk aik − ηkαk where αk ∈ ∂g(xk+1).
To approximate the gradient we will need to compute two dot products. The first one is 〈ai,aik〉 and
the second one is 〈aik ,αk〉. Since αk is usually small, hence even approximating 〈aik ,αk〉 with
‖aik‖‖αk‖ doesn’t affect the upper and bounds too much and the main contribution in error comes
from the approximation of the scalar product 〈ai,aik〉.
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