
Robust Optimization for Non-Convex Objectives

Robert Chen
Computer Science
Harvard University

Brendan Lucier
Microsoft Research

New England

Yaron Singer
Computer Science
Harvard University

Vasilis Syrgkanis
Microsoft Research

New England

Abstract

We consider robust optimization problems, where the goal is to optimize in the
worst case over a class of objective functions. We develop a reduction from
robust improper optimization to stochastic optimization: given an oracle that
returns ↵-approximate solutions for distributions over objectives, we compute a
distribution over solutions that is ↵-approximate in the worst case. We show that
derandomizing this solution is NP-hard in general, but can be done for a broad
class of statistical learning tasks. We apply our results to robust neural network
training and submodular optimization. We evaluate our approach experimentally on
corrupted character classification and robust influence maximization in networks.

1 Introduction

In many learning tasks we face uncertainty about the loss we aim to optimize. Consider, for example,
a classification task such as character recognition, required to perform well under various types of
distortion. In some environments, such as recognizing characters in photos, the classifier must handle
rotation and patterned backgrounds. In a different environment, such as low-resolution images, it
is more likely to encounter noisy pixelation artifacts. Instead of training a separate classifier for
each possible scenario, one seeks to optimize performance in the worst case over different forms of
corruption (or combinations thereof) made available to the trainer as black-boxes.

More generally, our goal is to find a minimax solution that optimizes in the worst case over a given
family of functions. Even if each individual function can be optimized effectively, it is not clear such
solutions would perform well in the worst case. In many cases of interest, individual objectives are
non-convex and hence state-of-the-art methods are only approximate. In stochastic optimization,
where one must optimize a distribution over loss functions, approximate stochastic optimization is
often straightforward, since loss functions are commonly closed under convex combination. Can
approximately optimal stochastic solutions yield an approximately optimal robust solution?

In this paper we develop a reduction from robust optimization to stochastic optimization. Given an ↵-
approximate oracle for stochastic optimization we show how to implement an ↵-approximate solution
for robust optimization under a necessary extension, and illustrate its effectiveness in applications.

Main Results. Given an ↵-approximate stochastic oracle for distributions over (potentially non-
convex) loss functions, we show how to solve ↵-approximate robust optimization in a convexified
solution space. This outcome is “improper” in the sense that it may lie outside the original solution
space, if the space is non-convex. This can be interpreted as computing a distribution over solutions.
We show that the relaxation to improper learning is necessary in general: It is NP-hard to achieve
robust optimization with respect to the original outcome space, even if stochastic optimization can be
solved exactly, and even if there are only polynomially many loss functions. We complement this
by showing that in any statistical learning scenario where loss is convex in the predicted dependent
variable, we can find a single (deterministic) solution with matching performance guarantees.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Technical overview. Our approach employs an execution of no-regret dynamics on a zero-sum
game, played between a learner equipped with an ↵-approximate stochastic oracle, and an adversary
who aims to find a distribution over loss functions that maximizes the learner’s loss. This game
converges to an approximately robust solution, in which the learner and adversary settle upon an ↵-
approximate minimax solution. This convergence is subject to an additive regret term that converges
at a rate of T�1/2 over T rounds of the learning dynamics.

Applications. We illustrate the power of our reduction through two main examples. We first
consider statistical learning via neural networks. Given an arbitrary training method, our reduction
generates a net that optimizes robustly over a given class of loss functions. We evaluate our method
experimentally on a character recognition task, where the loss functions correspond to different
corruption models made available to the learner as black boxes. We verify experimentally that our
approach significantly outperforms various baselines, including optimizing for average performance
and optimizing for each loss separately. We also apply our reduction to influence maximization,
where the goal is to maximize a concave function (the independent cascade model of influence
[11]) over a non-convex space (subsets of vertices in a network). Previous work has studied robust
influence maximization directly [9, 5, 15], focusing on particular, natural classes of functions (e.g.,
edge weights chosen within a given range) and establishing hardness and approximation results.
In comparison, our method is agnostic to the particular class of functions, and achieves a strong
approximation result by returning a distribution over solutions. We evaluate our method on real and
synthetic datasets, with the goal of robustly optimizing a suite of random influence instantiations. We
verify experimentally that our approach significantly outperforms natural baselines.

Related work. There has recently been a great deal of interest in robust optimization in machine
learning [20, 4, 17, 21, 16]. For continuous optimization, the work that is closest to ours is perhaps
that by Shalev-Shwartz and Wexler [20] and Namkoong and Duchi [17] that use robust optimization
to train against convex loss functions. The main difference is that we assume a more general setting
in which the loss functions are non-convex and one is only given access to the stochastic oracle.
Hence, the proof techniques and general results from these papers do not apply to our setting. We
note that our result generalizes these works, as they can be considered as the special case in which
we have a distributional oracle whose approximation is optimal. In particular, [20, Theorem 1]
applies to the realizable statistical learning setting where the oracle has small mistake bound C. Our
applications require a more general framing that hold for any optimization setting with access to
an approximate oracle, and approximation is in the multiplicative sense with respect to the optimal
value. In submodular optimization there has been a great deal of interest in robust optimization as
well [12, 13, 10, 6]. The work closest to ours is that by He and Kempe [10] who consider a slightly
different objective than ours. Kempe and He’s results apply to influence but do not extend to general
submodular functions. Finally, we note that unlike recent work on non-convex optimization [7, 1, 8]
our goal in this paper is not to optimize a non-convex function. Rather, we abstract the non-convex
guarantees via the approximate stochastic oracle.

2 Robust Optimization with Approximate Stochastic Oracles

We consider the following model of optimization that is robust to objective uncertainty. There is a
space X over which to optimize, and a finite set of loss functions1

L = {L1, . . . , Lm} where each
Li 2 L is a function from X to [0, 1]. Intuitively, our goal is to find some x 2 X that achieves low
loss in the worst-case over loss functions in L. For x 2 X , write g(x) = maxi2[m] Li(x) for the
worst-case loss of x. The minimax optimum ⌧ is given by

⌧ = min
x2X

g(x) = min
x2X

max
i2[m]

Li(x). (1)

The goal of ↵-approximate robust optimization is to find x such that g(x)  ↵⌧ .2

1We describe an extension to infinite sets of loss functions in the full version of the paper. Our results also
extend naturally to the goal of maximizing the minimum of a class of reward functions.

2This oracle framework is similar to that used by Ben-Tal et al. [3], but where the approximation is
multiplicative rather than additive.

2

Algorithm 1 Oracle Efficient Improper Robust Optimization
Input: Objectives L = {L1, . . . , Lm}, Apx stochastic oracle M , parameters T, ⌘
for each time step t 2 [T] do

Set

wt[i] / exp

(
⌘

t�1X

⌧=1

Li(x⌧)

)
(3)

Set xt = M(wt)
end for
Output: the uniform distribution over {x1, . . . , xT }

Given a distribution P over solutions X , write g(P) = maxi2[m] Ex⇠P [Li(x)] for the worst-case
expected loss of a solution drawn from P . A weaker version of robust approximation is improper
robust optimization: find a distribution P over X such that g(P)  ↵⌧ .

Our results take the form of reductions to an approximate stochastic oracle, which finds a solution
x 2 X that approximately minimizes a given distribution over loss functions.3

Definition 1 (↵-Approximate Stochastic Oracle). Given a distribution D over L, an ↵-approximate
stochastic oracle M(D) computes x⇤

2 X such that

EL⇠D [L(x⇤)]  ↵min
x2X

EL⇠D [L(x)] . (2)

2.1 Improper Robust Optimization with Oracles

We first show that, given access to an ↵-approximate stochastic oracle, it is possible to efficiently
implement improper ↵-approximate robust optimization, subject to a vanishing additive loss term.

Theorem 1. Given access to an ↵-approximate stochastic oracle, Algorithm 1 with ⌘ =
q

log(m)
2T

computes a distribution P over solutions, defined as a uniform distribution over a set {x1, . . . , xT },
so that

max
i2[m]

Ex⇠P [Li(x)]  ↵⌧ +

r
2 log(m)

T
. (4)

Moreover, for any ⌘ the distribution P computed by Algorithm 1 satisfies:

max
i2[m]

Ex⇠P [Li(x)]  ↵(1 + ⌘)⌧ +
log(m)

⌘T
. (5)

Proof. We give the proof of the first result and defer the second result to the full version of the paper.
We can interpret Algorithm 1 in the following way. We define a zero-sum game between a learner
and an adversary. The learner’s action set is equal to X and the adversary’s action set is equal to [m].
The loss of the learner when he picks x 2 X and the adversary picks i 2 [m] is defined as Li(x).
The corresponding payoff of the adversary is Li(x).

We will run no-regret dynamics on this zero-sum game, where at every iteration t = 1, . . . , T , the
adversary will pick a distribution over functions and subsequently the learner picks a solution xt.
For simpler notation we will denote with wt the probability density function on [m] associated with
the distribution of the adversary. That is, wt[i] is the probability of picking function Li 2 L. The
adversary picks a distribution wt based on some arbitrary no-regret learning algorithm on the m
actions in L. For concreteness consider the case where the adversary picks a distribution based on the
multiplicative weight updates algorithm, i.e.,

wt[i] / exp

(r
log(m)

2T

t�1X

⌧=1

Li(x⌧)

)
. (6)

3All our results easily extend to the case where the oracle computes a solution that is approximately optimal
up to an additive error, rather than a multiplicative one. For simplicity of exposition we present the multiplicative
error case as it is more in line with the literature on approximation algorithms.

3

Subsequently the learner picks a solution xt that is the output of the ↵-approximate stochastic oracle
on the distribution selected by the adversary at time-step t. That is,

xt = M (wt) . (7)

Write ✏(T) =
q

2 log(m)
T

. By the guarantees of the no-regret algorithm for the adversary, we have
that

1

T

TX

t=1

EI⇠wt [LI(xt)] � max
i2[m]

1

T

TX

t=1

Li(xt)� ✏(T). (8)

Combining the above with the guarantee of the stochastic oracle we have

⌧ = min
x2X

max
i2[m]

Li(x) � min
x2X

1

T

TX

t=1

EI⇠wt [LI(x)] �
1

T

TX

t=1

min
x2X

EI⇠wt [LI(x)]

�
1

T

TX

t=1

1

↵
· EI⇠wt [LI(xt)] (By oracle guarantee for each t)

�
1

↵
·

max
i2[m]

1

T

TX

t=1

Li(xt)� ✏(T)

!
. (By no-regret of adversary)

Thus, if we define with P to be the uniform distribution over {x1, . . . , xT }, then we have derived

max
i2[m]

Ex⇠P [Li(x)]  ↵⌧ + ✏(T) (9)

as required.

A corollary of Theorem 1 is that if the solution space X is convex and the objective functions Li 2 L

are all convex functions, then we can compute a single solution x⇤ that is approximately minimax
optimal. Of course, in this setting one can calculate and optimize the maximum loss directly in time
proportional to |L|; this result therefore has the most bite when the set of functions is large.
Corollary 2. If the space X is a convex space and each loss function Li 2 L is a convex function,
then the point x⇤ = 1

T

P
T

t=1 xt 2 X , where {x1, . . . , xT } are the output of Algorithm 1, satisfies:

max
i2[m]

Li(x
⇤)  ↵⌧ +

r
2 log(m)

T
(10)

Proof. By Theorem 1, we get that if P is the uniform distribution over {x1, . . . , xT } then

max
i2[m]

Ex⇠P [Li(x)]  ↵⌧ +

r
2 log(m)

T
.

Since X is convex, the solution x⇤ = Ex⇠P [x] is also part of X . Moreover, since each Li 2 L is
convex, we have that Ex⇠P [Li(x)] � Li(Ex⇠P [x]) = Li(x⇤). We therefore conclude

max
i2[m]

Li(x
⇤)  max

i2[m]
Ex⇠P [Li(x)]  ↵⌧ +

r
2 log(m)

T

as required.

2.2 Robust Statistical Learning

Next we apply our main theorem to statistical learning. Consider regression or classification settings
where data points are pairs (z, y), z 2 Z is a vector of features, and y 2 Y is the dependent variable.
The solution space X is then a space of hypotheses H, with each h 2 H a function from Z to Y . We
also assume that Y is a convex subset of a finite-dimensional vector space.

We are given a set of loss functions L = {L1, . . . , Lm}, where each Li 2 L is a functional
Li : H ! [0, 1]. Theorem 1 implies that, given an ↵-approximate stochastic optimization oracle,

4

we can compute a distribution over T hypotheses from H that achieves an ↵-approximate minimax
guarantee. If the loss functionals are convex over hypotheses, then we can compute a single ensemble
hypothesis h⇤ (possibly from a larger space of hypotheses, if H is non-convex) that achieves this
guarantee.
Theorem 3. Suppose that L = {L1, . . . , Lm} are convex functionals. Then the ensemble hypoth-
esis h⇤ = 1

T

P
T

t=1 h, where {h1, . . . , hT } are the hypotheses output by Algorithm 1 given an
↵-approximate stochastic oracle, satisfies

max
i2[m]

Li(h
⇤)  ↵min

h2H

max
i2[m]

Li(h) +

r
2 log(m)

T
. (11)

Proof. The proof is similar to the proof of Corollary 2.

We emphasize that the convexity condition in Theorem 3 is over the class of hypotheses, rather than
over features or any natural parameterization of H (such as weights in a neural network). This is a
mild condition that applies to many examples in statistical learning theory. For instance, consider the
case where each loss Li(h) is the expected value of some ex-post loss function `i(h(z), y) given a
distribution Di over Z ⇥ Y :

Li(h) = E(z,y)⇠Di
[`i(h(z), y)] . (12)

In this case, it is enough for the function `i(·, ·) to be convex with respect to its first argument (i.e.,
the predicted dependent variable). This is satisfied by most loss functions used in machine learning,
such as multinomial logistic loss (cross-entropy loss) `(ŷ, y) = �

P
c2[k] yc log(ŷc) from multi-class

classification or squared loss `(ŷ, y) = kŷ�yk2 as used in regression. For all these settings, Theorem
3 provides a tool for improper robust learning, where the final hypothesis h⇤ is an ensemble of T base
hypotheses from H. Again, the underlying optimization problem can be arbitrarily non-convex in the
natural parameters of the hypothesis space; in Section 3.1 we will show how to apply this approach to
robust training of neural networks, where the stochastic oracle is simply a standard network training
method. For neural networks, the fact that we achieve improper learning (as opposed to standard
learning) corresponds to training a neural network with a single extra layer relative to the networks
generated by the oracle.

2.3 Robust Submodular Maximization

In robust submodular maximization we are given a family of reward functions F = {f1, . . . , fm},
where each fi 2 F is a monotone submodular function from a ground set N of n elements to [0, 1].
Each function is assumed to be monotone and submodular, i.e., for any S ✓ T ✓ N , fi(S)  fi(T);
and for any S, T ✓ N , f(S [T) + f(S \ T)  f(S) + f(T). The goal is to select a set S ✓ N
of size k whose worst-case value over i, i.e., g(S) = mini2[m] fi(S), is at least a 1/↵ factor of the
minimax optimum ⌧ = maxT :|T |k mini2[m] fi(T).

This setting is a special case of our general robust optimization setting (phrased in terms of rewards
rather than losses). The solution space X is equal to the set of subsets of size k among all elements in
N and the set F is the set of possible objective functions. The stochastic oracle 1, instantiated in
this setting, asks for the following: given a convex combination of submodular functions F (S) =P

m

i=1 w[i] · fi(S), compute a set S⇤ such that F (S⇤) � 1
↵
maxS:|S|k F (S).

Computing the maximum value set of size k is NP-hard even for a single submodular function. The
following very simple greedy algorithm computes a (1� 1/e)-approximate solution [19]: begin with
Scur = ;, and at each iteration add to the current solution Scur the element j 2 N � Scur that has
the largest marginal contribution: f({j} [Scur)� f(Scur). Moreover, this approximation ratio is
known to be the best possible in polynomial time [18]. Since a convex combination of monotone
submodular functions is also a monotone submodular function, we immediately get that there exists a
(1� 1/e)-approximate stochastic oracle that can be computed in polynomial time. The algorithm is
formally given in Algorithm 2. Combining the above with Theorem 1 we get the following corollary.
Corollary 4. Algorithm 1, with stochastic oracle Mgreedy , computes in time poly(T, n) a distribution
P over sets of size k, defined as a uniform distribution over a set {S1, . . . , ST }, such that

min
i2[m]

ES⇠P [fi(S)] �

✓
1�

1

e

◆
(1� ⌘)⌧ �

log(m)

⌘T
. (13)

5

Algorithm 2 Greedy stochastic Oracle for Submodular Maximization Mgreedy

Input: Set of elements N , objectives F = {f1, . . . , fm}, distribution over objectives w
Set Scur = ;

for j = 1 to k do
Let j⇤ = argmaxj2N�Scur

P
m

i=1 w[i] (fi({j} [Scur)� fi(Scur))
Set Scur = {j⇤} [Scur

end for

Figure 1: Sample MNIST image with each of the corruptions applied to it. Background Corruption
Set & Shrink Corruption Set (top). Pixel Corruption Set & Mixed Corruption Set (bottom).

We show in the full version of the paper that computing a single set S that achieves a (1 � 1/e)-
approximation to ⌧ is also NP -hard. This is true even if the functions fi are additive. However, by
allowing a randomized solution over sets we can achieve a constant factor approximation to ⌧ in
polynomial time.

Since the functions are monotone, the above result implies a simple way of constructing a single set
S⇤ that is of larger size than k, which deterministically achieves a constant factor approximation to ⌧ .
The latter holds by simply taking the union of the sets {S1, . . . , ST } in the support of the distribution
returned by Algorithm 1. We get the following bi-criterion approximation scheme.

Corollary 5. Suppose that we run the reward version of Algorithm 1, with ⌘ = ✏ and for T = log(m)
⌧✏2

,
returning {S1, . . . , ST }. Then the set S⇤ = S1 [. . .[ST , which is of size at most k log(m)

⌧✏2
, satisfies

min
i2[m]

fi(S
⇤) �

✓
1�

1

e
� 2✏

◆
⌧. (14)

3 Experiments4

3.1 Robust Classification with Neural Networks

A classic application of our robust optimization framework is classification with neural networks
for corrupted or perturbed datasets. We have a data set Z of pairs (z, y) of an image z 2 Z and
label y 2 Y that can be corrupted in m different ways which produces data sets Z1, . . . , Zm. The
hypothesis space H is the set of all neural nets of some fixed architecture and for each possible
assignment of weights. We denote each such hypothesis with h(·; ✓) : Z ! Y for ✓ 2 Rd, with d
being the number of parameters (weights) of the neural net. If we let Di be the uniform distribution
over each corrupted data set Zi, then we are interested in minimizing the empirical cross-entropy
(aka multinomial logistic) loss in the worst case over these different distributions Di. The latter is a
special case of our robust statistical learning framework from Section 2.2.

Training a neural network is a non-convex optimization problem and we have no guarantees on its
performance. We instead assume that for any given distribution D over pairs (z, y) of images and
labels and for any loss function `(h(z; ✓), y), training a neural net with stochastic gradient descent
run on images drawn from D can achieve an ↵ approximation to the optimal expected loss, i.e.
min✓2Rd E(z,y)⇠D [`(h(z; ✓), y)]. Notice that this implies an ↵-approximate stochastic oracle for the

4Code used to implement the algorithms and run the experiments is available at https://github.com/
12degrees/Robust-Classification/.

6

https://github.com/12degrees/Robust-Classification/
https://github.com/12degrees/Robust-Classification/

corrupted dataset robust training problem: for any distribution w over the different corruptions [m],
the stochastic oracle asks to give an ↵-approximation to the minimization problem:

min
✓2Rd

mX

i=1

w[i] · E(z,y)⇠Di
[`(h(z; ✓), y)] (15)

The latter is simply another expected loss problem with distribution over images being the mixture
distribution defined by first drawing a corruption index i from w and then drawing a corrupted
image from distribution Di. Hence, our oracle assumption implies that SGD on this mixture is an
↵-approximation. By linearity of expectation, an alternative way of viewing the stochastic oracle
problem is that we are training a neural net on the original distribution of images, but with loss
function being the weighted combination of loss functions

P
m

i=1 w[i] · `(h(ci(z); ✓), y), where
ci(z) is the i-th corrupted version of image z. In our experiments we implemented both of these
interpretations of the stochastic oracle, which we call the Hybrid Method and Composite Method,
respectively, when designing our neural network training scheme (see the full version of the paper
for further details). Finally, because we use the cross-entropy loss, which is convex in the prediction
of the neural net, we can also apply Theorem 3 to get that the ensemble neural net, which takes the
average of the predictions of the neural nets created at each iteration of the robust optimization, will
also achieve good worst-case loss (we refer to this as Ensemble Bottleneck Loss).

Experiment Setup. We use the MNIST handwritten digits data set containing 55000 training
images, 5000 validation images, and 10000 test images, each image being a 28⇥ 28 pixel grayscale
image. The intensities of these 576 pixels (ranging from 0 to 1) are used as input to a neural network
that has 1024 nodes in its one hidden layer. The output layer uses the softmax function to give a
distribution over digits 0 to 9. The activation function is ReLU and the network is trained using
Gradient Descent with learning parameter 0.5 through 500 iterations of mini-batches of size 100.

In general, the corruptions can be any black-box corruption of the image. In our experiments, we
consider four types of corruption (m = 4). See the full version of the paper for further details about
corruptions.

Baselines. We consider three baselines: (i) Individual Corruption: for each corruption type i 2 [m],
we construct an oracle that trains a neural network using the training data perturbed by corruption i,
and then returns the trained network weights as ✓t, for every t = 1, . . . , T . This gives m baselines,
one for each corruption type; (ii) Even Split: this baseline alternates between training with different
corruption types between iterations. In particular, call the previous m baseline oracles O1, ..., Om.
Then this new baseline oracle will produce ✓t with Oi+1, where i ⌘ t mod m, for every t = 1, ..., T ;
(iii) Uniform Distribution: This more advanced baseline runs the robust optimization scheme with the
Hybrid Method (see Appendix), but without the distribution updates. Instead, the distribution over
corruption types is fixed as the discrete uniform [1

m
, ..., 1

m
] over all T iterations. This allows us to

check if the multiplicative weight updates in the robust optimization algorithm are providing benefit.

Results. The Hybrid and Composite Methods produce results far superior to all three baseline
types, with differences both substantial in magnitude and statistically significant, as shown in Figure
2. The more sophisticated Composite Method outperforms the Hybrid Method. Increasing T
improves performance, but with diminishing returns–largely because for sufficiently large T , the
distribution over corruption types has moved from the initial uniform distribution to some more
optimal stable distribution (see the full version for details). All these effects are consistent across
the 4 different corruption sets tested. The Ensemble Bottleneck Loss is empirically much smaller
than Individual Bottleneck Loss. For the best performing algorithm, the Composite Method, the
mean Ensemble Bottleneck Loss (mean Individual Bottleneck Loss) with T = 50 was 0.34 (1.31)
for Background Set, 0.28 (1.30) for Shrink Set, 0.19 (1.25) for Pixel Set, and 0.33 (1.25) for Mixed
Set. Thus combining the T classifiers obtained from robust optimization is practical for making
predictions on new data.

3.2 Robust Influence Maximization

We apply the results of Section 2.3 to the robust influence maximization problem. Given a directed
graph G = (V,E), the goal is to pick a seed set S of k nodes that maximize an influence function

7

Figure 2: Comparison of methods, showing mean of 10 independent runs and a 95% confidence band. The
criterion is Individual Bottleneck Loss: min[m] E✓⇠P [`(h(z; ✓), y)], where P is uniform over all solutions ✓i
for that method. Baselines (i) and (ii) are not shown as they produce significantly higher loss.

fG(S), where fG(S) is the expected number of individuals influenced by opinion of the members of
S. We used fG(S) to be the number of nodes reachable from S (our results extend to other models).

In robust influence maximization, the goal is to maximize influence in the worst-case (Bottleneck
Influence) over m functions {f1, . . . , fm}, corresponding to m graphs {G1, . . . , Gm}, for some fixed
seed set of size k. This is a special case of robust submodular maximization after rescaling to [0, 1].

Experiment Setup. Given a base directed graph G(V,E), we produce m graphs Gi = (V,Ei) by
randomly including each edge e 2 E with some probability p. We consider two base graphs and two
sets of parameters for each: (i) The Wikipedia Vote Graph [14]. In Experiment A, the parameters are
|V | = 7115, |E| = 103689, m = 10, p = 0.01 and k = 10. In Experiment B, change p = 0.015 and
k = 3. (ii) The Complete Directed Graph on |V | = 100 vertices. In Experiment A, the parameters
are m = 50, p = 0.015 and k = 2. In Experiment B, change p = 0.01 and k = 4.

Baselines. We compared our algorithm (Section 2.3) to three baselines: (i) Uniform over Individual
Greedy Solutions: Apply greedy maximization (Algorithm 2) on each graph separately, to get
solutions {Sg

1 , . . . , S
g

m
}. Return the uniform distribution over these solutions; (ii) Greedy on Uniform

Distribution over Graphs: Return the output of greedy submodular maximization (Algorithm 2)
on the uniform distribution over influence functions. This can be viewed as maximizing expected
influence; (iii) Uniform over Greedy Solutions on Multiple Perturbed Distributions: Generate T
distributions {w⇤

1, . . . ,w⇤
T
} over the m functions, by randomly perturbing the uniform distribution.

Perturbation magnitudes were chosen s.t. w⇤
t

has the same expected `1 distance from uniform as the
distribution returned by robust optimization at iteration t.

Results. For both graph experiments, robust optimization outperforms all baselines on Bottleneck
Influence; the difference is statistically significant as well as large in magnitude for all T > 50 (see
Figure 3). Moreover, the individual seed sets generated at each iteration t of robust optimization
themselves achieve empirically good influence as well; see the full version for further details.

References
[1] Zeyuan Allen Zhu and Elad Hazan. Variance reduction for faster non-convex optimization. In

Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, pages 699–707, 2016.

8

Figure 3: Comparison for various T , showing mean Bottleneck Influence and 95% confidence on 10 runs.

[2] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing, 8(6):121–164, 2012.

[3] Aharon Ben-Tal, Elad Hazan, Tomer Koren, and Shie Mannor. Oracle-based robust optimization
via online learning. Operations Research, 63(3):628–638, 2015.

[4] Sabyasachi Chatterjee, John C. Duchi, John D. Lafferty, and Yuancheng Zhu. Local minimax
complexity of stochastic convex optimization. In Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, pages 3423–3431, 2016.

[5] Wei Chen, Tian Lin, Zihan Tan, Mingfei Zhao, and Xuren Zhou. Robust influence maximization.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages 795–804, 2016.

[6] Wei Chen, Tian Lin, Zihan Tan, Mingfei Zhao, and Xuren Zhou. Robust influence maximization.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages 795–804, 2016.

[7] Elad Hazan, Kfir Y. Levy, and Shai Shalev-Shwartz. Beyond convexity: Stochastic quasi-convex
optimization. In Advances in Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 1594–1602, 2015.

[8] Elad Hazan, Kfir Yehuda Levy, and Shai Shalev-Shwartz. On graduated optimization for
stochastic non-convex problems. In Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 1833–1841,
2016.

[9] Xinran He and David Kempe. Robust influence maximization. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pages 885–894, 2016.

[10] Xinran He and David Kempe. Robust influence maximization. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pages 885–894, 2016.

[11] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the Ninth ACM SIGKDD International Conference on

9

Knowledge Discovery and Data Mining, KDD ’03, pages 137–146, New York, NY, USA, 2003.
ACM.

[12] Andreas Krause, H. Brendan McMahan, Carlos Guestrin, and Anupam Gupta. Selecting obser-
vations against adversarial objectives. In Advances in Neural Information Processing Systems
20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing
Systems, Vancouver, British Columbia, Canada, December 3-6, 2007, pages 777–784, 2007.

[13] Andreas Krause, Alex Roper, and Daniel Golovin. Randomized sensing in adversarial environ-
ments. In Proceedings of the 22nd International Joint Conference On Artificial Intelligence,
Barcelona, Catalonia, Spain, July 16-22, 2011, pages 2133–2139, 2011.

[14] Jure Leskovec. Wikipedia vote network. Stanford Network Analysis Project.

[15] Meghna Lowalekar, Pradeep Varakantham, and Akshat Kumar. Robust influence maximization:
(extended abstract). In Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems, Singapore, May 9-13, 2016, pages 1395–1396, 2016.

[16] Yishay Mansour, Aviad Rubinstein, and Moshe Tennenholtz. Robust probabilistic inference. In
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2015, San Diego, CA, USA, January 4-6, 2015, pages 449–460, 2015.

[17] Hongseok Namkoong and John C. Duchi. Stochastic gradient methods for distributionally
robust optimization with f-divergences. In Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 2208–2216, 2016.

[18] G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum of a
submodular set function. Mathematics of Operations Research, 3(3):177–188, 1978.

[19] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions—i. Mathematical Programming, 14(1):265–294, 1978.

[20] Shai Shalev-Shwartz and Yonatan Wexler. Minimizing the maximal loss: How and why. In
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, pages 793–801, 2016.

[21] Jacob Steinhardt and John C. Duchi. Minimax rates for memory-bounded sparse linear regres-
sion. In Proceedings of The 28th Conference on Learning Theory, COLT 2015, Paris, France,
July 3-6, 2015, pages 1564–1587, 2015.

10

