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1 Supplement

1.1 Preliminaries

Lemma 1.1. Consider any function ¢ : R — R and 6 > 0. Suppose the following holds
1 1
-3 log (1 — 0z + 92x2) < gx) < élog (1 + 0z + 92:52) ,VreR (D
then, we have for any matrix A € H4*4,

—% log (1 —0A+6°A%) < ¢(A) < % log (I +0A+ 6°A%).

Proof. Note that for any « € R, —§ log (1 — 26 + 2%6%) < §log (1 + x6 + 2%6%), then, the claim
follows immediately from the definition of the matrix function. O

The above lemma is useful in our context mainly due to the following lemma,

Lemma 1.2. The truncation function $1(0x) = sign(z) - (|z| A §) satisfies the assumption (4) in
Lemmal[5.1)

Proof. Denote fi(z) = —4log (1 — 0z + 6%2?), fo(x) = §log (1 + 0z + 6%2?) and g(z) =
sign(z) - (|#| A §). Note first that

f1(0) = g(0) = £2(0) =0,

f1(1/0) < g(1/0) < £2(1/6),
f1(=1/0) < g(=1/6) < f2(=1/6),

and the subgradient
1, x € (—-1/6,1/0),
0g(z) =<0, x € (—o0,—1/0)U (1/60,+0),
0,1, ==-1/0,1/6.
Next, we take the derivative of fo(z) and compare it to the derivative of g(z).
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Note that f5(z) > 1,z € (0,1/0), fi(x) > 0,z > 1/0, f5(z) < 1,z € (—1/6,0] and f5(z) <
0,z < —1/6. Thus, we have g(z) < fa(z), Vo € R. Similarly, we can take the derivative of
fi(z) and compare it to g(x), which results in f{(z) < 1,z € (0,1/6), fi(z) < 0,z > 1/6,
fi(x) > 1,2 € (—1/6,0] and f5(z) > 0,2 < —1/6. This implies f;(x) < g(x) and the Lemma is
proved. O

The following lemma demonstrates the importance of matrix logarithm function in matrix analysis,
whose proof can be found in|Bhatia| (2013)) and [Tropp| (2015),

Lemma 1.3. (a) The matrix logarithm is operator monotone, that is, if A = B = 0 are two matrices
in ¥4, then, log(A) = log(B).
(b) Given a fixed matrix H € H** %, the function

A — trexp(H + log(A))

is concave on the cone of positive semi-definite matrices.

The following lemma is a generalization of Chebyshev’s association inequality. See Theorem 2.15 of
Boucheron et al.|(2013])) for proof.

Lemma 1.4 (FKG inequality). Suppose f, g : R¢ — R are two functions non-decreasing on each
coordinate. LetY = [Y1, Yo, ---, Yy4| be a random vector taking values in R?, then,

E[f(X)g(X)] > E[f(X)]E[g(X)].

The following corollary follows immediately from the FKG inequality.
Corollary 1.1. Let Z = X — po, then, we have o3 = |E[ZZT|Z|3]|] =
r(B[227]) [E[2Z27]] = tr(20) ol

Proof. Consider any unit vector v. € R? It is enough to show E[(v'Z)?|Z|3] >

E[(vT'Z)?|E[||Z||3]. We change the coordinate by considering an orthonormal basis {v1,--- ,va}
withvy =v. LetY; =v!'Z,i=1,2,--- ,d, then we obtain,

E[(v'Z)?|1Z|I5] = E[y?|IY]3] = E[YZ]E[IY 3],
where the last inequality follows from FKG inequality by taking f (Y, -+, Y?) = Y{ and
g (Y2, -, Y3) =Y. O

1.2 Additional computation in the proof of Lemma 2.1]
In order to show (TT)), it is enough to show that
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Note that d= a5 /[1Zoll> > tr(20)/[|Zoll > 1, and assuming that the sample size satisfies m >
(6C")*d3, we have d3/m < 1/(6C")* < 1. We then bound each of the 6 terms on the left side.
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Note that we have the following

thus, the rest three terms can be bounded as follows,

=

3

_ 2 _ 1
c’nzond(ﬁ) <csofdl < 1oy/2
m m 6 m

2

_ _ 1
Csolldly  <CISolld’ < o/ 2
m 6 m

9
_5 _5 —
'@ (5) <50l (ﬁ < Ozl <
m m m
Overall, we have (TT)) holds.

1.3 Proof of Lemmad.2]

First of all, by definition of iu’ we have

. Ty — .
sup ’v (3, — EH)V‘ = sup
lell2<Bg,[Iv|2<1 lell2<Bg,|lvl2<1

IZ<ZZ'—M’V>2W _E|:<Zi_,uav>2:| :

Expanding the squares on the right hand side gives

S 1 « o ¥ (01 Z; — pl|3) 2
swp (|5, - Sl = s SNz S S EZ0v)?]| 0
lule<Bs | T < Baviie<t m; 0112 — 3
1 ¢ ¢ (011 Z; — pl3)
+2 sup — > (Zi,v) (u,v) ———— — B[(Zi,v) (1, v)]| D
lull2<Bs,lIvll2<1 m; 0l Zi — pll3
1 — V)2 ¢ (012 — pll3) 2
+ — — = — {(u,v)"|. (Il
< B Ivlla<1 z; 0[1Z; — pll5

We will then bound these three terms separately. Note that given ||z — po|l2 < Bg, the term (III) can
be readily bounded as follows using the fact that 0 < ¢ (z) < z, Vo > 0,

1 =¥ (012 — pl3) 2 _ o
(1) = sup (V) = 2 1| < sup (n,v)" < B
Il <Bg, | vll2<1 m; 01Z; — 3 lall2<Bg, Ivll2<1 ’
tr(2 2 d
=000 5 gp 00 s 22 (o)
[[Zollm m

where the second from the last inequality follows from Corollary [5.T]and the last inequality follows
from d = o /||Z0||%

The rest two terms are bounded through the following lemma whose proof is delayed to the next
section:

Lemma 1.5. Given ||[i — pol|2 < Bg, with probability at least 1 — 4de™P, we have the following
two bounds hold,

(I < 20\/?+22||20| NerE <B> +2v2 (ﬁ> +11d° (5) + 22d—ﬂ2 ,
m m HZOH m

o) gz et (2)
1) < 11|12 — 3 — +44d
(I < 1%l | V2y/ 1 |( Vg (1

+44+/2d (B) +242f— + 484" <5)> .
m m



Note that since o > 7, we have o/||So|| > 00/||Z0| = V/d. Combining the above lemma with (13)
finishes the proof of Lemma[4.2]

1.4 Proof of Lemma[5.3]

Before proving the Lemma, we introduce the following abbreviations:

2 ¥ (011Z:13) 1Z:|12 o (011 Z: — pll3)

in - Ziv 3 h Zz - 3
gv(Z) = L) =y ) = ez 12— al
] ¥ (01Z:12)

in == Zi, —_— .

e T FAE

Our analysis relies on the following simply yet important fact which gives deterministic upper and
lower bound of h,,(Z;) around 1. Its proof is delayed to the next section.

Lemma 1.6. For any p such that ||p||2 < Bg, the following holds:
1 —2B3V0 — B30 < h,(Z;) < 1+ 2BsV0 + B20.
The following Lemma gives a general concentration bound for heavy tailed random matrices under a
mapping ¢(-).
Lemma 1.7. Let Ay, Ay, ---, A,, be a sequence of i.i.d. random matrices in H*? with zero mean

and finite second moment 0% = ||E[AZ2]||. Let ¢(-) be any function satisfying the assumption (T4) of
Lemmal[5.1) Then, for any t > 0,

m
Pr (Z (0(A;) — E[A]) > t\/Fn) < 2dexp (—tv/m +mb2cA) .
i=1

Specifically, if the assumption (14) holds for 0 = NG \/%UA, then we obtain the subgaussian tail
2d exp(—t%/40%).

The intuition behind this lemma is that the log(1 + x) tends to “robustify” a random variable by
implicitly trading the bias for a tight concentration. A scalar version of such lemma with a similar
idea is first introduced in the seminal work (Catoni| (2012)). The proof of the current matrix version
is similar to Lemma 3.1 and Theorem 3.1 of [Minsker (2016) by modifying only the constants. We
omitted the details here for brevity. Note that this lemma is useful in our context by choosing
¢(x) = §1p(0z). Next, we prove two parts of Lemma separately.

Proof of (I) in Lemma[5.3] Using the abbreviation introduced at the beginning of this section, we

have .
LS iz - 5[z

We further split it into two terms as follows:

ng z )

The two terms in (T6) are bounded as follows:

(1) =

HMH2<B[37HVH2<1

(I) < + sup 3)

lIvil<

S SR

HMI|2<B/3 HVII2<1

1. For the second term in (T6), note that we can write it back into the matrix form as

Note that the matrix Z; Z} is a rank one matrix with the eigenvalue equal to || Z;|3, so it
follows from the definition of matrix function,
¥ (011Z13)
ZiZi —rm
123l

W (0)1Z:]3)
ZZr 22 _R[z,ZT
mez P2

_Ytezizr
_gw(ezzzi).
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Now, applying Lemma setting 0 = 5——— \F together with Lemma gives

"([aa

> t/ﬁ) < 2d exp(—t?/40?).
Setting ¢ = 20/ (which results in § = 1,/ %) gives
1« b (011Z:]3) B
— N z;zF 222 _R(z,Z2|| < 204 = 4
|m9; CThzg EAE]| sy @
with probability at least 1 — 2de ™"

2. For the first term in (T6)), by the fact that gy (Z;) > 0 and Lemma[5.6]

gV 7 1. ) - 1)
”HH2<B[17HVH2<1 Z

< —ng —1|

Hu\|2<35 HVH2<1 m

HV||2<1 m ng { (2Bﬁ\/>+BB )

< <||]E[ZiZiT] |+ 20\/z> (2ng/§+ Bge) ;

with probability at least 1 —2de~?, where the last inequality follows from the same argument
leading to (7). Note that E[Z; Z] | = 2.

B B
M < za\/;Jr <||20|| +20\/;> (235\/§+B§9) :

with probability at least 1 — 2de~". Now we substitute Bg = 11,/2tr(39)3/m and § = 1,/ % into
the above bound gives

M < 20\/?+ 22v/2|| 50 || tr(Zo) <ﬂ) + 242\|20||“20 <5> :
m g m m

+44\f\/ﬁ( ) + 484tr(o) (5;)2

W 9||Z || )
ZZT ~E[z;ZT

Overall, we get

Using Corollary [5.1] we have

r(Bo) o u(¥o) . () _ 09

< <
TRV S Rl B o
and also, _
(o) < [1Zollog/[1%ol* < [Zolld- (6)
Substitute these two bounds into the bound of (I) gives the final bound for (I) stated in Lemma[5.3]
with probability at least 1 — 2de 5. O

Proof of (I) in Lemma[5.3} First of all, using the definition of gy (Z;) and h,(Z;), we can rewrite
(II) as follows:

1 m
I = sup — Y gu(Zi)hu(Zs) (p, v) — E[(Z;, V)] (p, V)
llull2<Bg,llvil2<1 | T

<Bg - sup

lull2<Bg,|lv]2<1 m v (Zi)hu(Zi) — E[(Zi, v)]| -
Hli2> D5, V]2>




Similar to the analysis of (I), we further split the above term into two terms and get

1 m ~ m
(1) < Bg sup — > 9w(Zi) (hu(Z:) = V)| +Bs sup | =Y §v(Z:) —E[(Z, V)]
lelle<Bg,lIvlla<t | T vila<1 | =
(Iv) ()

For the first term, by Cauchy-Schwarz inequality and then Lemma [5.6] we get

(IV)<Bs  sup  — Z 19v(Z:) (hu(Zi) = 1)]

llnll2<Bgs, HVH2<1 m

L 1/2 Lo 1/2
<Bg sup (m ng(ZiP) (m Z |h (Z;) — 1|2>
i=1 i=1

llull2<Bgs,[lvl2<1

m 1/2
1
<Bg sup <m Zﬁv(Zi)2> (235\/5 + Bg@) .
i=1

lIvi2<1

Note that 51 (0]|Z;]3) /|| Z:||3 < 1, then, it follows,

1 21\ 2 1 2
o= (BCIZBY 01208
MAS = ( izl ) = T

Thus, by the same analysis leading to (I7)), we get

1/2
B
(IV) < Bg (HE[ZiZiT]H +20\/;> (2B5\/§+B§0), (8)

with probability at least 1 — 2de~P. For the second term (V), notice that E[Z;] = 0, thus we have

<;§j Y@1Z13) >

1
ZHZ\P” L el ]

m

1 Z 1
m 4= Z
For the second term, which measures the bias, we have by the fact E[Z;] = 0,

H A } H z <”Z|gz||21‘1>} 2:|5‘|221E{<Z”> (”ann“‘lﬂ

< sup E|(Ziv) iz, v5)
Now by Cauchy-Schwarz inequality and then Markov inequality, we obtain,

(V) < By sup
Ivil2<1

<B5

%\H

|12
I2 =

2

17

9

(Ivil2<1

Ivil2<1 Ivilz<1

sup E[(Zi,v> 1{Hzi|‘221/m} g\/ sup E[(Zi,v) }Pr(nz 2 > 1/V0)Y2 < \/[SollE[)1 Z:]|2] /> Vo

%ol

tr(50)1/251/4 - (||Zo]|tr (o)) /4814 . <U25>1/4,

mi/igl/z = mi/4 m
where the last two inequalities both follow from Lemma[5.1] This gives the second term in (22)) is

2 \1/4
given by Bpg (%ﬁ) .



For the first term in (22)), note that for any vector x € R,

0 x%
x 0 ’
T

XO } has two same eigenvalues equal to ||x||2, which follows from

0 xT1°_[Ix|z o
x 0 - 0 xxT |-

Il = \

and furthermore, the matrix [2

Thus, if we take
L [0 Z}] 1Zil13 A 5
Sz 0]zl
Then, the first term of 22) is equal to || 3> | A; — E[A;]||. For this A;, we have

1 m/4g1/2

VB
By matrix Bernstein’s inequality (Tropp|(2012)), we obtain the bound
1 — 3 [ mt? 3 (mt2  m3/ApYA

where c is a fixed positive constant. Taking ¢t = 3,/ T=elm Eo\lm gives

r < %zm:Ai - E[A 3@) < dexp (_36 A (m1/4,83/481/4)) < dexp(=H),
i=1

where d = 02/||Zo]|2 > a2/||Z0]|?> > tr(X0)/||Z0]| > 1 and the last inequality follows from the
assumption that m > S. Overall, term (V) is bounded as follows

2 1/4 9
e (2)" ol

with probability at least 1 — de~”. Note that E[Z; Z]'| = %, then, combining with (Z1)), the term
(II) is bounded as

N \f N ﬁ % \[ 9 02 1/4 025
(I) < Bg | [|Z0]|2 + V202 (m) (23/5 9-1-359)-1-35 <mﬁ> +3Bg ol

with probability at least 1 — 2de . Substituting Bg = 114/ Qtr(%)ﬁ and 0 = 1,/ 2 gives

IELAZ]I <E[IZ:]3] = tr(3o), 4]l <

(D < 11V2/ir(S0)o (ﬁ) +33\f\/TOUE +484||zo||1/2“0(i0) (5>

1/2

[[30]1/2 m
3 3/2 2 ) 3/2 9/4
+ 484/2tr(0) (ﬂ> +2v2 - 11315 Ilu(m<ﬂ> +4'115% <B> :
m g m g m

Using the bounds (T8) and (T9) with some algebralc manipulations, we have the second bound in
Lemmaholds with probability at least 1 — 2de . O



1.5 Proof of Lemma[5.6]
We divide our analysis into the following four cases:

1. If || Z;]|3 < 1/60 and || Z; — p||3 < 1/0, then, we have h,,(Z;) = 1.
2. If || Z;||3 < 1/0 and || Z;— |3 > 1/0. Since ||u|| < Bg, itfollows || Z;—pull2 < /1/0+Bg,

and we have
1/6
hu(Zi) = o5 < 1,
g 1Zi — wll3
1/0 1
hu(Zi) > /

= 5 = 2
(\/W+BB> 1+QB,3\/§+Bﬁ9
>1-2BsV0 — B30,
where the last inequality follows from the fact 1 > 1 -, Va > 0.

3. If || Z;]13 > 1/0 and || Z; — p||3 < 1/6. Since ||u||2 < Bg, it follows || Z;||2 < 1/1/0 + Bg,

and we have
= >
IL( 'L) 1/0 _17
h,(Z << 16 B) =14 2B3sV0+ B2

4. If | Z;||3 > 1/60 and || Z; — p||3 > 1/6. Then, we have

ho(Z;) = 1213 < (1Z; — pll2 + Bg)?
! 1Zi —ul3 = 12— ul3

 (1YV0+Bs
\" v

hu(Zi) > 1211 >< 1o )2

2
) < 1+2BsV0+ B30,

~ (1Zillz+ Bg)* — \1/V0+ Bg
1
- >1—2BgV0 — B2,
1+ 2Bsv0 + B30 ’ g

Overall, we proved the lemma.

1.6 Proof of Lemma[2.2]

By definition,
B= sw E[|(v,X)I'] = E[|X|"], vj=1,2,- 4

Ivil2<1

where X7 denotes the j-th entry of the random vector X. Also, for any fixed vector v € R4, we have

OSE[(“V’XV - fXjﬁﬂ = E[|(v, X)I*] +E[|X7["] - 2E[|(v, X)[? | x7|]
= E[|(v, X)|] +1E[|Xﬂ‘|2} ZQE[\<V,X>|2\XJ‘|2}7 Vj=1.2. .d.

Taking the supremum from both sides of the above inequality and use the previous bound on B, we
get
swp E[|(v, X)[*] = swp E[|(v, X)[?[X7[], vj=1,2,d

Ivlz<1 Ivilz<1



Summing overi = 1,2, --- ,d gives

d

Bd= sup E[[(v,X d>z sup IE[KVX ? X7 } > sup E[‘<V,X>|2||XH2}

lIvil2<1

Ivll><1 ivle<t

= || XXTNIX3]| = o5

1.7 Proof of Lemma[2.3|

First of all, let Z = X — pi0, then, we have E[Z] = 0. The lower bound of 3 follows directly from

Corollary [5.1] It remains to show the upper bound. Note that by Cauchy-Schwarz inequality,
oy = |Z2Z7)Z|I3]| = sup E[(Z,v)?(|Z|3]
Ivl2<1
1/2

< s E(1Zv)] E]I1ZI]

We then bound the two terms separately. For any vector x € R?, let 27 be the j-th entry. Note that

1/2
d d
E[(Zz,v)]'"? = Y E[(Zv)] + Y E[(Z0)*(Z"F)?)
Jj=1 Jik, 3#k
4 p 1/2
< SE[ZV)]+ Y E[Z0)] (2R
j=1 ik, j#£k
d d
=> VE(Zv)] =Y VE[(27)(v)) <RZIE [(Z7)?
j=1 j=1
where the last inequality uses the fact that the kurtosis is bounded. Thus,
d
sup E[(Zv)]"* <R- swp S E[(Z9)*]ul = R- max E[(Zj)Q] < R||%||
Ivlz<1 lull <1523 J=1.2,
where the last inequality follows from
M2 = T L < T =
jzgr}22?¥_7dE[(Z )?] ]711n23x L€ Yoe; < |\\Szl\|lglv Sov = || XZo]|-
Similarly, we have
» P | p | 1/2
E[IX]2] 7 = D E[(X) ]+ Y E[X7)*(XY)?]
j=1 Jok=1, j#k
1/2

Jj=1 Jk=1, j#k

< (ZE[(XJ)4] + Z E[(X])4]1/2E[(Xk)4]1/2

d
SZ (X)) <R- ZE [(X7)%] = R - (o)

j=1
Combining the above bounds with (23) gives
a5 < R?[|Zo]|tr(o),

which readily implies the lemma.

(10)
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