
A Cells used in the decoder of the RLadder

Decoder cells receive two inputs: vector vtop from the top and vector h from the encoder and produce
output y.

A.1 G1 and convG1 cells

u = BN(Avtop + b)

s = f(u,w

s

)

y = s� h+ (1� s)� f(u,w) ,

where BN() is batch normalization and
f(u,w) = w0 sigmoid(w1u+ w2) + w3u+ w4 (6)

with w

i

being the elements of vector w and � the element-wise product. In the convolutional version
ConvG1 of that cell, u in the first formula is computed with the convolution operation ⇤:

u = A ⇤ vtop + b.

A.2 convG2 cell

µ

µ

µ1 = f(LN(A1 ⇤ vtop) + LN(B1 ⇤ h) + c1,w1)

µ

µ

µ2 = f(LN(A2 ⇤ vtop) + LN(B2 ⇤ h) + c2,w2)

s = f(LN(A

s

⇤ vtop) + LN(B

s

⇤ h) + c

s

,w

s

)

y = s�µ

µ

µ1 + (1� s)�µ

µ

µ2

where f is defined in (6) and LN() is layer normalization.

A.3 convG3 cell

u = relu(LN(A ⇤ vtop) + LN(B ⇤ h) + c)

s = sigmoid(W

s

⇤ u)
y = s� (D ⇤ u) + (1� s)� (E ⇤ u) ,

where LN() is layer normalization.

A.4 Detailes of normalizations used

Encoder: For all the experiments all non-recurrent layers in the encoder, whether convolutional or not,
are normalized using batch normalization. In the convolution LSTM, there is a layer normalization
after the all the first convolutions of the inputs in the RLadder experiments and batch normalization
in the RTagger experiments, these normalizations were important to get things working.

Decoder: In the decoder gating functions, there is always a layer normalization after the first
convolution over the concatenation of the inputs in the RLadder experiments, and this normalization
was replaced by batch normalization in the RTagger experiments. A normalization at this point was
critical for optimal performance.

B Example of approximate inference in a static model

The structure of the RLadder is designed to emulate a message-passing algorithm in a hierarchical
latent variable model. To illustrate this, let us consider a simple hierarchical latent variable model
with three one-dimensional variables whose joint probability distribution is given by

p(x, y, z) = p(z)p(y|z)p(x|y) (7)

p(x|y) = N (x|w
x

y,�

2
x

) (8)

p(y|z) = N (y|w
yz

z,�

2
y

) (9)

p(z) = N (z|µ
z

,�

2
z

) , (10)
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Figure 8: (a): Simple hierarchical latent variable model. A filled node represents an observed variable.
(b): Directions of message propagation in an inference procedure. (c): Computational graph which
implements an iterative inference procedure has the RLadder architecture.

where N (·|m, v) denotes the Gaussian probability density function with mean m and variance v. We
want to derive a denoising algorithm that recovers clean observation x from its corrupted version x̃,
where the corruption is also modeled to be Gaussian:

p(x̃|x) = N (x̃|x,�2
) . (11)

The reason we look at denoising is because denoising is a task which can be used for unsupervised
learning of the data distribution [1, 2]. The graphical representation of the model shown in Fig. 8a.

In order to do optimal denoising, one needs to evaluate the expectation of p(x|x̃), which can be
done by learning the joint posterior distribution of the unknown variables x, y and z. For this linear
Gaussian model, it is possible to derive an inference algorithm that is guaranteed to produce the exact
posterior distribution in a finite number of steps (see, e.g., [5]). However, in more complex models,
the posterior distribution of the latent variables is impossible to represent exactly and therefore a
neural network that learns the inference procedure needs to represent an approximate distribution. To
this end, we derive an approximate inference procedure for this simple probabilistic model.

Using the variational Bayesian approach, we can approximate the joint posterior distribution by a
distribution of a simpler form. For example, all the latent variables can be modeled to be independent
Gaussian variables a posteriori:

p(x, y, z|x̃) ⇡ q(x, y, z) = q(x)q(y)q(z), (12)
q(x) = N (x|m

x

, v

x

), (13)
q(y) = N (y|m

y

, v

y

), (14)
q(z) = N (z|m

z

, v

z

) . (15)
and the goal of the inference procedure is to estimate parameters m

x

, v
x

, m
y

, v
y

, m
z

, v
z

of the
approximate posterior (12)–(15) for the model in (7)–(11) with fixed parameters w

x

, �2
x

, w
yz

, �2
y

, µ
z

,
�

2
z

, �2.

The optimal posterior approximation q(x, y, z) can be found by minimizing the lower bound of the
Kullback-Leibler divergence between the true distribution and the approximation:

CVB =

Z
log

q(x)q(y)q(z)

p(x, y, z, x̃)

q(x)q(y)q(z)dydz = hlog q(x)q(y)q(z)i � hlog p(x, y, z, x̃)i (16)

where h·i denotes the expectation over q(x, y, z). This can be done with the following iterative
procedure:
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Figure 9: (a): Fragment of a graph of a temporal model relevant for updating the distributions of
unknown variables after observing x

t

. Light-gray circles represent latent variables whose distribution
is not updated. (b): Directions of information propagation needed for inference. (c): The structure of
the RLadder network can be seen as a computational graph implementing information flow in (b).
The dotted arrows are the skip connections that would be needed if we forced the activations to be
literally interpreted as the distribution parameters of the latent variables.

Thus, in order to update the posterior distribution of a latent variable, one needs to combine the
information coming from one level above and from one level below. For example, in order to
update q(y), one needs information from below (m

x

/w

x

and w

2
x

/�

2
x

) and from above (w
yz

m

z

and
1/�

2
y

). We can think of the information needed for updating the parameters describing the posterior
distributions of the latent variables as ‘messages’ propagating between the nodes of a probabilistic
graphical model (see Fig. 8b). Since there are mutual dependencies between m

x

, m
y

and m

z

in
(17)–(19), the update rules need to be iterated multiple times until convergence. This procedure can
be implemented using the RLadder computational graph with the messages shown in Fig. 8c. Note
that in practice, the computations used in the cells of the RLadder are not dictated by any particular
explicit probabilistic model. The original Ladder networks [22] contain only one iteration of the
bottom-up and top-down passes. The RLadder extends the model to multiple passes. Note also that
the computations used in the decoder (top-down pass) of the Ladder networks are inspired by the
gating structure of the update rules (17)–(19) in simple Gaussian models.

C Example of approximate inference in a simple temporal model

In this section we consider a simple hierarchical and temporal model and look at the relationship
between temporal inferance in that model and the computational structure of RLadder. Consider a
simple probabilistic model with three levels of hierarchy x

t

, y
t

, z
t

in which variables vary in time
(see Fig. 9a). The conditional distributions given the latent variables in the past y

t�1, z
t�1 are defined

as follows:

p(x
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|y
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) = N (x
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|w
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t�1 + w

xy

y

t
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2
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) (20)
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|y
t�1, zt) = N (y
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|w
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t�1 + w
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z
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2
y

) (21)

p(z

t

|z
t�1) = N (z

t

|w
z

z

t�1,�
2
z

) (22)

At time t � 1 the observed variables are x1..t�1 = (x1, ..., xt�1). Using the variational Bayesian
approach, we can approximate the joint posterior distribution of the latent variables y and z by a
distribution of a simpler form:

p(y

t�1, zt�1|x1..t�1) ⇡ q(y

t�1)q(zt�1)

q(y

t�1) = N (y

t�1|my,t�1, vy,t�1)

q(z

t�1) = N (z

t�1|mz,t�1, vz,t�1).

The cost function minimized in the variational Bayesian approach is:

CVB = hlog q(y
t

)q(z

t

)� log p(x

t

|y
t

)p(y

t

|y
t�1, zt)p(zt|zt�1)� log p(y

t�1)p(zt�1)i
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where the expectation is taken over q(y

t

, z

t

, y

t�1, zt�1, . . . , y1, z1) =

Q
t

s=1 q(ys)q(zs). Let us
elaborate the terms of CVB. The first term is
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The last term is a function of variational parameters m
y,t�1,mz,t�1, vy,t�1, vz,t�1 which we do not

update at time instance t. Taking the derivative of CVB wrt the variational parameters yields:
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Equating the derivatives to zero yields:
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These computations can be done by first estimating m

y,t

, m
z,t

before observing x

t

and then correcting
using the observation. Let us show how it is done for y. We define m

0
y,t

to be the posterior mean
before observing x

t

(next step decoder prediction), m̃
y,t

(encoder posterior) to be the posterior means
after observing x

t

but before updating the approximate posterior of higher latent variables (z in
this case), and finally m

y,t

to be the posterior mean after observing x

t

and updating all posteriors
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(decoder, same step prediction). Thus, we can write
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which if we eliminate the tilded and primed m’s, give exactly the same equations as previously.

Generalizing the results for an arbitrary number of variables in the chain we have that for a generic
level l in a hierarchical chain, we have:
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These equations suggest a computational graph as shown in Fig. 9c. This is, if we literally interpret
m̃ to be the activations of the encoder and m and m

0 to be the activations of the decoder, then we
would conclude that we need upward-diagonal (the grey dotted arrow in Fig. 9c) decoder to encoder
connections, and a recurrent decoder (curved dotted arrow in Fig. 9c). But we impose no such
constraint, and the dotted lines are in fact only skip connections. So as long an information can be
copied through accross neural network layers (which it can), and as long as each layer has sufficient
capacity, we can remove those skip connections and retain the same computational capabilities. This
is what is done in RLadder. However, it would be interesting to see if adding those skip connections
help with training on temporal tasks.

Using gatings in the bottom-up computations are justified by (28). Even though the top-down updates
(27) and (31) are simple summations in the case of this linear Gaussian model, the more general
gatings in the top-down pass provides more flexibility for nonlinear models. The activations in the
level above can select one of a few possible evolution scenarios on the level below.

As we discussed previously, RLadder networks are usually trained by introducing tasks that encourage
the network to learn the optimal inference of the latent variables. For temporal models, the natural
low-level task is predicting the input at the next time instance. Thus the cost is � log(p(x

t+1|x1..t)):

Cpred = (x̂

t+1 � x

t+1)
2

if we assume a Gaussian distribution for x̂.

D Details of experiments

D.1 Detailes of experiments with Occluded Moving MNIST

The RLadder architecture trained for the occluded moving MNIST dataset is presented in Table 5.
The architecture of the baseline temporal model and the static feed-forward network trained on
optimal digit reconstructions are shown in Tables 6–7. Initially, we trained the network only on the
training set using the Adam optimizer [18] with an initial learning rate of 0.001. Every time the
classification error on the validation set rose, we divided the learning rate by 2 until a minimum value
of 0.0001. We then trained the network using both the training and validation sets following the
learning rate schedule learned previously.
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Table 5: Structure of RLadder for Occluded Moving MNIST
Encoder Decoder

Layer Stride # channels (size) filter size filter size

Input - 1
ConvLSTM 1 32 (3, 3) convG3 (9,9)
Conv 1 32 (3, 3) convG3 (3, 3)
Conv 1 32 (3, 3) convG3 (3, 3)
Conv 1 32 (3, 3) convG3 (3, 3)
Pool 2 MAX (2, 2) convG3 (6, 6)
ConvLSTM 1 32 (3, 3) convG3 (9, 9)
Conv 1 64 (3, 3) convG3 (3, 3)
Conv 1 64 (3, 3) convG3 (3, 3)
Conv 1 64 (3, 3) convG3 (3, 3)
Pool 2 MAX (2, 2) convG3 (6, 6)
Conv 1 128 (3, 3) convG3 (3, 3)
Conv 1 64 (1, 1) convG3 (3, 3)
Conv 1 32 (1, 1) convG3 (3, 3)
Pool 2 AVG (2, 2) G1
LSTM 16 G1
SoftMax 10 -

Table 6: Temporal baseline network for
Occluded Moving MNIST

Layer Stride # channels filter
(size) size

Input - 1
Conv 1 32 (3, 3)
Conv 1 32 (3, 3)
Conv 1 32 (3, 3)
Pool 2 MAX (2, 2)
Conv 1 64 (3, 3)
Conv 1 64 (3, 3)
Conv 1 64 (3, 3)
Pool 2 MAX (2, 2)
Conv 1 128 (3, 3)
Conv 1 64 (1, 1)
Conv 1 32 (1, 1)
Pool 2 AVG (2, 2)
LSTM 16
SoftMax 10

Table 7: Feed-forward network in which
the optimal temporal reconstruction of Oc-
cluded Moving MNIST is inputed for clas-
sification

Layer Stride # channels filter
(size) size

Input - 1
Conv 1 32 (3, 3)
Conv 1 32 (3, 3)
Conv 1 32 (3, 3)
Pool 2 MAX (2, 2)
Conv 1 64 (3, 3)
Conv 1 64 (3, 3)
Conv 1 64 (3, 3)
Pool 2 MAX (2, 2)
Conv 1 128 (3, 3)
Conv 1 64 (1, 1)
Conv 1 32 (1, 1)
Pool 2 AVG (2, 2)
SoftMax 10
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D.2 Details of experiments with Polyphonic Music data

The RLadder architecture trained for the music dataset is presented in Table 8. We trained using
the Adam optimizer with a learning rate of 0.01. Because the network overfited very rapidly, we
determined the optimal stopping time using the validation set and then trained on the training and
validation set for the same number of epochs (between 3 and 10 depending on the hyperparameters).

Table 8: Structure of RLadder for Polyphonic Music dataset
Encoder Decoder

Layer Stride # channels (size) filter size filter size

Input - 1
ConvLSTM 1 32 (1, 3) ConvG2 (1,3)
ConvLSTM 2 64 (1, 3) ConvG2 (1,3)
ConvLSTM 2 96 (1, 3) ConvG2 (1,3)
ConvLSTM 2 128 (1, 3) ConvG2 (1,3)
ConvLSTM 2 160 (1, 3) ConvG2 (1,3)
Pool 2 AVG (1, 2) G1
LSTM 96 G1
SoftMax 19 Identity

D.3 Details of experiments with textured MNIST

The RTagger architecture used to train on Brodatz-textured MNIST data is in Table 9. The baseline
convolutional network is model C from [24]. The networks were trained using the Adam optimizer
with learning rate 0.0004. All training results were evaluated at update 160000. The size of the
mini-batch was 16 for all the models. Batch normalization was applied to encoder and decoder layers.

Table 9: Structure of RTagger for textured MNIST dataset
Encoder Decoder

Layer Stride # channels (size) filter size

Input - 1
ConvLSTM 2 96 (8, 8) ConvG1
Conv 1 96 (5, 5) ConvG1
Conv 1 96 (5, 5) ConvG1
ConvLSTM 2 192 (4, 4) ConvG1
Conv 1 192 (5, 5) ConvG1
Conv 1 192 (5, 5) ConvG1
ConvLSTM 2 192 (4, 4) ConvG1
Conv 1 192 (5, 5) ConvG1
Conv 1 192 (5, 5) ConvG1
ConvLSTM 2 11 (4, 4) ConvG1
Pool - - (6,6) AVERAGE
FC - 11 - G1
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