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Abstract

We apply the Min-Sum message-passing protocol to solve the consensus problem
in distributed optimization. We show that while the ordinary Min-Sum algorithm
does not converge, a modified version of it known as Splitting yields convergence to
the problem solution. We prove that a proper choice of the tuning parameters allows
Min-Sum Splitting to yield subdiffusive accelerated convergence rates, matching
the rates obtained by shift-register methods. The acceleration scheme embodied by
Min-Sum Splitting for the consensus problem bears similarities with lifted Markov
chains techniques and with multi-step first order methods in convex optimization.

1 Introduction

Min-Sum is a local message-passing algorithm designed to distributedly optimize an objective
function that can be written as a sum of component functions, each of which depends on a subset of
the decision variables. Due to its simplicity, Min-Sum has emerged as canonical protocol to address
large scale problems in a variety of domains, including signal processing, statistics, and machine
learning. For problems supported on tree graphs, the Min-Sum algorithm corresponds to dynamic
programming and is guaranteed to converge to the problem solution. For arbitrary graphs, the ordinary
Min-Sum algorithm may fail to converge, or it may converge to something different than the problem
solution [28]. In the case of strictly convex objective functions, there are known sufficient conditions
to guarantee the convergence and correctness of the algorithm. The most general condition requires
the Hessian of the objective function to be scaled diagonally dominant [28, 25]. While the Min-Sum
scheme can be applied to optimization problems with constraints, by incorporating the constraints
into the objective function as hard barriers, the known sufficient conditions do not apply in this case.

In [34], a generalization of the traditional Min-Sum scheme has been proposed, based on a
reparametrization of the original objective function. This algorithm is called Splitting, as it can be
derived by creating equivalent graph representations for the objective function by “splitting” the
nodes of the original graph. In the case of unconstrained problems with quadratic objective functions,
where Min-Sum is also known as Gaussian Belief Propagation, the algorithm with splitting has been
shown to yield convergence in settings where the ordinary Min-Sum does not converge [35]. To date,
a theoretical investigation of the rates of convergence of Min-Sum Splitting has not been established.

In this paper we establish rates of convergence for the Min-Sum Splitting algorithm applied to solve
the consensus problem, which can be formulated as an equality-constrained problem in optimization.
The basic version of the consensus problem is the network averaging problem. In this setting, each
node in a graph is assigned a real number, and the goal is to design a distributed protocol that allows
the nodes to iteratively exchange information with their neighbors so to arrive at consensus on the
average across the network. Early work include [42, 41]. The design of distributed algorithms
to solve the averaging problem has received a lot of attention recently, as consensus represents a
widely-used primitive to compute aggregate statistics in a variety of fields. Applications include, for
instance, estimation problems in sensor networks, distributed tracking and localization, multi-agents
coordination, and distributed inference [20, 21, 9, 19]. Consensus is typically combined with some
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form of local optimization over a peer-to-peer network, as in the case of iterative subgradient methods
[29, 40, 17, 10, 6, 16, 39]. In large-scale machine learning, consensus is used as a tool to distribute
the minimization of a loss function over a large dataset into a network of processors that can exchange
and aggregate information, and only have access to a subset of the data [31, 11, 26, 3].

Classical algorithms to solve the network averaging problem involve linear dynamical systems sup-
ported on the nodes of the graph. Even when the coefficients that control the dynamics are optimized,
these methods are known to suffer from a “diffusive” rate of convergence, which corresponds to the
rate of convergence to stationarity exhibited by the “diffusion” random walk naturally associated to
a graph [44, 2]. This rate is optimal for graphs with good expansion properties, such as complete
graphs or expanders. In this case the convergence time, i.e., the number of iterations required to
reach a prescribed level of error accuracy ε > 0 in the `2 norm relative to the initial condition, scales
independently of the dimension of the problem, as Θ(log 1/ε). For graphs with geometry this rate is
suboptimal [7], and it does not yield a convergence time that matches the lower bound Ω(D log 1/ε),
where D is the graph diameter [37, 36]. For example, in both cycle graphs and in grid-like topologies
the number of iterations scale like Θ(D2 log 1/ε) (if n is the number of nodes, D ∼ n in a cycle
and D ∼

√
n in a two-dimensional torus). Θ(D2 log 1/ε) is also the convergence time exhibited in

random geometric graphs, which represent the relevant topologies for many applications in sensor
networks [9]. In [7] it was established that for a class of graphs with geometry (polynomial growth or
finite doubling dimension), the mixing time of any reversible Markov chain scales at least like D2,
embodying the fact that symmetric walks on these graphs take D2 steps to travel distances of orderD.

Min-Sum schemes to solve the consensus problem have been previously investigated in [27]. The
authors show that the ordinary Min-Sum algorithm does not converge in graphs with cycles. They
investigate a modified version of it that uses a soft barrier function to incorporate the equality
constrains into the objective function. In the case of d-regular graphs, upon a proper choice of initial
conditions, the authors show that the algorithm they propose reduces to a linear process supported on
the directed edges of the graph, and they characterize the convergence time of the algorithm in terms
of the Cesàro mixing time of a Markov chain defined on the set of directed edges of the original graph.
In the case of cycle graphs (i.e., d = 2), they prove that the mixing time scales like O(D), which
yields the convergence time O(D/ε log 1/ε). See Theorem 4 and Theorem 5 in [27]. In the case of
(d/2)-dimensional tori (D ∼ n2/d), they conjecture that the mixing time is Θ(D2(d−1)/d), but do
not present bounds for the convergence time. See Conjecture 1 in [27]. For other graph topologies,
they leave the mixing time (and convergence time) achieved by their method as an open question.

In this paper we show that the Min-Sum scheme based on splitting yields convergence to the
consensus solution, and we analytically establish rates of convergence for any graph topology.
First, we show that a certain parametrization of the Min-Sum protocol for consensus yields a linear
message-passing update for any graph and for any choice of initial conditions. Second, we show that
the introduction of the splitting parameters is not only fundamental to guarantee the convergence
and correctness of the Min-Sum scheme in the consensus problem, but that proper tuning of these
parameters yields accelerated (i.e., “subdiffusive”) asymptotic rates of convergence. We establish a
square-root improvement for the asymptotic convergence time over diffusive methods, which allows
Min-Sum Splitting to scale like O(D log(D/ε)) for cycles and tori. Our results show that Min-Sum
schemes are competitive and get close to the optimal rate O(D log(1/ε)) recently established for
some algorithms based on Nesterov’s acceleration [30, 36]. The main tool used for the analysis
involves the construction of an auxiliary linear process supported on the nodes of the original graph
to track the evolution of the Min-Sum Splitting algorithm, which is instead supported on the directed
edges. This construction allows us to relate the convergence time of the Min-Sum scheme to the
spectral gap of the matrix describing the dynamics of the auxiliary process, which is easier to analyze
than the matrix describing the dynamics on the edges as in [27].

In the literature, overcoming the suboptimal convergence rate of classical algorithms for network
averaging consensus has motivated the design of several accelerated methods. Two main lines of
research have been developed, and seem to have evolved independently of each others: one involves
lifted Markov chains techniques, see [37] for a review, the other involves accelerated first order
methods in convex optimization, see [13] for a review. Another contribution of this paper is to
show that Min-Sum Splitting bears similarities with both types of accelerated methods. On the one
hand, Min-Sum can be seen as a process on a lifted space, which is the space of directed edges in
the original graph. Here, splitting is seen to introduce a directionality in the message exchange of
the ordinary Min-Sum protocol that is analogous to the directionality introduced in non-reversible
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random walks on lifted graphs to achieve faster convergence to stationarity. The advantage of the
Min-Sum algorithm over lifted Markov chain methods is that no lifted graph needs to be constructed.
On the other hand, the directionality induced on the edges by splitting translates into a memory term
for the auxiliary algorithm running on the nodes. This memory term, which allows nodes to remember
previous values and incorporate them into the next update, directly relates the Min-Sum Splitting
algorithm to accelerated multi-step first order methods in convex optimization. In particular, we show
that a proper choice of the splitting parameters recovers the same matrix that support the evolution
of shift-register methods used in numerical analysis for linear solvers, and, as a consequence, we
recover the same accelerated rate of convergence for consensus [45, 4, 24].

To summarize, the main contributions of this paper are:

1. First connection of Min-Sum schemes with lifted Markov chains techniques and multi-step
methods in convex optimization.

2. First proof of how the directionality embedded in Belief Propagation protocols can be tuned
and exploited to accelerate the convergence rate towards the problem solution.

3. First analysis of convergence rates for Min-Sum Splitting. New proof technique based on
the introduction of an auxiliary process to track the evolution of the algorithm on the nodes.

4. Design of a Min-Sum protocol for the consensus problem that achieves better convergence
rates than the ones established (and conjectured) for the Min-Sum method in [27].

Our results motivate further studies to generalize the acceleration due to splittings to other problems.

The paper is organized as follows. In Section 2 we introduce the Min-Sum Splitting algorithm in
its general form. In Section 3 we describe the consensus problem and review the classical diffusive
algorithms. In Section 4 we review the main accelerated methods that have been proposed in the
literature. In Section 5 we specialize the Min-Sum Splitting algorithm to the consensus problem, and
show that a proper parametrization yields a linear exchange of messages supported on the directed
edges of the graph. In Section 6 we derive the auxiliary message-passing algorithm that allows us to
track the evolution of the Min-Sum Splitting algorithm via a linear process with memory supported
on the nodes of the graph. In Section 7 we state Theorem 1, which shows that a proper choice of the
tuning parameters recovers the rates of shift-registers. Proofs are given in the supplementary material.

2 The Min-Sum Splitting algorithm

The Min-Sum algorithm is a distributed routine to optimize a cost function that is the sum of
components supported on a given graph structure. Given a simple graph G = (V,E) with n := |V |
vertices and m := |E| edges, let us assume that we are given a set of functions φv : R→ R ∪ {∞},
for each v ∈ V , and φvw = φwv : R × R → R ∪ {∞}, for each {v, w} ∈ E, and that we want to
solve the following problem over the decision variables x = (xv)v∈V ∈ RV :

minimize
∑
v∈V

φv(xv) +
∑

{v,w}∈E

φvw(xv, xw). (1)

The Min-Sum algorithm describes an iterative exchange of messages—which are functions of the
decision variables—associated to each directed edge in G. Let E := {(v, w) ∈ V ×V : {v, w} ∈ E}
be the set of directed edges associated to the undirected edges in E (each edge in E corresponds
to two edges in E). In this work we consider the synchronous implementation of the Min-Sum
algorithm where at any given time step s, each directed edge (v, w) ∈ E supports two messages,
ξ̂svw, µ̂

s
vw : R→ R ∪ {∞}. Messages are computed iteratively. Given an initial choice of messages

µ̂0 = (µ̂0
vw)(v,w)∈E , the Min-Sum scheme that we investigate in this paper is given in Algorithm 1.

Henceforth, for each v ∈ V , let N (v) := {w ∈ V : {v, w} ∈ E} denote the neighbors of node v.

The formulation of the Min-Sum scheme given in Algorithm 1, which we refer to as Min-Sum
Splitting, was introduced in [34]. This formulation admits as tuning parameters the real number
δ ∈ R and the symmetric matrix Γ = (Γvw)v,w∈V ∈ RV×V . Without loss of generality, we
assume that the sparsity of Γ respects the structure of the graph G, in the sense that if {v, w} 6∈ E
then Γvw = 0 (note that Algorithm 1 only involves summations with respect to nearest neighbors
in the graph). The choice of δ = 1 and Γ = A, where A is the adjacency matrix defined as
Avw := 1 if {v, w} ∈ E and Avw := 0 otherwise, yields the ordinary Min-Sum algorithm. For
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Algorithm 1: Min-Sum Splitting

Input: Messages µ̂0 = (µ̂0
vw)(v,w)∈E ; parameters δ ∈ R and Γ ∈ RV×V symmetric; time t ≥ 1.

for s ∈ {1, . . . , t} do
ξ̂swv = φv/δ − µ̂s−1

wv +
∑
z∈N (v) Γzvµ̂

s−1
zv , (w, v) ∈ E ;

µ̂swv = minz∈R{φvw( · , z)/Γvw + (δ − 1)ξ̂swv + δξ̂svw(z)}, (w, v) ∈ E ;
µtv = φv + δ

∑
w∈N (v) Γwvµ̂

t
wv, v ∈ V ;

Output: xtv = arg minz∈R µ
t
v(z), v ∈ V .

an arbitrary choice of strictly positive integer parameters, Algorithm 1 can be seen to correspond
to the ordinary Min-Sum algorithm applied to a new formulation of the original problem, where
an equivalent objective function is obtained from the original one in (1) by splitting each term
φvw into Γvw ∈ N \ {0} terms, and each term φv into δ ∈ N \ {0} terms. Namely, minimize∑
v∈V

∑δ
k=1 φ

k
v(xv) +

∑
{v,w}∈E

∑Γvw

k=1 φ
k
vw(xv, xw), with φkv := φv/δ and φkvw := φvw/Γvw.1

Hence the reason for the name “splitting” algorithm. Despite this interpretation, Algorithm 1 is
defined for any real choice of parameters δ and Γ.

In this paper we investigate the convergence behavior of the Min-Sum Splitting algorithm for some
choices of δ and Γ, in the case of the consensus problem that we define in the next section.

3 The consensus problem and standard diffusive algorithms

Given a simple graph G = (V,E) with n := |V | nodes, for each v ∈ V let φv : R→ R ∪ {∞} be a
given function. The consensus problem is defined as follows:

minimize
∑
v∈V

φv(xv) subject to xv = xw, {v, w} ∈ E. (2)

We interpret G as a communication graph where each node represents an agent, and each edge
represent a communication channel between neighbor agents. Each agent v is given the function φv ,
and agents collaborate by iteratively exchanging information with their neighbors in G with the goal
to eventually arrive to the solution of problem (2). The consensus problem amounts to designing
distributed algorithms to solve problem (2) that respect the communication constraints encoded by G.

A classical setting investigated in the literature is the least-square case yielding the network averaging
problem, where for a given b ∈ RV we have2 φv(z) := 1

2z
2 − bvz and the solution of problem

(2) is b̄ := 1
n

∑
v∈V bv. In this setup, each agent v ∈ V is given a number bv, and agents want

to exchange information with their neighbors according to a protocol that allows each of them to
eventually reach consensus on the average b̄ across the entire network. Classical algorithms to
solve this problem involve a linear exchange of information of the form xt = Wxt−1 with x0 = b,
for a given matrix W ∈ RV×V that respects the topology of the graph G (i.e., Wvw 6= 0 only
if {v, w} ∈ E or v = w), so that W t → 11T /n for t → ∞, where 1 is the all ones vector.
This linear iteration allows for a distributed exchange of information among agents, as at any
iteration each agent v ∈ V only receives information from his/her neighbors N (v) via the update:
xtv = Wvvx

t−1
v +

∑
w∈N (v)Wvwx

t−1
w . The original literature on this problem investigates the case

where the matrix W has non-negative coefficients and represents the transition matrix of a random
walk on the nodes of the graph G, so that Wvw is interpreted as the probability that a random walk at
node v visits node w in the next time step. A popular choice is given by the Metropolis-Hastings
method [37], which involved the doubly-stochastic matrix WMH defined as WMH

vw := 1/(2dmax) if
{v, w} ∈ E, WMH

vw := 1− dv/(2dmax) if w = v, and WMH
vw := 0 otherwise, where dv := |N (v)|

is the degree of node v, and dmax := maxv∈V dv is the maximum degree of the graph G.

1As mentioned in [34], one can also consider a more general formulation of the splitting algorithm with
δ → (δv)v∈V ∈ R (possibly also with time-varying parameters). The current choice of the algorithm is
motivated by the fact that in the present case the output of the algorithm can be tracked by analyzing a linear
system on the nodes of the graph, as we will show in Section 5.

2In the literature, the classical choice is φv(z) :=
1
2

∑
v∈V (z − bv)2, which yields the same results as the

quadratic function that we define in the main text, as constant terms in the objective function do not alter the
optimal point of the problem but only the optimal value of the objective function.

4



In [44], necessary and sufficient conditions are given for a generic matrixW to satisfyW t → 11T /n,
namely, 1TW = 1T , W1 = 1, and ρ(W − 11T /n) < 1, where ρ(M) denotes the spectral radius
of a given matrix M . The authors show that the problem of choosing the optimal symmetric matrix
W that minimizes ρ(W − 11T /n) = ‖W − 11T /n‖— where ‖M‖ denotes the spectral norm of a
matrix M that coincides with ρ(M) if M is symmetric — is a convex problem and it can be cast as a
semi-definite program. Typically, the optimal matrix involves negative coefficients, hence departing
from the random walk interpretation. However, even the optimal choice of symmetric matrix is shown
to yield a diffusive rate of convergence, which is already attained by the matrix WMH [7]. This rate
corresponds to the speed of convergence to stationarity achieved by the diffusion random walk, defined
as the Markov chain with transition matrix diag(d)−1A, where diag(d) ∈ RV×V is the degree matrix,
i.e., diagonal with diag(d)vv := dv, and A ∈ RV×V is the adjacency matrix, i.e., symmetric with
Avw := 1 if {v, w} ∈ E, and Avw := 0 otherwise. For instance, the condition ‖W − 11T /n‖t ≤ ε,
where ‖ · ‖ is the `2 norm, yields a convergence time that scales like t ∼ Θ(D2 log(1/ε)) in cycle
graphs and tori [33], where D is the graph diameter. The authors in [7] established that for a class
of graphs with geometry (polynomial growth or finite doubling dimension) the mixing time of any
reversible Markov chain scales at least like D2, and it is achieved by Metropolis-Hastings [37].

4 Accelerated algorithms

To overcome the diffusive behavior typical of classical consensus algorithms, two main types of
approaches have been investigated in the literature, which seem to have been developed independently.

The first approach involves the construction of a lifted graph Ĝ = (V̂ , Ê) and of a linear system
supported on the nodes of it, of the form x̂t = Ŵ x̂t−1, where Ŵ ∈ RV̂×V̂ is the transition matrix
of a non-reversible Markov chain on the nodes of Ĝ. This approach has its origins in the work of
[8] and [5], where it was observed for the first time that certain non-reversible Markov chains on
properly-constructed lifted graphs yield better mixing times than reversible chains on the original
graphs. For some simple graph topologies, such as cycle graphs and two-dimensional grids, the
construction of the optimal lifted graphs is well-understood already from the works in [8, 5]. A general
theory of lifting in the context of Gossip algorithms has been investigated in [18, 37]. However, this
construction incurs additional overhead, which yield non-optimal computational complexity, even for
cycle graphs and two-dimensional grids. Typically, lifted random walks on arbitrary graph topologies
are constructed on a one-by-one case, exploiting the specifics of the graph at hand. This is the case,
for instance, for random geometric graphs [22, 23]. The key property that allows non-reversible lifted
Markov chains to achieve subdiffusive rates is the introduction of a directionality in the process to
break the diffusive nature of reversible chains. The strength of the directionality depends on global
properties of the original graph, such as the number of nodes [8, 5] or the diameter [37]. See Figure 1.

1/2 1/2

(a)

1−1/n

1/n

1−1/n

1/n

(b)

1

1

(c)

≈ 1−1/n

≈−1/n

(d)

Figure 1: (a) Symmetric Markov chain W on the nodes of the ring graph G. (b) Non-reversible
Markov chain Ŵ on the nodes of the lifted graph Ĝ [8]. (c) Ordinary Min-Sum algorithm on the
directed edges E associated to G (i.e., K̂(δ,Γ), Algorithm 2, with δ = 1 and Γ = A, where A is
the adjacency matrix of G). (d) Min-Sum Splitting K̂(δ,Γ), Algorithm 2, with δ = 1, Γ = γW ,
γ = 2/(1 +

√
1− ρ2

W ) as in Theorem 1. Here, ρW is Θ(1− 1/n2) and γ ≈ 2(1− 1/n) for n large.
The matrix K̂(δ,Γ) has negative entries, departing from the Markov chain interpretation. This is also
the case for the optimal tuning in classical consensus schemes [44] and for the ADMM lifting in [12].

The second approach involves designing linear updates that are supported on the original graph G and
keep track of a longer history of previous iterates. This approach relies on the fact that the original
consensus update xt = Wxt−1 can be interpreted as a primal-dual gradient ascent method to solve
problem (2) with a quadratic objective function [32]. This allows the implementation of accelerated

5



gradient methods. To the best of our knowledge, this idea was first introduced in [14], and since then it
has been investigated in many other papers. We refer to [13, 24], and references in there, for a review
and comparison of multi-step accelerated methods for consensus. The simplest multi-step extension of
gradient methods is Polyak’s “heavy ball,” which involves adding a “momentum” term to the standard
update and yields a primal iterate of the form xt = Wxt−1 + γ(xt−1 − xt−2). Another popular
multi-step method involves Nesterov’s acceleration, and yields xt = (1 + γ)Wxt−1 − γWxt−2.
Aligned with the idea of adding a momentum term is the idea of adding a shift register term, which
yields xt = (1 + γ)Wxt−1 − γxt−2. For our purposes, we note that these methods can be written as(

xt

xt−1

)
= K

(
xt−1

xt−2

)
, (3)

for a certain matrix K ∈ R2n×2n. As in the case of lifted Markov chains techniques, also multi-step
methods are able to achieve accelerated rates by exploiting some form of global information: the
choice of the parameter γ that yields subdiffusive rates depends on the eigenvalues of W .
Remark 1. Beyond lifted Markov chains techniques and accelerated first order methods, many other
algorithms have been proposed to solve the consensus problem. The literature is vast. As we focus on
Min-Sum schemes, an exhaustive literature review on consensus is beyond the scope of our work. Of
particular interest for our results is the distributed ADMM approach [3, 43, 38]. Recently in [12],
for a class of unconstrained problems with quadratic objective functions, it has been shown that
message-passing ADMM schemes can be interpreted as lifting of gradient descent techniques. This
prompts for further investigation to connect Min-Sum, ADMM, and accelerated first order methods.

In the next two sections we show that Min-Sum Splitting bears similarities with both types of
accelerated methods described above. On the one hand, in Section 5 we show that the estimates xtv’s
of Algorithm 1 applied to the network averaging problem can be interpreted as the result of a linear
process supported on a lifted space, i.e., the space E of directed edges associated to the undirected
edges of G. On the other hand, in Section 6 we show that the estimates xtv’s can be seen as the result
of a linear multi-step process supported on the nodes of G, which can be written as in (3). Later on,
in Section 7 and Section 8, we will see that the similarities just described go beyond the structure
of the processes, and they extend to the acceleration mechanism itself. In particular, the choice of
splitting parameters that yields subdiffusive convergence rates, matching the asymptotic rates of shift
register methods, is also shown to depend on global information about G.

5 Min-Sum Splitting for consensus

We apply Min-Sum Splitting to solve network averaging. We show that in this case the message-
passing protocol is a linear exchange of parameters associated to the directed edges in E .

Given δ ∈ R and Γ ∈ RV×V symmetric, let ĥ(δ) ∈ RE be the vector defined as ĥ(δ)wv :=
bw + (1− 1/δ)bv , and let K̂(δ,Γ) ∈ RE×E be matrix defined as

K̂(δ,Γ)wv,zu :=



δΓzw if u = w, z ∈ N (w) \ {v},
δ(Γvw − 1) if u = w, z = v,

(δ − 1)Γzv if u = v, z ∈ N (v) \ {w},
(δ − 1)(Γwv − 1) if u = v, z = w,

0 otherwise.

(4)

Consider Algorithm 2 with initial conditions R̂0 = (R̂0
vw)(v,w)∈E ∈ RE , r̂0 = (r̂0

vw)(v,w)∈E ∈ RE .

Algorithm 2: Min-Sum Splitting, consensus problem, quadratic case

Input: R̂0, r̂0 ∈ RE ; δ ∈ R, Γ ∈ RV×V symmetric; K̂(δ,Γ) defined in (5); t ≥ 1.
for s ∈ {1, . . . , t} do

R̂s = (2− 1/δ)1 + K̂(δ,Γ)R̂s−1; r̂s = ĥ(δ) + K̂(δ,Γ)r̂s−1;

Output: xtv :=
bv+δ

∑
w∈N(v) Γwv r̂

t
wv

1+δ
∑

w∈N(v) ΓwvR̂t
wv

, v ∈ V .
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Proposition 1. Let δ ∈ R and Γ ∈ RV×V symmetric be given. Consider Algorithm 1 applied to
problem (2) with φv(z) := 1

2z
2−bvz and with quadratic initial messages: µ̂0

vw(z) = 1
2 R̂

0
vwz

2−r̂0
vwz,

for some R̂0
vw > 0 and r̂0

vw ∈ R. Then, the messages will remain quadratic, i.e., µ̂svw(z) = 1
2 R̂

s
vwz

2−
r̂svwz for any s ≥ 1, and the parameters evolve as in Algorithm 2. If 1 + δ

∑
w∈N (v) ΓwvR̂

t
wv > 0

for any v ∈ V and t ≥ 1, then the output of Algorithm 2 coincides with the output of Algorithm 1.

6 Auxiliary message-passing scheme

We show that the output of Algorithm 2 can be tracked by a new message-passing scheme that
corresponds to a multi-step linear exchange of parameters associated to the nodes of G. This auxiliary
algorithm represents the main tool to establish convergence rates for the Min-Sum Splitting protocol,
i.e., Theorem 1 below. The intuition behind the auxiliary process is that while Algorithm 1 (hence,
Algorithm 2) involves an exchange of messages supported on the directed edges E , the computation
of the estimates xtv’s only involve the belief functions µtv’s, which are supported on the nodes of G.
Due to the simple nature of the pairwise equality constraints in the consensus problem, in the present
case a reparametrization allows to track the output of Min-Sum via an algorithm that directly updates
the belief functions on the nodes of the graph, which yields Algorithm 3.

Given δ ∈ R and Γ ∈ Rn×n symmetric, define the matrix K(δ,Γ) ∈ R2n×2n as

K(δ,Γ) :=

(
(1− δ)I − (1− δ)diag(Γ1) + δΓ δI
δI − δdiag(Γ1) + (1− δ)Γ (1− δ)I

)
, (5)

where I ∈ RV×V is the identity matrix and diag(Γ1) ∈ RV×V is diagonal with (diag(Γ1))vv =
(Γ1)v =

∑
w∈N (v) Γvw. Consider Algorithm 3 with initial conditions R0, r0, Q0, q0 ∈ RV .

Algorithm 3: Auxiliary message-passing

Input: R0, r0, Q0, q0 ∈ RV ; δ ∈ R, Γ ∈ RV×V symmetric; K(δ,Γ) defined in (5); t ≥ 1.
for s ∈ {1, . . . , t} do(

rs

qs

)
= K(δ,Γ)

(
rs−1

qs−1

)
;

(
Rs

Qs

)
= K(δ,Γ)

(
Rs−1

Qs−1

)
;

Output: xtv := rtv/R
t
v, v ∈ V .

Proposition 2. Let δ ∈ R and Γ ∈ RV×V symmetric be given. The output of Algorithm 2 with initial
conditions R̂0, r̂0 ∈ RE is the output of Algorithm 3 with R0

v := 1 + δ
∑
w∈N (v) ΓwvR̂

0
wv, Q0

v :=
1− δ

∑
w∈N (v) ΓwvR̂

0
wv , r0

v := bv + δ
∑
w∈N (v) Γwv r̂

0
wv , and q0

v := bv − δ
∑
w∈N (v) Γvw r̂

0
vw.

Proposition 2 shows that upon proper initialization, the outputs of Algorithm 2 and Algorithm 3
are equivalent. Hence, Algorithm 3 represents a tool to investigate the convergence behavior of the
Min-Sum Splitting algorithm. Analytically, the advantage of the formulation given in Algorithm 3
over the one given in Algorithm 2 is that the former involves two coupled systems of n equations
whose convergence behavior can explicitly be linked to the spectral properties of the n× n matrix Γ,
as we will see in Theorem 1 below. On the contrary, the linear system of 2m equations in Algorithm
2 does not seem to exhibit an immediate link to the spectral properties of Γ. In this respect, we note
that the previous paper that investigated Min-Sum schemes for consensus, i.e., [27], characterized the
convergence rate of the algorithm under consideration — albeit only in the case of d-regular graphs,
and upon initializing the quadratic terms to the fix point — in terms of the spectral gap of a matrix
that controls a linear system of 2m equations. However, the authors only list results on the behavior
of this spectral gap in the case of cycle graphs, i.e., d = 2, and present a conjecture for 2d-tori.

7 Accelerated convergence rates for Min-Sum Splitting

We investigate the convergence behavior of the Min-Sum Splitting algorithm to solve problem (2)
with quadratic objective functions. Henceforth, without loss of generality, let b ∈ RV be given with
0 < bv < 1 for each v ∈ V , and let φv(z) := 1

2z
2 − bvz. Define b̄ :=

∑
v∈V bv/n.

Recall from [27] that the ordinary Min-Sum algorithm (i.e., Algorithm 2 with δ = 1 and Γ = A,
where A is the adjacency matrix of the graph G) does not converge if the graph G has a cycle.
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We now show that a proper choice of the tuning parameters allows Min-Sum Splitting to converge
to the problem solution in a subdiffusive way. The proof of this result, which is contained in the
supplementary material, relies on the use of the auxiliary method defined in Algorithm 3 to track the
evolution of the Min-Sum Splitting scheme. Here, recall that ‖x‖ denotes the `2 norm of a given
vector x, ‖M‖ denotes the `2 matrix norm of the given matrix M , and ρ(M) its spectral radius.
Theorem 1. Let W ∈ RV×V be a symmetric matrix with W1 = 1 and ρW := ρ(W − 11T /n) < 1.
Let δ = 1 and Γ = γW , with γ = 2/(1 +

√
1− ρ2

W ). Let xt be the output at time t of Algorithm 2
with initial conditions R̂0 = r̂0 = 0. Define

K :=

(
γW I

(1− γ)I 0

)
, K∞ :=

1

(2− γ)n

(
11T 11T

(1− γ)11T (1− γ)11T

)
. (6)

Then, for any v ∈ V we have limt→∞ xtv = b̄ and ‖xt − b̄1‖ ≤ 4
√

2n
2−γ ‖(K −K

∞)t‖.
The asymptotic rate of convergence is given by

ρK := ρ(K −K∞) = limt→∞ ‖(K −K∞)t‖1/t =
√

(1−
√

1−ρ2
W )/(1+

√
1−ρ2

W ) < ρW < 1,

which satisfies 1
2

√
1/(1− ρW ) ≤ 1/(1− ρK) ≤

√
1/(1− ρW ).

Theorem 1 shows that the choice of splitting parameters δ = 1 and Γ = γW , where γ and W
are defined as in the statement of the theorem, allows the Min-Sum Splitting scheme to achieve
the asymptotic rate of convergence that is given by the second largest eigenvalue in magnitude of
the matrix K defined in (6), i.e., the quantity ρK . The matrix K is the same matrix that describes
shift-register methods for consensus [45, 4, 24]. In fact, the proof of Theorem 1 relies on the spectral
analysis previously established for shift-registers, which can be traced back to [15]. See also [13, 24].

Following [27], let us consider the absolute measure of error given by ‖xt − b̄1‖/
√
n (recall that we

assume 0 < bv < 1 so that ‖b‖ ≤
√
n). From Theorem 1 it follows that, asymptotically, we have

‖xt − b̄1‖/
√
n . 4

√
2ρtK/(2− γ). If we define the asymptotic convergence time as the minimum

time t so that, asymptotically, ‖xt− b̄1‖/
√
n . ε, then the Min-Sum Splitting scheme investigated in

Theorem 1 has an asymptotic convergence time that isO(1/(1−ρK) log{[1/(1−ρK)]/ε}). Given the
last bound in Theorem 1, this result achieves (modulo logarithmic terms) a square-root improvement
over the convergence time of diffusive methods, which scale like Θ(1/(1− ρW ) log 1/ε). For cycle
graphs and, more generally, for higher-dimensional tori — where 1/(1 − ρW ) is Θ(D2) so that
1/(1−ρK) is Θ(D) [33, 1] — the convergence time isO(D logD/ε), whereD is the graph diameter.

As prescribed by Theorem 1, the choice of γ that makes the Min-Sum scheme achieve a subdiffusive
rate depends on global properties of the graph G. Namely, γ depends on the quantity ρW , the second
largest eigenvalue in magnitude of the matrix W . This fact connects the acceleration mechanism
induced by splitting in the Min-Sum scheme to the acceleration mechanism of lifted Markov chains
techniques (see Figure 1) and multi-step first order methods, as described in Section 4.

It remains to be investigated how choices of splitting parameters different than the ones investigated
in Theorem 1 affect the convergence behavior of the Min-Sum Splitting algorithm.

8 Conclusions

The Min-Sum Splitting algorithm has been previously observed to yield convergence in settings
where the ordinary Min-Sum protocol does not converge [35]. In this paper we proved that the
introduction of splitting parameters is not only fundamental to guarantee the convergence of the
Min-Sum scheme applied to the consensus problem, but that proper tuning of these parameters
yields accelerated convergence rates. As prescribed by Theorem 1, the choice of splitting parameters
that yields subdiffusive rates involves global type of information, via the spectral gap of a matrix
associated to the original graph (see the choice of γ in Theorem 1). The acceleration mechanism
exploited by Min-Sum Splitting is analogous to the acceleration mechanism exploited by lifted
Markov chain techniques — where the transition matrix of the lifted random walks is typically chosen
to depend on the total number of nodes in the graph [8, 5] or on its diameter [37] (global pieces of
information) — and to the acceleration mechanism exploited by multi-step gradient methods — where
the momentum/shift-register term is chosen as a function of the eigenvalues of a matrix supported on
the original graph [13] (again, a global information). Prior to our results, this connection seems to
have not been established in the literature. Our findings motivate further studies to generalize the
acceleration due to splittings to other problem instances, beyond consensus.
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