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Abstract

This supplementary article contains proofs of the main results of our paper
“On clustering network-valued data”. Some further details on our experi-
mental results are also provided.

A Proofs and related discussions

A.1 NCGE

Proposition A.1. We have

‖D̂ −D‖2
F ≤ 4T

∑
i

‖P̂i − Pi‖2
F .

Proof. The proof is straightforward. By triangle inequality we have

|D̂ij −Dij | =
∣∣∣‖P̂i − P̂j‖F − ‖Pi − Pj‖F ∣∣∣ ≤ ‖P̂i − Pi‖F + ‖P̂j − Pj‖F .

Therefore
‖D̂ −D‖2

F =
∑
i,j

|D̂ij −Dij |2 ≤
∑
i,j

(‖P̂i − Pi‖F + ‖P̂j − Pj‖F )2

≤ 2
∑
i,j

(‖P̂i − Pi‖2
F + ‖P̂j − Pj‖2

F ) = 4T
∑
i

‖P̂i − Pi‖2
F .

Proposition A.2 (Davis-Kahan). Suppose D has rank K. Let V (resp. V̂ ) be the T ×K
matrix whose columns correspond to the leading K eigenvectors (corresponding to the K
largest-in-magnitude eigenvalues) of D (resp. D̂). Let γ = γ(K,n, T ) be the K-th smallest
eigenvalue value of D in magnitude. Then there exists an orthogonal matrix Ô such that

‖V̂ Ô − V ‖F ≤
4‖D̂ −D‖F

γ
.
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Proof. This follows from a slight variant of Davis-Kahan theorem that appears in [5]. Since
D is a Euclidean distance matrix of rank K, its eigenvalues must be of the form

λ1 ≥ · · · ≥ λu > 0 = · · · = 0 > λv ≥ · · · ≥ λn,

with u + n − v + 1 = K. Applying Theorem 2 of [5] with r = 1, s = u we get that if V+
denotes matrix whose columns are the eigenvectors of D corresponding to λ1, . . . , λu and V̂+
denotes the corresponding matrix for D̂, then there exists an orthogonal matrix Ô+ such
that

‖V̂+Ô+ − V+‖F ≤
2
√

2‖D̂ −D‖F
λu

.

Similarly, considering the eigenvalues λv, . . . , λn, and applying Theorem 2 of [5] with r = v
and s = n we get that

‖V̂−Ô− − V−‖F ≤
2
√

2‖D̂ −D‖F
−λv

,

where V−, V̂− and Ô− are the relevant matrices. Set V = [V+ : V−], V̂ = [V̂+ : V̂−] and

Ô =
(
Ô+ 0
0 Ô−

)
. Then note that the columns of V are eigenvectors of D corresponding to

its K largest-in-magnitude eigenvalues, that O is orthogonal and also that γ = min{λu,−λv}.
Thus

‖V̂ Ô − V ‖2
F = ‖V̂+Ô+ − V+‖2

F + ‖V̂−Ô− − V−‖2
F

≤ 8‖D̂ −D‖2
F

λ2
u

+ 8‖D̂ −D‖2
F

λ2
v

≤ 16‖D̂ −D‖2
F

γ2 ,

which is the desired bound.

Proof of Theorem 4.1. Follows immediately from Propositions A.1-A.2.

Proposition A.3. Suppose there are K underlying graphons, as in the graphon mixture
model (3), and assume that in our sample there is at least one representative from each of
these. Then D has the form ZDZT where the ith row of the binary matrix Z has a single
one at position l if network Ai is sampled from Πl, and D is the K ×K matrix of distances
between the Πl. As a consequence D is of rank K. Then there exists a T ×K matrix V
whose columns are eigenvectors of D corresponding to the K nonzero eigenvalues, such that

Vi? = Vj? ⇔ Zi? = Zj?,

so that knowing V , one can recover the clusters perfectly.

Proof. The proof is standard. Note that ZTZ is positive definite. Consider the matrix
(ZTZ)1/2B(ZTZ)1/2 and let U∆UT be its spectral decomposition. Then the matrix V =
Z(ZTZ)−1/2U has the required properties.

USVT: Theorem 2.7 of [3] tells us that if the underlying graphons are Lipschitz then
E‖P̂i−Pi‖

2
F

n2 ≤ Cin−1/3, where the constant Ci depends only on the Lipschitz constant of the
underlying graphon fi. So, the condition (5) of Corollary 4.2 is satisfied with α = 1/3, β = 0.
Neighborhood smoothing: The authors of [6] work with a class Fδ,L of piecewise Lipschitz
graphons, see Definition 2.1 of their paper. The proof of Theorem 2.2 of [6] reveals that if
fi ∈ Fδi,Li , then there exist a global constant C and constants Ci ≡ Ci(Li), such that for all
n ≥ Ni ≡ Ni(δi), with probability at least 1− n−C , we have ‖P̂i−Pi‖

2
F

n2 ≤ Ci
√

logn
n . Thus the

condition (5) of Corollary 4.2 is satisfied with α = β = 1/2, for all n ≥ NT := max1≤i≤T Ni.
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Remark A.1. In the case of the graphon mixture model (3), the constants CT and NT will
be free of T as there are only K (fixed) underlying graphons. Also, if each fi ∈ Fδ,Li , then
NT will not depend on T and if the Lipschitz constants are the same for each graphon, then
CT will not depend on T .
Remark A.2. There are combinatorial algorithms that can achieve the minimax rate,
n−1 logn, of graphon estimation [4]. Albeit impractical, these algorithms can be used to
achieve the optimal bound of 4CTn−1 logn in Proposition A.1.
Remark A.3. We do not expect CL-NAIVE to perform well simply because A is not a good
estimate of P in Frobenius norm in general. Indeed,

1
n2E‖A− P‖

2
F = 1

n2

∑
i,j

E(Aij − Pij)2 = 1
n2

∑
i 6=j

Pij(1− Pij) + 1
n2

∑
i

P 2
ii ≤

1
4(1 + o(1)),

with equality, for example, when each Pij = 1
2 + o(1).

A.2 NCLM

Note that trace(Ak) counts the number of closed k-walks (or directed circuits) in the graph
corresponding to A. Figure 1 shows the circuits corresponding to k = 4.

Figure 1: Circuits related to m4(A).

(A) (B) (C) (D)

Proposition A.4 (Lipschitz continuity). Suppose A and A+ U are matrices with entries
in [−1, 1], then

1. |trace((A+ U)k+)− trace(Ak+)| ≤ knk−1‖U‖F ,

2. |trace((A+ U)k−)− trace(Ak−)| ≤ knk−1‖U‖F ,

i.e. the map φ+,k : Sn×n[−1,1] → [0,∞) defined on the space Sn×n[−1,1] of symmetric matrices with
entries in [−1, 1] by φ+,k(A) = trace(Ak+) is Lipschitz with constant knk−1. Note that this
implies that the map φ̃+,k : [0, 1]n(n−1)/2 → [0,∞) defined by

φ̃+,k((aij)1≤i<j≤n) = trace(Ak+),

where Aij = Aji = aij, for 1 ≤ i < j ≤ n and Aii = 0, is Lipschitz with constant
√

2knk−1.
The same statements hold for analogously defined φ−,k and φ̃−,k.

Proof. Let λ1 ≥ · · · ≥ λn be the ordered eigenvalues of A+U , whereas ν1 ≥ · · · ≥ νn be the
ordered eigenvalues of A. Let σ1 ≥ · · · ≥ σn be the ordered eigenvalues of U . First note that
since these matrices have entries in [−1, 1], their Frobenius norm is at most n. Thus all their
eigenvalues are in [−n, n].

We now compute the derivative of traceAk with respect to a particular variable Aij . We
claim that

d

dAij
traceAk = 2kAk−1

ij .

To do this we shall work with the linear map interpretation of derivative (in this case
multiplication by a number). First consider the map f : Rn×n → Rn×n defined as f(A) = Ak.
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Then consider the map g : Rn×n → R defined by g(A) = trace(A). Finally consider the
map h : R→ Rn×n defined as h(x) = A+ (x−Aij)eieTj + (x−Aij)ejeTi . Now we view the
function traceAk for A symmetric as a function of Aij as g ◦ f ◦ h(Aij). Therefore, by chain
rule

d

dAij
traceAk(u) = Df◦h(Aij)g ◦Dh(Aij)f ◦DAijh(u).

Now g is a linear function. Therefore DAg = g. On the other hand, it is easy
to see that DAijh(u) = ueie

T
j + ueje

T
i . Finally f can be viewed as the composi-

tion of two maps α(A1, . . . , Ak) = A1A2 · · ·Ak and β(A) = (A, . . . , A). Notice that
D(A1,...,Ak)α(H1, . . . ,Hk) = H1A2 · · ·Ak +A1H2 · · ·Ak + . . .+A1A2 · · ·Hk), and DAβ = β.
Thus
DAf(H) = Dβ(A)α ◦DAβ(H) = Dβ(A)α(H, . . . ,H) = HAk−1 + · · ·+HAk−1 = kHAk−1.

Therefore
d

dAij
traceAk(u) = g ◦Dh(Aij)f(ueieTj + ueje

T
i ).

Noting that h(Aij) = A we get
d

dAij
traceAk(u) = g(k(ueieTj + ueje

T
i )Ak−1) = 2kAk−1

ij u.

Therefore the map φ̃k : Rn(n−1)/2 → R defined by φ̃k((Aij)i<j) ≡ φ̃k(A) = trace(Ak) has
gradient 2k(Ak−1

ij )i<j .

Therefore
|φ̃k(A)− φ̃k(B)| ≤ ‖∇φ̃k‖2‖(Aij)− (Bij)‖2.

But ‖∇φ̃k‖2 =
√

2k‖Ak−1‖F ≤
√

2knk−1 (by repeated application of the inequality
‖XY ‖F ≤ ‖X‖F ‖Y ‖op and noting that ‖A‖F ≤ n), and ‖(Aij)− (Bij)‖2 = ‖A−B‖F /

√
2.

Therefore
|φ̃k(A)− φ̃k(B)| ≤ knk−1‖A−B‖F .

Also as before
|trace(A+ U)k+ − traceAk+| = |φ̃k((A+ U)+)− φ̃k(A+)|

≤ knk−1‖(A+ U)+ −A+‖F
≤ knk−1‖U‖F ,

where in the last step we have used the fact that A 7→ A+ is projection onto the PSD cone
and hence non-expansive (i.e. 1-Lipschitz). Part 2. may now be obtained easily by noting
that A− = (−A)+.

Proposition A.5 (Convexity). The functions φ±,k and φ̃±,k are convex on their respective
domains.

Proof. We recall the standard result that if a continuous map t 7→ f(t) is convex, so is
A 7→ tracef(A) on the space of Hermitian matrices, and it is strictly convex if f is strictly
convex (See, for example, Theorem 2.10 of [2]). To use this we note that x 7→ xk+ is continuous
and convex, and so is x 7→ xk−. This establishes convexity of φ±,k. Convexity of φ̃±,k is an
immediate consequence.

Proof of Theorem 4.3. The idea is to use Talagrand’s concentration inequality for convex-
Lipschitz functions (cf. [1], Theorem 7.12). First note that for k even, we have

ψk(A) = ψ+,k(A) + ψ−,k(A)
and for k odd

ψk(A) = ψ+,k(A)− ψ−,k(A),
where

ψ±,k(A) = 1√
2knk−1

φ̃±,k(A).
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Viewed as a map from [0, 1]n(n−1)/2 to [0,∞), both ψ±,k are convex, 1-Lipschitz. Therefore,
by Talagrand’s inequality,

P(|ψ±,k(A)−Mψ±,k(A)| > t) ≤ 2 exp(−t2/4),
where Mψ±,k(A) is a median of ψ±,k(A). By Exercise 2.2 of [1], we have

|Mψ±,k(A)− Eψ±,k(A)| ≤ 2
√

2,

which implies that

P(|ψ±,k(A)− Eψ±,k(A)| > t) ≤ 2 exp(−(t− 2
√

2)2/4).

Therefore

P(|ψk(A)− Eψk(A)| > t) ≤ P(|ψ+,k(A)− Eψ+,k(A)| > t/2) + P(|ψ−,k(A)− Eψ−,k(A)| > t/2)
≤ 4 exp(−(t− 4

√
2)2/16),

as desired.

Proposition A.6 (Order of expectation). Let EA = P = ρS, where ρ ∈ (0, 1), mini,j Sij =
Ω(1), and

∑
i,j Sij = n2. Then,

ρk � Emk(A) � ρk−1.

Proof. Note that
trace(Ak) =

∑
i1,i2,...,ik

Ai1i2Ai2i3 · · ·Aiki1 .

Since Aij ’s are Bernoulli random variables, Letting P? := minij Pij and P# := maxPij , we
see that

P `? ≤ EAi1i2Ai2i3 · · ·Aiki1 ≤ P `#,

where 1 ≤ ` ≤ k is the number of distinct sets in among {i1, i2}, {i2, 13}, . . . , {ik, i1}. We call
` the weight of the sequence i1, . . . , ik. We can easily see that the total number of sequences
is bounded by nk, and the number of sequences with weight `, call it N(`; k, n), is bounded
above by n`+1. In fact,

N(k; k, n) = n(n− 1)(n− 2)k−3(n− 3) � nk.

We thus have
k∑
`=1

N(`; k, n)P `? ≤ Etrace(Ak) ≤
k∑
`=1

N(`; k, n)P `#.

This gives us trivial upper and lower bounds (C1, C2 > 0 are absolute constants whose values
are adjusted as necessary)

C1n
kρk ≤ C1n

kP k? ≤ N(k; k, n) ≤ Etrace(Ak) ≤
k−1∑
`=1

n`+1P `# + nkP k#

= n
(nP#)k − (nP#)

nP# − 1 + nkP k#

≤ C2n
kP#

k−1 ≤ C2n
kρk−1.

This completes the proof.

In the following, we will again use C1, C2 > 0 as absolute constants whose values may change
from line to line.
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Proof of Theorem 4.4. First of all, by Proposition A.6 we have
| logEmk(A)| = Θ(k log(1/ρ)),

from which we conclude that ‖ḡJ(A)‖ = Θ(J3/2 log(1/ρ)).
Writing µk = Emk(A), and using Theorem 4.3, we get
P(| logmk(A)− logµk| > t) = P(mk

µk
− 1 > et − 1) + P(mk

µk
− 1 < −(1− e−t))

≤ P(|mk − µk| > (et − 1)µk) + P(|mk − µk| > (1− e−t)µk)

≤ C1e
−C2

n2µ2
k

(et−1)2

k2 + C1e
−C2

n2µ2
k

(1−e−t)2

k2

≤ C1e
−C2

n2ρ2k(et−1)2

k2 + C1e
−C2

n2ρ2k(1−e−t)2

k2 ,

where in the last line we have used Proposition A.6. Using this along with an union bound,
we get

P(‖gJ(A)− ḡJ(A)‖ ≥ t) ≤
J∑
k=2

P(| logmk(A)− logEmk(A)| > t√
J

)

≤
J∑
k=2

C1e
−C2

n2ρ2k(et/
√
J−1)2

k2 + C1e
−C2

n2ρ2k(1−e−t/
√
J )2

k2 .

Choosing t = δJ3/2 log(1/ρ), where δJ log(1/ρ) = Ω(1), we see that et/
√
J − 1 = ρ−δJ − 1 =

Ω(ρ−δJ) and 1 − e−t/
√
J = 1− ρδJ = Ω(1). Also note that ρ2k/k2 ≥ ρ2J/4. Therefore we

have
P(‖gJ(A)− ḡJ(A)‖ ≥ δJ3/2 log(1/ρ)) ≤ J(C1e

−C2n
2ρ2Jρ−2δJ

+ C1e
−C2n

2ρ2J
)

≤ JC1e
−C2n

2ρ2J
,

which completes the proof.

B Addendum to experimental results

Figure 2: Tuning for J in the simulated networks.

B.1 Details of various graph statistics

The algebraic connectivity is the second smallest eigenvalue of the Laplacian. However,
to make this metric free of the size of a graph, we use the second smallest eigenvalue of
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the normalized Laplacian of the largest connected component of a graph. The need for
using the largest connected component is that most real graphs without any preprocessing
have isolated nodes, or small components. The global clustering coefficient measures the
ratio of the number of triangles to the number of connected triplets. In contrast, the local
clustering coefficient computes the average of the ratios of the number of triangles connected
to a node and the number of tripes centered at that node. The distance distribution for h
hops essentially calculates the fraction of all pairs of nodes that are within shortest path or
geodesic distance of h hops. Essentially this metric calculates how far a pair of nodes are in
a graph on average. The Pearson correlation coefficient of a graph measures the assortativity
by computing the correlation coefficient between the degrees of the endpoints of the edges in
the graph. Finally, the rich-club metric calculates the edge density of the subgraph induced
by nodes with degree above a given threshold. For this metric we chose to use the 0.8-th
quantile of the degree sequence of a graph.

B.2 Tuning for J

In Figure 2, we plot the separation (= (λK − λK+1)/λK+1) found in the kernel matrix K
against the value of J used in NCLM in our simulation settings.
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