Supplemental Materials for “Optimal Learning for Multi-pass Stochastic
Gradient Methods”

A Preliminary

A.1 Notation

We first introduce some notations. For ¢ € N, II7, ; (L) = H{:HI(I —niL) fort € [T — 1] and
H% 4+1(L) = I, for any operator L : H — H, where H is a Hilbert space and I denotes the identity

operator on H. E[¢] denotes the expectation of a random variable £. For a given bounded operator L :
L?(H,px) — H, ||L| denotes the operator norm of L, i.e., ||L|| = SUPfer2(H,px ). fll,=1 |1 LS|l m-

We will use the conventional notations on summation and production: Hﬁ:t 41 = 1land Zﬁ:t 41 =0

We next introduce some auxiliary operators. Let S, : H — L?(H, px) be the linear map w —
(w, -} g, which is bounded by  under Assumption (3). Furthermore, we consider the adjoint operator
Sy L?(H, px) — H, the covariance operator 7 : H — H givenby T = S,S,, and the operator
L:L*(H,px) — L*(H,px) given by 8,8 It can be easily proved that S%g = [ 2g(x)dpx (x)
and T = [, (-, x)gadpx(x). The operators 7 and L can be proved to be positive trace class
operators (and hence compact). For any w € H, it is easy to prove the following isometry property
[25]

ISpwllp = VT wl| - (17)
We define the sampling operator Sx : H — R™ by (Sxw); = (w, ;) i, ¢ € [m], where the norm
Il - |lgm in R™ is the Euclidean norm times 1/m. Its adjoint operator S;; : R™ — H, defined by

m

(Siy.w)m = (y, Sxw)rm fory € R™ is thus given by Sjy = = > y;x;. Moreover, we can
define the empirical covariance operator 7y : H — H such that 7x = S;Sx. Obviously,

m

1
Tx = o Z(w%‘ﬁﬁv

i=1
With these notations, (13) and (14) can be rewritten as
pirr = pe — (T e — Sy f), t=1,...,T, (18)

and
I/t+1 :l/t—ﬂt(’];l/t—siy), t= 17...,T, (19)

respectively.

Using the projection theorem, one can prove that
Spfo =S, (20)

Indeed, since fy, is the projection of the regression function f, onto the closer of H,, in L?(H, px),
according to the projection theorem, one has

<f7'[7fp78pw>p:07 VWGH,
which can be written as
<S;fq.[ 7S;fp,w>H =0, Yw e H,
and thus leads to (20).

A.2 Concentration Inequality

We need the following concentration result for Hilbert space valued random variable used in Capon-
netto and De Vito [4] and based on the results in Pinelis and Sakhanenko [17].

Lemma A.1. Let wy, - ,wy, be i.i.d random variables in a Hilbert space with norm || - ||. Suppose
that there are two positive constants B and o2 such that

E[||w; — E[w]||'] < %Z!Bl*202, vl > 2. 1)
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Then for any 0 < ¢ < 1, the following holds with probability at least 1 — 6,

1 & B o 2
— m — E <2 — 4+ —)log-.
m;w [un]}f < (m+\/ﬁ> Og(5
In particular, (21) holds if
lw1|| < B/2 a.s., andIE[||w1H2] < o2 (22)
A.3 Basic Estimates
Lemma A.2. Let € [0,1[, and t € N. Then
t170 t t179
<Y k<
TR ILEA v

Proof. Note that

t t k t t179 -9
Zk*"glJrZ/ ufeduzlJr/u*Gdu:i,
k-1 1 1—-0
k=1 k=2
which leads to the first part of the desired result. Similarly,

k+1 t+1 1-0

1 -1

/ wOdu = / wOdu = M,
K 1 1-90

t

t
NEESS
k=1

k=1""

and by mean value theorem, (¢ 4+ 1)*7% —1 > (1 — )¢t(t +1)=% > (1 — §)t' =9 /2. This proves the
second part of the desired result. The proof is complete. O

Lemma A.3. Let0 € Randt € N. Then

t
D k0 < gmax(700(1 4 logt).
k=1

Proof. Note that

Z k—@ _ Z k—lkl—e < tmax(l—0,0) i k_l,

t t
k=1 =1 k=1

and

t t k
Zk‘lgHZ/ utdu=1+logt.
k=1 k=27 k-1

Lemma A4. Letq € Randt € Nwitht > 3. Then
t—1

1 .
> — ke <2t @l (1 4 logt).
t—k
k=1
Proof. Note that
t—1 t—1 t—1
1 ki=a 1
Iy Sl QU v < pmax(1-g,0) -
Zt—k Z(t—k)k— Z(t—k)k’
k=1 k=1 k=1
and that by Lemma A.3,
t—1 t—1 t—1
1 1 1 1 2 1 2
S R T (R E) = g g S et
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B Bias

In this section, we develop upper bounds for the bias, i.e., ||S,u: — fu Hl% Towards this end, we
introduce the following lemma, whose proof borrows idea from [29, 26].

Lemma B.1. Let L be a compact positive operator on a separable Hilbert space H. Assume that
m||L|| < 1. Then for t € N and any non-negative integer k <t — 1,

¢
umﬂuww<<t<>- 23)
er=k+1 Ui

Proof. Let {o0;} be the sequence of eigenvalues of L. We have

t
Ty (D)L =sup [ (1 —moi)os.
Yol=k+1

Using the basic inequality
1+z<e” forall x > —1, 24)

with ny || L|| < 1, we get

t
1 (L)L) < supexp {_Ui > m} o;
¢ I=k+1
t
< supexp {—Jc Z m} zS.
x>0
= I=k+1
The maximum of the function g(x) = e~“"2¢( with ¢ > 0) over R, is achieved at z,.x = (/c, and
thus
¢ ¢
supe @zt = <> ) (25)
x>0 ec
Using this inequality, one can get the desired result (23). O

With the above lemma and Lemma A.2 from the appendix, we can derive the following result for the
bias.

Proposition B.2. Under Assumption 2, let k> < 1. Then, for any t € N,

¢
n&mﬂ—mms3<f:>- 6)
2 Zj:l nj
In particular, if n; = nt~? for all t € N, with 1) €]0, k2] and 6 € [0, 1], then
ISpe1 = Faullp < RGEn=ct 070, @7)

Proof. The result is essentially proved in [28], see also [19]. For the sake of completeness, we
provide a proof here. Since p;41 is given by (18), introducing with (20),

o1 = pe — e (Tpe — S;f%)' (28)

Thus,

Sp:ut-i-l = Sp,ut - ntSp(TNt - Szf”ﬂ) = Sp,ut - ntL(Sth — [#)- (29)
Subtracting both sides by f7,

Spﬂtﬂ —fu=0U~- nt'c)(‘sp,ut — fu).
Using this equality iteratively, with p; = 0,
Spptrr1 — fu = —115(L) fau.
Taking the L?(H, px )-norm, by Assumption 2,
I1Spre+1 = fallp = T (L) frullp < ITIT(L)LE IR,

By applying Lemma B.1, we get (26). Combining (26) with Lemma A.2, we get (27). The proof is
complete. O
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The following lemma gives upper bounds for the sequence { i }ten in H-norm. It will be used for
the estimation on the sample variance in the next section.

Lemma B.3. Under Assumption 2, the following holds for all t € N:
NIf¢=1/2,
el < R (30)

2)1f ¢ €]0,1/2],

t 3¢
lpeller < £%71 v (Z m) : (31)
k=1

Proof. The proof for the fixed step-size can be found in [19]. Following from (28), we have

per = (L —mT)pe +mS, fau-
Applying this relationship iteratively, and introducing with p; = 0, we get

S annk+1 S fn= anS*HkJrl('C)f?-b

k=1

Therefore, using Assumption 2 and the spectrum theory,

t t
el < ZUkS;H§c+1(£)£C R<R max, 01/2+<anr{§c+1(0)~
k=1 o€10.17] k=1
If ¢ > 1/2, for any o €]0, x?],
gt/te anHkJrl UZﬂkaH o
k=1

where for the last inequality, we used

t

t
ZW;HM => (1= (1= no)} iy (o an+1 =Y Mj(0) =1 —1Ij(0).
k=1 k=1

k=1
Thus,
g llm < R

The case for ¢ < 1/2 is similar to that in [19]. We omit it. The proof is complete. O

C Sample Variance

In this section, we aim to estimate the sample variance, i.e., E[||S,z; — S,v¢|3]. Towards this end,
we need some preliminary analysis. We first introduce the following key inequality, which provides
the hinge idea on estimating E[[| S, — S,v¢2].

Lemma C.1. Forallt € [T], we have

t
8o = Sppavsally < 3w [T (TN (32)
k=1

where

Ni = (T — S3,) — (T = Sty), Wk € [T). (33)

Proof. Since vy and ;4 are given by (19) and (18), respectively,

vigr —pieer = ve— e+ {(Tpe — Syfp) = (Tave — Sxy) }
= (I =T We — pe) + e {(The = Sy fp) = (T — Sxy) }
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which is exactly

Virr — peg1 = (L —neT) (Vs — ) + e Ve
Applying this relationship iteratively, with v; = p; = 0,

t t
Verr — pupr = 5 (T) (1 — ) + anH§c+1(7;<>Nk = Z%H};H(ﬂ)Nk-

k=1 k=1
By (17), we have
t
Spvis1 — Sppittall, = anT%HEH(Tx)Nk ;
k=1 H
which leads to the desired result (32). The proof is complete. O

The above lemma demonstrates that in order to upper bound E[[|S,si; — S,1¢/|2], one may only need
to bound HT% 1T}, (7x) Ny H . A detailed look at this latter term indicates that one may analysis
H

the terms 7 IT} ., (7x) and Ny, separately, since E[N,] = 0 and the properties of the deterministic
sequence {u }x are well developed in Section B.

Lemma C.2. Under Assumptions 2 and 3, let { > 1/2. Then for any fixed \ > 0, with probability
at least 1 — 6y, the following holds for all k € N :

If¢>1/2,
-1 2¢ K 2\/{16.y i
(T 4+ X)"2Ng|lg < 4(Rr* + VM) (mﬁ—’_ T >log51. (34)

2)1f ¢ €]0,1/2],

mv i vVm\Y a
(35)

k N 2/ 4
1T+ NNl <4 [ "”“2“V<Z”i> M ( § U%)l‘)g
=1

Proof. We will apply Berstein inequality from Lemma A.1 to prove the result.
Bounding H(T+ A2 (Sifo — Siy) ‘H
For all i € [m], let w; = y;(T + AI)~2z;. Obviously, from the definitions of [, (see (6)) and S,

E[wn] = Eo, [f,(21)(T + ) "221] = (T + M) 728, f,.
Thus,
_1 * * 1
(T+XN7"2(S;f,—Siy) = ™ Z(E[wz} — w;).
i=1

We next estimate the constants B and 0'2(’(1)1> in (21). Note that for any [ > 2,

E[l[wi — Elwn]||5] < E[(Jlwilla + Ellw: || a])']-
By using Holder’s inequality twice,

E[||wr — Efwn][|5] < 27 'Efwr|lyy + Elflwi[|a])] < 27 Elllw |5 + Efjlw: [5]]-

The right-hand side is exactly 2'E[||wy ||%;]. Therefore, by recalling the definition of w; and expanding
the integration,

ElJus - Eluwn]lly] <2 |

[ aptylo) /X 1T + A2y dpx (). (36)
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Note that by using Holder’s inequality,

/Y yldp(yle) /X < ( /Y |y|2ldp<y|x>)é.

Using Assumption 1 to the above,
[ o) [ < VIRTT < 0BTV
Y X

Plugging the above into (36), we reach
Bl ~ Elur]lfy) < 2VID'VE [ (T 42D Hallydps (@)
X
Using Assumption (3) which imples

lolla _

T+ \)" 2 < ,
I ) 2xl|m < SRV

we get that

R

-2 .
Efjuwy — Eluwn]|l] < #VAD' Vo ( ﬁ) J T + A0 el (o)
Using the fact that E[[|¢||%] = E[tr(¢ ® &)] = tr(E[§ ® £]) and E[x ® z] = T, we know that

1

J T+ A0 Eaelfrdox (@) = (T + ADTHT(T + A1) = (T + A0~ 7),
X
and as a result of the above and Assumption 3,
J T 40 Halfrdpx (@) < 07,
X

Therefore,

1-2 =2
1 2KV M
E[||lwi — E[wi]|l%] < 12V M) U<ﬁ) e AT == SM~/ve, A7
[llwy = Elw]ll7] < 112V )\fﬁ Y 5 7 Ve,
Applying Berstein inequality with B = % and o0 = /8M+/vc,A~7, we get that with probability

at least 1 — %1, there holds

mv/A vVmA\Y E
(37

[T+ N (S8 - sw)|, = H;ﬁnj(m] —w)

i=1

2
<4\/M< r + \/1787>10g4.

H

Bounding ||(T + X)~%(T — T |
Let& = (T + A)"2a; ® @y, forall i € [m]. It is easy to see that E[¢;] = (T + A)~27, and that
(T+N)"2(T-Tx) = LS (E[&] —&). Denote the Hilbert-Schmidt norm of a bounded operator
from H to H by || - || gs. Note that
€01 Zrs = s |3 Trace((T +2) 71221 @ a1 (T + A)7H?2) = [la|[3 Trace((T + A) a1 @ 1)
By Assumption (3),
l€1llas < /k2Trace((T + A\)~lay ® 21) < v/k2Trace(z1 @ 1) /A < &2V,

and furthermore, by Assumption 3,

E[||é113g] < k*ETrace((T + A) "tz @ 21) = k*Trace((T + A\) 7'T) < k%, A7,
According to Lemma A.1, we get that with probability at least 1 — %, there holds

.

_1 2K V/Cy 4
)2 —Tx <2 _ log —. 38
[T+ 07T = T lus < "‘(m\aﬂﬁmm) 85 9

Finally, using the triangle inequality, we have,
1T+ NNl < T + 23T = Tl + ||(T+ 272 (83— Siv)| -

Applying Lemma B.3 to the above, introducing with (37) and (38), and then noting that x > 1 and
v > 1, one can prove the desired results. O
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The next lemma is borrowed from [20], derived by applying a recent Bernstein inequality from
[27, 13] for a sum of random operators.

Lemma C.3. Let 65 € (0,1) and 9“ log 52 < A < [|T|[. Then the following holds with probability
at least 1 — 9,

(T +AD) T2 T2 < (T + 072 (T + V7| < 2 (39

Now we are in a position to estimate the sample variance.

Proposition C.4. Let k2 < 1 and (34) for all k € [T). Assume that (39) holds. Then the following
holds for all t € [T :
DIf¢=>1/2,

ISpvt+1 — Spperallp

t—1
2 K 2\/ve, Nk/2 4 (40)
<4(Rk™ + VM) <mﬁ+ m)(g S k+1m+/\2 ne + V2K27; log6

2)If¢ <1/2,

3¢
HSth+1 — Spﬂt+1||p S 4 K I‘€2< 1 (Z 7]1> =+ V M

-« Nk/2 K 2y/vey 4
<Y +/\an+\ﬁsm mﬁ+ NS loga. 41)

k=1 2wi=k+1"k k=1

Proof. For notational simplicity, we let 7y = 7 + AI and Tx » = 7x + AI. Note that by Lemma C.1,
we have (32). When k € [t — 1], by rewriting T%HZH(’E)Nk as

1

T T Tl (TR T T T T 2 N,
we can upper bound || 72 I, (Tx) Nkl as
1 P! 1 1 ST U |
17210y (T Nkl < 172 T 2 T A (T) TN T X T MITS* Nl

Applying (39), the above can be relaxed as

1 1 1 1

17210 (T Nl < AT (T) AT Nicls
which is equivalent to
1 1

1732 01 (TNl i < Al Toe T 1 (T Nl

Thus, following from 7% < 1 which implies 7. || 7x|| < 1,

[Tl (Tl < (1Tl (Tl + AT (T
< T (Tl + A

Applying Lemma B.1 with ¢ = 1 to bound || 75IT] , , (7x)]|, we get
1
1T 1 (Tl < —7—— + A
er=k+1 Ty
When k = ¢,
1 1 1 1 _1
1T 210y (TNl = 172 Nellz < (IT2[IT2NIT5% Nella
1 1o—3
<ITNEATIN+ 2Ty 2 Nella-

Since A < ||T|| < tr(T) < x2, we derive

1 _1
I T 210 1 (T Nellir < V2R2| T2 Nl
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From the above analysis, we conclude that 22:1 Nk HT 3 I +1(Tx) Nk HH can be upper bounded by

—1
< sup || 7, > Nillu (Z /2 +)\an+\[/€ 77t> .

kelt] ) DU ¥
Plugging (34) (or (35)) into the above, and then combining with (32), we get the desired bound (40)
(or (41)). The proof is complete. L]

Setting 7, = 11t~ 7 in the above proposition, with some basic estimates from Appendix A, we get the
following explicit bounds for the sample variance.

Proposition C.5. Let 1, = 1n1t=% and (34) for all t € [T, with n; €)0, 2] and 0 € [0, 1[. Assume
that (39) holds. Then the following holds for all t € [T):

DIf¢>1/2,

ISpve+1 — Sppuatallp

<4(Rk* + VM) <2Am 976

Vavie . 4 ()
+logt+1+ V2 2) S 7 ) log —.
og MK Y Ny og 5,

2)If¢ <1/2,

2 tl—@ %74
HSth+1 _Sp/itJrl”p S 4 (KJ (H2C—1 \Y < 7;1_ 0 > ) + \/M)

¢ 2 4
x (771 +logt+1+ \/inm?) ( AR ﬁ%) log = (43)
1

1-6 m\/X vVm\Y

Proof. By Proposition C.4, we have (40). Note that
t—1 t—1 P t—1
Sty w5 <Y g
k12 =k+1"h k12 i T
Applying Lemma A .4, we get

t—1

Nk
Y = <2+2logt,
=1 ikt T

and by Lemma A.2,

an—mzk < 2n1t

Introducing the last two estimates into (40) and (42), one can get the desired results. The proof is
complete. O

In conclusion, we get the following result for the sample variance.

Theorem C.6. Under Assumptions 1, 2 and 3, let 61,62 €]0, 1] and % log 52 < A < [T Let

ne = mt =% forallt € [T], withn, €]0, 5~ 2] and 6 € [0, 1[. Then with probability at least 1 — &, —J2,
the following holds for all t € [T :

1)if ¢ > 1/2, we have (42).

2)if ¢ < 1/2, we have (43).

D Computational Variance

In this section, we estimate the computational variance, E[[|S,w; — S,v4||2]. For this, a series of
lemmas is necessarily introduced.
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D.1 Bounding the Empirical Risk

This subsection is devoted to upper bounding Ej[€,(w;)]. The process relies on some tools from
convex analysis and a decomposition related to the weighted averages and the last iterates from
[22, 12]. We begin by introducing the following lemma, a fact based on the square loss’ special
properties.

Lemma D.1. Given any sample z, andl € N, let w € H be independent from J;, then
M (Ea(wr) = E2(w)) < wi = wlFy — Eg, wisr — wllfy +nik*Ex(wr). (44)

Proof. Since wy is given be (4), subtracting both sides of (4) by w, taking the square H-norm, and
expanding the inner product,

bl
n
s —wlify =l —wly + 55 | D2 (wnzi)m =)o,

i=b(l—1)+1 I

277 bl

l
+— Z (<wlﬂxji>H7yji)<w7wl’xji>H‘
i=b(l—1)+1

By Assumption (3), ||z, ||z < &, and thus

bl bl
Z (<wlvxj7‘,>H 7yj1',)‘rji Z |<wl7xji>H7yj7‘,|H
i=b(I—1)+1 I i=b(1—1)+1
bl
< &Y (wnz)r — )%

i=b(l—1)+1

IN

where for the last inequality, we used Cauchy-Schwarz inequality. Thus,

2 9 bl
niK
w1 = wllzr < o = wllr + ZT > (winmi)m —y;)?
i=b(I—1)+1
o bl
I
+ > wnai)m —yi)(w i) m — Wi z5,)m).
i=b(i—1)+1
Using the basic inequality a(b — a) < (b? — a?)/2,Va,b € R,
D22 bl
o = wlfy < llor = wlif + 2= >0 (wnai)m =4’
i=b(I—1)+1
. bl
1
Y > ((whmi)n =y = (Wi wi)m —v;.)7) -
i=b(l—1)+1
Noting that w; and w are independent from J;, and taking the expectation on both sides with respect
to Jy,
Eyllwirr — wllf < llwn = wliF + 17 6°E(wn) +m (Ea(w) — Ex(wr)) s

which leads to the desired result by rearranging terms. The proof is complete. [

Using the above lemma and a decomposition related to the weighted averages and the last iterates
from [22, 12], we can prove the following relationship.

Lemma D.2. Let k% < 1/2forallt € N. Then

t t—1

1
B3 [Ea(wr)] < 4E,( 72 l+2522k H Z 7 Es[Es (45)
i=t—k

~+
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Proof. Fork=1,--- ,t—1,

1 1
LS )] - 3 nEafe)
i=t—k+1 i=t—k
t
1
= —<(k+1 gl —k gl
k(k+1){(+)_zn‘] Z"" }
1=t—k-+1 1=t—k
1 t
= m Z (B3 [E2(wi)] — me—rEs[Ex(wi—)])-
—k+1
Summing over k = 1,--- ,t — 1, and rearranging terms, we get [12]
t—1 1 t
nBslE Z niEs[Ex(wi)] + ) D) Y EsEa(wi)] = m-kEslEa(wi-i))-
o R+ 1 i=t—k+1
Since {n; }+ is decreasing and Ej[€,(w:_1)] is non-negative, the above can be relaxed as
t—1 1 t
mEs[E < ZmEJ N+ WD > niBsl€awi) — Ealwi—k)].  (46)
k=1 i=t—k+1

In the rest of the proof, we will upper bound the last two terms of the above.

To bound the first term of the right side of (46), we apply Lemma D.1 with w = 0 to get
MEs (Ex(wr) = £,(0)) < EsllwillFr — llwirallF] + 17 °Es[Ex(wr)]-

Rearranging terms,

m(1 = mr*)EslEa(wn)] < Ealllenllf = llwrallz] + méa(0).
It thus follows from the above and 7;x? < 1/2 that

MEs[Ex(wi)]/2 < EglllwillFr — lwis1 3] + mEa(0).

Summing upoverl =1,--- ,t,

ZmEJ 1/2 < EjlllwillF — wes1llF] + Ea( Z’”

Introducing with wy = 0, |lwi41]|% > 0, and then multiplying both sides by 2/¢, we get

t
- Z mEg[€4(w1)] < 26,( % Z @7)

It remains to bound the last term of (46). Letk € [t — 1] and i € {¢t — k,- - , t}. Note that given
the sample z, w; is depending only on Jq,--- ,J;_1 when ¢ > 1 and w; = 0. Thus, we can apply
Lemma D.1 with w = w;_j, to derive

i (SZ(wi) - 5Z(Wt k) < ||wl
Therefore,
By [Ex(wi) = Ea(wip)] < Eylllwi — willfr — llwigs — wiill7r] + 07 62 Ey[Ea(wi)]-

Summing up overi =t — k,--- ,t,

— Wt— kHH"’nQ 25 (wi)-

t t
Z By [Ea(wi) — Eawi—k) < g2 772EJ
i=t—k t—k

1=
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Note that the left hand side is exactly Zzzt_ jt1 M [Ex(wi) — Ea(wi—)]. We thus know that the
last term of (46) can be upper bounded by

t—1
EDPIILEES S v
k=1

z:t—k
t—1 1 t—1 1
— 2 2E w; + 2 2E 5z
R — k(k+1 Zzt:knz J ( )] K nt J[ (wt)]; k(k+1)

Using the fact that

t—1 t—1 1
=1--<1,
S -2 (F- k) 1o b

and k21, < 1/2, we get that the last term of (46) can be bounded as

i k(k‘l—i— 1) Zk 0 (B3 (€ (wi)] — Ez[Ex(wi—)])
=1 i=t—k+1

< k;(%-&-l) S B8, (wi)] + mEalE )] /2.
k=1 i=t—k

Plugging the above and (47) into the decomposition (46), and rearranging terms

WEs(Ex()]/2 < 2107 mezkkﬂ > rimle
i=t—k

which leads to the desired result by multiplying both sides by 2. The proof is complete. O

We also need to the following lemma, whose proof can be done by using an induction argument.
Lemma D.3. Let {u;}1_,, {A;}, and { By}, be three sequences of non-negative numbers such
that vy < Ay and
u < Ay + By sup wy, vt e {2,3,---,T}. (48)
i€t—1]

Let supycir) By < B < 1. Then for all t € [T],

sup up < sup Ag. (49)
ke(t] - D kelt]

Proof. When t = 1, (49) holds trivially since u; < A; and B < 1. Now assume for some ¢t € N
with2 <t < T,

1
sup u; < —— sup A;.

ieft—1] =B e

Then, by (48), the above hypothesis, and B; < B, we have

B B 1
u < Ay + By sup uiSAle Lo sup A; <supA4; (1+1Z3)SSUpAi-

i€[t—1] - B i€[t—1] i€(t] - i€(t] 1-B
Consequently,
sup uy < ~B sup Ay,
ke(t] ke(t]

thereby showing that indeed (49) holds for ¢. By mathematical induction, (49) holds for every ¢ € [T].
The proof is complete. O

Now we can bound Ejz[&,(wy,)] as follows.
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Lemma D4. Let k2 < 1/2 andfor allt € [T witht > 2,

- t—1 1
ZkkJrl g_:k” Pl 0
Then for all t € [T,
sup Ej[&, < 8£,(0) su 51
sup 3[Ea(wr)] p{nkam}

Proof. By Lemma D.2, we have (45). Dividing both sides by n;, we can relax the inequality as

Ey[Ex(wi)] < 48,(0 Zm+2/<a Zkk+1 Zm up Ej[Eq(wi)].

In Lemma D.3, we let uy = Ej[E,(wt)], Ar = 4€z(0)ﬁ Sy_, m and

Zkk+ Zm

i=t—k

Condition (50) guarantees that SUPye(7] B; < 1/2. Thus, (49) holds, and the desired result follows
by plugging with B = 1/2. The proof is complete. O

Finally, we need the following lemma to bound &,(0), whose proof follows from applying the
Bernstein Inequality from Lemma A.1.

Lemma D.5. Under Assumption 1, with probability at least 1 — 03 (93 €]0, 1), there holds

1 V2 2
2(0) < —+ — | log —.
E,(0) < Mv +2Mv (m + ﬁ) 0g§3
In particular, if m > 32 log , then
E.(0) < 2Mw. (52)

Proof. Following from (5),
1
/ yHdp < 5uMH -(2M%*v), VI €N,
z

and

/ y2dp < Mw.
z

[ =Eptar < [ max(lyP &)
z 7
/Z Iyl + (Ey?))dp

< %I!M“Q - (2M?v) + (M)

Therefore,

IN

< %l!(Mu)l_Q(ZMv)Q,

where for the last inequality we used v > 1. Applying Lemma A.1, with w; = y? for all i € [n],
B = Mv and 0 = 2Mwv, we know that with probability at least 1 — J3, there holds

1 12 2
ny?—/depSZMU <—|—> log —.
n 7 n  \/n 3

The proof is complete. O
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D.2 Bounding HT ST (Th)

Lemma D.6. Assume (39) holds for some A > 0 and n,x? < 1. Then

1 1
||7-2H§c+1(7;<)”2 <= +4A.

i=k+1"Th
Proof. Note that we have
ITAIIL (Tl < T8 (T + AD ™3 1|(To + AD AL, (T2)]|
Using (39), we can relax the above as
1 1
1T 21041 (T < 20/(T + A =1y (T
which leads to
1 1
T2 1y (Tl < 40(T + M2 1 (Tl

Since

(T + ADEILL | (T2 (T + DTGy (T)TT 4 (T

IN

| Tl 1 (T (T 4 A
1
= T (Tl + A,
(Tx) < k2%, by Lemma B.1,
1 1
<
2e 305 k+1 435 k+1 i

we thus derive the desired result. The proof is complete. O

and with nyk* <

I17:¢ W41 (T <

D.3 Deriving Error Bounds

With Lemmas D.4 and D.6, we are ready to estimate the computational variance , Ej|| f; — g¢[|3, as
follows.

Proposition D.7. Assume (39) holds for some X\ > 0, m % < 1/2,(50) and (52). Then, we have for

all't € [T,
16 Mok? = =
E;||Spwit1 —Spvt+1||2 < —— sup { } < 7’“ +4) 77;3 + 17?&2 .
. b kep | mek Z ; e k+1 " ;
(53)
Proof. Since w1 and 1,1 are given by (4) and (19), respectively,
bt
. 1
Wipr —Ver1 = (we —ve) + e § (Tee — Sxy) — b z (wes g ) 1 — yj:) @5,

i=b(t—1)+1
bt

= T-nTlw—w)+ 5 > (T = S5y) = (wna)m —y)es}

i=b(t—1)+1

Applying this relationship iteratively,

wit1 = vip1 = 5 (T) (w1 — »1) Z Z X1 (Toc) M i,

k 1i=b(k—1)+1

where we denote
My,i = (Txwr — Sxy) — (Wi, 5,) B — Yj:) T, - (54)
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Introducing with wy = 1 = 0,

1
W41 — V41 = » Z Z TIkHZH(E)Mkm
k=1i=b(k—1)+1

Therefore,
2

EJ”SPthrl_SPVHl”?J = *EJ Z Z X1 (7o) M i
k=1i=b(k—1)+1 )
1 bk ,
= 2 o> niEs | (Th Ml (55)

k=1i=b(k—1)+1
where for the last equality, we use the fact that if k& # &, or k = k' but i # ', then
Eg (M1 (Tx) M, I 1 (T) My ) = 0.

Indeed, if k& # K/, without loss of generality, we consider the case k < k’. Recalling that M, ; is
given by (54) and that given any z, f} is depending only on Jq,--- ,J;_1, we thus have

Eg (I 1 (Tx) Mp i, Iy (To) Mi i)
= ]Ele"' 1 <HZ+1(7;c)Mk,i7Hf+1(7;<)EJk/ [kai/]>p =0.

If k = &k’ but i # ', without loss of generality, we assume ¢ < i’. By noting that wy, is depending
onlyonJy,---,J;_1 and M ; is depending only on wy, and z;, (given any sample z),

Eg (Mg 1 (7o) M, o1 (To) M)
=Egy o 3y Wy (T By [Mi i), Ty (T)E5, (M) = 0.
Using the isometry property (17) to (55),

9 1 2 2
B |[T0pa (T Mi|} = B | THI oy (T M| < Ey || Ml ,

| TAn (7

and by applying the inequality E[||¢ — E[¢](|%] < E[|I€]1%],
Es | Miall s < Bl ((we 2,01 — y3.)%5, 5 < 82Es[((wk, 25,00 — ¥5,)%] = K2Eg[Ea(wi)],

where for the last inequality we use (3). Therefore,

EsllSpwis1 — Spregalls < N Zﬁk HT Hk+1(7;€)

Es[€x (wr)]-

According to Lemma D.4, we have (51). It thus follows that

8E,(0)k
EallSyees — Syl < SO g {nkk Zm} St [T ()
=1

ke(t]

Now the proof can be finished by applying Lemma D.6 which tells us that

t 5 t—1 ot s 2
277 HTQHkH x| = an HT2Hk+1(7;c) + n; HT2
k=1 k=1
t—1 2 t—1
< > 777 -+ 4 D on+ iR’
k=1 Z =k+17 k=1
and (52) to the above. The proof is complete. O

®This is possible only when b > 2.
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Setting 7; = 11t~% for some appropriate 77; and @ in the above proposition, we get the following
explicitly upper bounds for Ej[|S,w; — Spwl|2.

Proposition D.8. Assume (39) holds for some X\ > 0 and (52). Let n; = nit~? for all t € [T, with

0 €10,1[ and
trnin(@ 1-6)

0<m <

Then, for all t € [T,
16 Mvk? ~ min(0.1— _
Egllwir — v |2 < o (5mt (0.1-0) 1 gap2¢(1 29>+) 1Vlegt).  (57)

Proof. We will use Proposition D.7 to prove the result. Thus, we need to verify the condition (50).
Note that

t—1 1 1 t—1 7712
Zkk+1)zm2 ;n? Zlklﬁ—l ;n?<t—i_t><i_lt—i'

k=1 i=t—k

Substituting with n; = 7i =%, and by Lemma A 4,

t—1 1 t—1 ;=2
Zm Z n? <ni Z
k=1 i=t—k

Dividing both sides by 7, (= nt~?), and then using (56),
t—1 t—1 1

1 1
<2 — min(0,1— 9)1 1
Zkk+1 Zm mt (logt+1) < 1

2t min (26, 1)(10gt+ 1)

This verifies (50). Note also that by taking ¢ = 1 in (56), for all ¢ € [T],
1
Zmr?P < — < -,
M T )
We thus can apply Proposition D.7 to derive (53). What remains is to control the right hand side of
(53). Since

t—1 i—1 20
Do mZ = S e

e 127, k+1771 k=1 zk+129 k= 1 k)t~
combining with Lemma A 4,

t—1 2
3 b <ot @0 (log ¢ 4 1),
k= 12 =k+1"h

Also, by Lemma A.2,

1< 1 &
_ — l—9 -

and by Lemma A.3,
t—1 t—1
Dok =t oK <m0 (log 4 1),
k=1 k=1

Introducing the last three estimates into (53) and using that n?x2 < ;=% by (56), we get the desired
result. The proof is complete. O

Collect some of the above analysis, we get the following result for the computational variance.
Theorem D.9. Under Assumptions 1 and 3, let 55 €]0,1], %log% < X < ||Tl, 93 €]0,1],
m > 32log? %, and ny = nt=? for all t € [T, with @ € [0, 1] and n such that (56). Then, with
probability at least 1 — 03 — 03, (57) holds for all t € [T).
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E Deriving Total Error Bounds
The purpose of this section is to derive total error bounds.

E.1 Attainable Case

We have the following general theorem for ¢ > 1/2, with which we prove our main results stated in
Section 3.

Theorem E.1. Under Assumptions 1, 2 and 3, let ( > 1/2, T € NwithT > 3,6 €]0,1, n, =
nk=2t=9 for all t € [T, with 6 € [0, 1] and n such that

tmin(G,l—Q)
0 < — vt e [T]. 58
<17*8(logt+1)7 €[] (58)
If for some € €]0, 1],
1852 27k \\ /¢
m > log ( >) , (59)
<6||T|| e|Tlo

then the following holds with probability at least 1 — §: for all t € [T},

. _ . o 12
Bgl€(wern)] — inf E(w) < ar(t ™) 7% + g9 1V P22 (log T)2 log? —

+q377b_1 (t_ min(6,1-0) V. me—lnt(1—20)+) log T.
(60)

800(Rr2S4+VM)2 (k/A/II T I/ 2vve /| TI7)?
Here, ¢ = 2R2(%, o = ( )°( éli\(lg)zl\ Vvey /IITIY) Land g3 =

208 Mwv
1-6 -

Proof. Let A = || T|/m¢~!. Clearly, A < || T]|. Forany A > 0 and B > 1, by applying (25) with

CZI,Z‘:(Bm)E andc:WGBg,

A A 2AB¢ 1 A AB 1
Alog(Bm) = ?log((Bm)e) < 6log( o ) + 2m < log( . ) + ime. (61)

Using the above inequality with A = ” ‘ and B = +-, one can prove that the condition (59) ensures

that 97’; log g;‘ < \is satisfied with 0 7, Therefore, by Lemma C.3, (39) holds with probability

at least 1 — d,. Similarly the condition (59) implies that m > 32log? % is satisfied with d3 = g, and
thus by Lemma D.5, (52) holds with probability at least 1 — d3. Combining with Lemma C.2, by
taking the union bound, we know that with probability at least 1 — §; — 2 — 3, (39), (52) and (34)
hold for all £ € [T]. Now, we can apply Propositions C.5 and D.8 to get (42) and (57). Noting that by
(56), ﬂn < 1, and by a simple calculation, we derive from (42) that

[Spves1 — SpIU/tJrlHQ

400(R52<+\ﬁ (/TN + V2Voe, /I T .

=911 v A2 42720 v log? t) log?

(1-6)2 o1
400(R"€2C +VM)? “/\/HTH + \/2\fcv/”7—” )? my(-e-1 2 2¢—2,2-26 2, 24
(1-0)y 1V m===t==*")(log T)" log 5

where for the last inequality, we used || 7|| < x2. Similarly, by a simple calculation, we get from (57)
that

208 M :
Es||Spwes1 = Spren|l; < ﬁ(nt‘ @120y P2t 20 ) (1 v log )
< 208Mw (nt~ min(6,1-6) me—1n2t(1—29)+) log T.

b(1—0)

Letting §; = g, and introducing the above estimates and (27) into (16), we get (60). The proof is
complete.
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Proof of Theorem 3.3. By choosing ¢ = 1 — —-2— and # = 0 in Theorem E.1, then the condition

2¢+y
(59) reduces to m > mg, where

18k2p <27n2p>>p 2C+~
ms = log , p=— (62)
< I71 17116 20+v-1
The desired result thus follows by applying Theorem E.1. O

E.2 Non Attainable Case

Theorem E.2. Under Assumptions 1, 2 and 3, let ( < 1/2, T € NwithT > 3,6 €]0,1, . =
nk=2t=9 forall t € [T, with 6 € [0, 1] and 1 such that (58) and for some € €)0, 1], (59) holds. Then
the following holds with probability at least 1 — §: for all t € [T,

- 4
Ej[&(wet1)] — in}fqg(w) < (=T 4 MmO (1 v P 2em242729) (1v 77t1*9)1 % log? tlog? 5
we 1
+nb71(t7 min(6,1-0) V. meflnt(1720)+) 1og T.
(63)

Proof. The proof is similar to that for Theorem E.1. We include the sketch only. Similar to the proof
of Theorem E.1, one can prove that with probability at least 1 — d; — do — 3, (39), (52) and (35)
hold for all k € [T']. Now, we can apply Propositions C.5 and D.8 to get (43) and (57). Noting that by

(56), \/§n < 1, and by a simple calculation, we derive from (43) that

400 <,€2< (1v ) m) (/I + /2o [TTT)?
1-0)2

1Spvt41 — Sppesa s <
4

x mY =711 v A2~ 42720 v log? t) log? 5
1

The rest of the proof parallelizes to that for Theorem E.1. O

Remark E.3. Letting 0 = 0 in the above theorem, and ignoring the logarithmic terms, the bound
(63) reads as

Es[€(wesn)] — inf £(w) < ()72 +m 7T LV m T gt)? (Lv ) ™ b (v m ).
we

Remark E.4. Beiter bounds for the case ¢ < 1/2 will be proved in the longer version of this paper.
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