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A Preliminary

A.1 Notation

We first introduce some notations. For t ∈ N, ΠT
t+1(L) =

∏T
k=t+1(I − ηkL) for t ∈ [T − 1] and

ΠT
T+1(L) = I, for any operator L : H → H, whereH is a Hilbert space and I denotes the identity

operator onH. E[ξ] denotes the expectation of a random variable ξ. For a given bounded operator L :
L2(H, ρX)→ H, ‖L‖ denotes the operator norm of L, i.e., ‖L‖ = supf∈L2(H,ρX),‖f‖ρ=1 ‖Lf‖H .
We will use the conventional notations on summation and production:

∏t
i=t+1 = 1 and

∑t
i=t+1 = 0.

We next introduce some auxiliary operators. Let Sρ : H → L2(H, ρX) be the linear map ω →
〈ω, ·〉H , which is bounded by κ under Assumption (3). Furthermore, we consider the adjoint operator
S∗ρ : L2(H, ρX)→ H , the covariance operator T : H → H given by T = S∗ρSρ, and the operator
L : L2(H, ρX)→ L2(H, ρX) given by SρS∗ρ . It can be easily proved that S∗ρg =

∫
X
xg(x)dρX(x)

and T =
∫
X
〈·, x〉HxdρX(x). The operators T and L can be proved to be positive trace class

operators (and hence compact). For any ω ∈ H , it is easy to prove the following isometry property
[25]

‖Sρω‖ρ = ‖
√
T ω‖H . (17)

We define the sampling operator Sx : H → Rm by (Sxω)i = 〈ω, xi〉H , i ∈ [m], where the norm
‖ · ‖Rm in Rm is the Euclidean norm times 1/m. Its adjoint operator S∗x : Rm → H, defined by
〈S∗xy, ω〉H = 〈y,Sxω〉Rm for y ∈ Rm is thus given by S∗xy = 1

m

∑m
i=1 yixi. Moreover, we can

define the empirical covariance operator Tx : H → H such that Tx = S∗xSx. Obviously,

Tx =
1

m

m∑

i=1

〈·, xi〉Hxi.

With these notations, (13) and (14) can be rewritten as

µt+1 = µt − ηt(T µt − S∗ρfρ), t = 1, . . . , T, (18)

and
νt+1 = νt − ηt(Txνt − S∗xy), t = 1, . . . , T, (19)

respectively.

Using the projection theorem, one can prove that

S∗ρfρ = S∗ρfH. (20)

Indeed, since fH is the projection of the regression function fρ onto the closer of Hρ in L2(H, ρX),
according to the projection theorem, one has

〈fH − fρ,Sρω〉ρ = 0, ∀ω ∈ H,
which can be written as

〈S∗ρfH − S∗ρfρ, ω〉H = 0, ∀ω ∈ H,
and thus leads to (20).

A.2 Concentration Inequality

We need the following concentration result for Hilbert space valued random variable used in Capon-
netto and De Vito [4] and based on the results in Pinelis and Sakhanenko [17].
Lemma A.1. Let w1, · · · , wm be i.i.d random variables in a Hilbert space with norm ‖ · ‖. Suppose
that there are two positive constants B and σ2 such that

E[‖w1 − E[w1]‖l] ≤ 1

2
l!Bl−2σ2, ∀l ≥ 2. (21)
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Then for any 0 < δ < 1, the following holds with probability at least 1− δ,
∥∥∥∥∥

1

m

m∑

k=1

wm − E[w1]

∥∥∥∥∥ ≤ 2

(
B

m
+

σ√
m

)
log

2

δ
.

In particular, (21) holds if

‖w1‖ ≤ B/2 a.s., and E[‖w1‖2] ≤ σ2. (22)

A.3 Basic Estimates

Lemma A.2. Let θ ∈ [0, 1[, and t ∈ N. Then

t1−θ

2
≤

t∑

k=1

k−θ ≤ t1−θ

1− θ .

Proof. Note that
t∑

k=1

k−θ ≤ 1 +
t∑

k=2

∫ k

k−1
u−θdu = 1 +

∫ t

1

u−θdu =
t1−θ − θ

1− θ ,

which leads to the first part of the desired result. Similarly,
t∑

k=1

k−θ ≥
t∑

k=1

∫ k+1

k

u−θdu =

∫ t+1

1

u−θdu =
(t+ 1)1−θ − 1

1− θ ,

and by mean value theorem, (t+ 1)1−θ − 1 ≥ (1− θ)t(t+ 1)−θ ≥ (1− θ)t1−θ/2. This proves the
second part of the desired result. The proof is complete.

Lemma A.3. Let θ ∈ R and t ∈ N. Then
t∑

k=1

k−θ ≤ tmax(1−θ,0)(1 + log t).

Proof. Note that
t∑

k=1

k−θ =
t∑

k=1

k−1k1−θ ≤ tmax(1−θ,0)
t∑

k=1

k−1,

and
t∑

k=1

k−1 ≤ 1 +
t∑

k=2

∫ k

k−1
u−1du = 1 + log t.

Lemma A.4. Let q ∈ R and t ∈ N with t ≥ 3. Then
t−1∑

k=1

1

t− kk
−q ≤ 2t−min(q,1)(1 + log t).

Proof. Note that
t−1∑

k=1

1

t− kk
−q =

t−1∑

k=1

k1−q

(t− k)k
≤ tmax(1−q,0)

t−1∑

k=1

1

(t− k)k
,

and that by Lemma A.3,
t−1∑

k=1

1

(t− k)k
=

1

t

t−1∑

k=1

(
1

t− k +
1

k

)
=

2

t

t−1∑

k=1

1

k
≤ 2

t
(1 + log t).
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B Bias

In this section, we develop upper bounds for the bias, i.e., ‖Sρµt − fH‖2ρ. Towards this end, we
introduce the following lemma, whose proof borrows idea from [29, 26].
Lemma B.1. Let L be a compact positive operator on a separable Hilbert space H . Assume that
η1‖L‖ ≤ 1. Then for t ∈ N and any non-negative integer k ≤ t− 1,

‖Πt
k+1(L)Lζ‖ ≤

(
ζ

e
∑t
j=k+1 ηj

)ζ
. (23)

Proof. Let {σi} be the sequence of eigenvalues of L. We have

‖Πt
k+1(L)Lζ‖ = sup

i

t∏

l=k+1

(1− ηlσi)σζi .

Using the basic inequality
1 + x ≤ ex for all x ≥ −1, (24)

with ηl‖L‖ ≤ 1, we get

‖Πt
k+1(L)Lζ‖ ≤ sup

i
exp

{
−σi

t∑

l=k+1

ηl

}
σζi

≤ sup
x≥0

exp

{
−x

t∑

l=k+1

ηl

}
xζ .

The maximum of the function g(x) = e−cxxζ( with c > 0) over R+ is achieved at xmax = ζ/c, and
thus

sup
x≥0

e−cxxζ =

(
ζ

ec

)ζ
. (25)

Using this inequality, one can get the desired result (23).

With the above lemma and Lemma A.2 from the appendix, we can derive the following result for the
bias.
Proposition B.2. Under Assumption 2, let η1κ2 ≤ 1. Then, for any t ∈ N,

‖Sρµt+1 − fH‖ρ ≤ R
(

ζ

2
∑t
j=1 ηj

)ζ
. (26)

In particular, if ηt = ηt−θ for all t ∈ N, with η ∈]0, κ−2] and θ ∈ [0, 1[, then

‖Sρµt+1 − fH‖ρ ≤ Rζζη−ζt(θ−1)ζ . (27)

Proof. The result is essentially proved in [28], see also [19]. For the sake of completeness, we
provide a proof here. Since µt+1 is given by (18), introducing with (20),

µt+1 = µt − ηt(T µt − S∗ρfH). (28)
Thus,

Sρµt+1 = Sρµt − ηtSρ(T µt − S∗ρfH) = Sρµt − ηtL(Sρµt − fH). (29)
Subtracting both sides by fH,

Sρµt+1 − fH = (I − ηtL)(Sρµt − fH).

Using this equality iteratively, with µ1 = 0,

Sρµt+1 − fH = −Πt
1(L)fH.

Taking the L2(H, ρX)-norm, by Assumption 2,

‖Sρµt+1 − fH‖ρ = ‖Πt
1(L)fH‖ρ ≤ ‖Πt

1(L)Lζ‖R.
By applying Lemma B.1, we get (26). Combining (26) with Lemma A.2, we get (27). The proof is
complete.
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The following lemma gives upper bounds for the sequence {µt}t∈N in H-norm. It will be used for
the estimation on the sample variance in the next section.
Lemma B.3. Under Assumption 2, the following holds for all t ∈ N:
1) If ζ ≥ 1/2,

‖µt‖H ≤ Rκ2ζ−1. (30)

2) If ζ ∈]0, 1/2],

‖µt‖H ≤ κ2ζ−1 ∨
(

t∑

k=1

ηk

) 1
2−ζ

. (31)

Proof. The proof for the fixed step-size can be found in [19]. Following from (28), we have

µt+1 = (I − ηtT )µt + ηtS∗ρfH.
Applying this relationship iteratively, and introducing with µ1 = 0, we get

µt+1 =

t∑

k=1

ηkΠt
k+1(T )S∗ρfH =

t∑

k=1

ηkS∗ρΠt
k+1(L)fH.

Therefore, using Assumption 2 and the spectrum theory,

‖µt+1‖H ≤
∥∥∥∥∥

t∑

k=1

ηkS∗ρΠt
k+1(L)Lζ

∥∥∥∥∥R ≤ R max
σ∈]0,κ2]

σ1/2+ζ
t∑

k=1

ηkΠt
k+1(σ).

If ζ ≥ 1/2, for any σ ∈]0, κ2],

σ1/2+ζ
t∑

k=1

ηkΠt
k+1(σ) ≤ κ2ζ−1σ

t∑

k=1

ηkΠt
k+1(σ) ≤ κ2ζ−1,

where for the last inequality, we used

t∑

k=1

ηkσΠt
k+1(σ) =

t∑

k=1

(1− (1− ηkσ))Πt
k+1(σ) =

t∑

k=1

Πt
k+1(σ)−

t∑

k=1

Πt
k(σ) = 1−Πt

1(σ).

Thus,

‖µt+1‖H ≤ Rκ2ζ−1.
The case for ζ < 1/2 is similar to that in [19]. We omit it. The proof is complete.

C Sample Variance

In this section, we aim to estimate the sample variance, i.e., E[‖Sρµt − Sρνt‖2ρ]. Towards this end,
we need some preliminary analysis. We first introduce the following key inequality, which provides
the hinge idea on estimating E[‖Sρµt − Sρνt‖2ρ].
Lemma C.1. For all t ∈ [T ], we have

‖Sρνt+1 − Sρµt+1‖ρ ≤
t∑

k=1

ηk

∥∥∥T 1
2 Πt

k+1(Tx)Nk

∥∥∥
K
, (32)

where
Nk = (T µk − S∗ρfρ)− (Txµk − S∗xy), ∀k ∈ [T ]. (33)

Proof. Since νt+1 and µt+1 are given by (19) and (18), respectively,

νt+1 − µt+1 = νt − µt + ηt
{

(T µt − S∗ρfρ)− (Txνt − S∗xy)
}

= (I − ηtTx)(νt − µt) + ηt
{

(T µt − S∗ρfρ)− (Txµt − S∗xy)
}
,
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which is exactly

νt+1 − µt+1 = (I − ηtTx)(νt − µt) + ηtNt.

Applying this relationship iteratively, with ν1 = µ1 = 0,

νt+1 − µt+1 = Πt
1(Tx)(ν1 − µ1) +

t∑

k=1

ηkΠt
k+1(Tx)Nk =

t∑

k=1

ηkΠt
k+1(Tx)Nk.

By (17), we have

‖Sρνt+1 − Sρµt+1‖ρ =

∥∥∥∥∥
t∑

k=1

ηkT
1
2 Πt

k+1(Tx)Nk

∥∥∥∥∥
H

,

which leads to the desired result (32). The proof is complete.

The above lemma demonstrates that in order to upper bound E[‖Sρµt − Sρνt‖2ρ], one may only need

to bound
∥∥∥T 1

2 Πt
k+1(Tx)Nk

∥∥∥
H
. A detailed look at this latter term indicates that one may analysis

the terms T 1
2 Πt

k+1(Tx) and Nk separately, since E[Nk] = 0 and the properties of the deterministic
sequence {µk}k are well developed in Section B.

Lemma C.2. Under Assumptions 2 and 3 , let ζ ≥ 1/2. Then for any fixed λ > 0, with probability
at least 1− δ1, the following holds for all k ∈ N :
1) If ζ ≥ 1/2,

‖(T + λ)−
1
2Nk‖H ≤ 4(Rκ2ζ +

√
M)

(
κ

m
√
λ

+

√
2
√
vcγ√

mλγ

)
log

4

δ1
. (34)

2) If ζ ∈]0, 1/2],

‖(T + λ)−
1
2Nk‖H ≤ 4


κ


κ2ζ−1 ∨

(
k∑

i=1

ηi

) 1
2−ζ

+

√
M



(

κ

m
√
λ

+

√
2
√
vcγ√

mλγ

)
log

4

δ1
.

(35)

Proof. We will apply Berstein inequality from Lemma A.1 to prove the result.

Bounding
∥∥∥(T + λ)−

1
2

(
S∗ρfρ − S∗xy

)∥∥∥
H

For all i ∈ [m], let wi = yi(T + λI)−
1
2xi. Obviously, from the definitions of fρ (see (6)) and Sρ,

E[w1] = Ex1 [fρ(x1)(T + λI)−
1
2x1] = (T + λI)−

1
2S∗ρfρ.

Thus,

(T + λ)−
1
2

(
S∗ρfρ − S∗xy

)
=

1

m

∑

i=1

(E[wi]− wi).

We next estimate the constants B and σ2(w1) in (21). Note that for any l ≥ 2,

E[‖w1 − E[w1]‖lH ] ≤ E[(‖w1‖H + E[‖w1‖H ])l].

By using Hölder’s inequality twice,

E[‖w1 − E[w1]‖lH ] ≤ 2l−1E[‖w1‖lH + (E[‖w1‖H ])l] ≤ 2l−1E[‖w1‖lH + E[‖w1‖lH ]].

The right-hand side is exactly 2lE[‖w1‖lH ]. Therefore, by recalling the definition ofw1 and expanding
the integration,

E[‖w1 − E[w1]‖lH ] ≤ 2l
∫

Y

yldρ(y|x)

∫

X

‖(T + λI)−
1
2x‖lHdρX(x). (36)
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Note that by using Hölder’s inequality,
∫

Y

yldρ(y|x)

∫

X

≤
(∫

Y

|y|2ldρ(y|x)

) 1
2

.

Using Assumption 1 to the above,∫

Y

yldρ(y|x)

∫

X

≤
√
l!M lv ≤ l!(

√
M)l
√
v.

Plugging the above into (36), we reach

E[‖w1 − E[w1]‖lH ] ≤ l!(2
√
M)l
√
v

∫

X

‖(T + λI)−
1
2x‖lHdρX(x).

Using Assumption (3) which imples

‖(T + λI)−
1
2x‖H ≤

‖x‖H√
λ
≤ κ√

λ
,

we get that

E[‖w1 − E[w1]‖lK ] ≤ l!(2
√
M)l
√
v

(
κ√
λ

)l−2 ∫

X

‖(T + λI)−
1
2x‖2HdρX(x).

Using the fact that E[‖ξ‖2H ] = E[tr(ξ ⊗ ξ)] = tr(E[ξ ⊗ ξ]) and E[x⊗ x] = T , we know that∫

X

‖(T + λI)−
1
2x‖2HdρX(x) = tr((T + λI)−

1
2 T (T + λI)−

1
2 ) = tr((T + λI)−1T ),

and as a result of the above and Assumption 3,∫

X

‖(T + λI)−
1
2x‖2HdρX(x) ≤ cγλ−γ .

Therefore,

E[‖w1 − E[w1]‖lH ] ≤ l!(2
√
M)l
√
v

(
κ√
λ

)l−2
cγλ
−γ =

1

2
l!

(
2κ
√
M√
λ

)l−2
8M
√
vcγλ

−γ .

Applying Berstein inequality withB = 2κ
√
M√
λ

and σ =
√

8M
√
vcγλ−γ , we get that with probability

at least 1− δ1
2 , there holds

∥∥∥(T + λ)−
1
2

(
S∗ρfρ − S∗xy

)∥∥∥
H

=

∥∥∥∥∥
1

m

m∑

i=1

(E[wi]− wi)
∥∥∥∥∥
H

≤ 4
√
M

(
κ

m
√
λ

+

√
2
√
vcγ√

mλγ

)
log

4

δ1
.

(37)

Bounding ‖(T + λ)−
1
2 (T − Tx)‖

Let ξi = (T + λ)−
1
2xi ⊗ xi, for all i ∈ [m]. It is easy to see that E[ξi] = (T + λ)−

1
2 T , and that

(T +λ)−
1
2 (T −Tx) = 1

m

∑m
i=1(E[ξi]−ξi). Denote the Hilbert-Schmidt norm of a bounded operator

from H to H by ‖ · ‖HS . Note that

‖ξ1‖2HS = ‖x1‖2HTrace((T + λ)−1/2x1 ⊗ x1(T + λ)−1/2) = ‖x1‖2HTrace((T + λ)−1x1 ⊗ x1).

By Assumption (3),

‖ξ1‖HS ≤
√
κ2Trace((T + λ)−1x1 ⊗ x1) ≤

√
κ2Trace(x1 ⊗ x1)/λ ≤ κ2/

√
λ,

and furthermore, by Assumption 3,
E[‖ξ1‖2HS ] ≤ κ2ETrace((T + λ)−1x1 ⊗ x1) = κ2Trace((T + λ)−1T ) ≤ κ2cγλ−γ .

According to Lemma A.1, we get that with probability at least 1− δ1
2 , there holds

‖(T + λ)−
1
2 (T − Tx)‖HS ≤ 2κ

(
2κ

m
√
λ

+

√
cγ√
mλγ

)
log

4

δ1
. (38)

Finally, using the triangle inequality, we have,

‖(T + λ)−
1
2Nk‖H ≤ ‖(T + λ)−

1
2 (T − Tx)‖‖µk‖H +

∥∥∥(T + λ)−
1
2

(
S∗ρfρ − S∗xy

)∥∥∥
H
.

Applying Lemma B.3 to the above, introducing with (37) and (38), and then noting that κ ≥ 1 and
v ≥ 1, one can prove the desired results.
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The next lemma is borrowed from [20], derived by applying a recent Bernstein inequality from
[27, 13] for a sum of random operators.

Lemma C.3. Let δ2 ∈ (0, 1) and 9κ2

m log m
δ2
≤ λ ≤ ‖T ‖. Then the following holds with probability

at least 1− δ2,
‖(Tx + λI)−

1
2 T 1

2 ‖ ≤ ‖(Tx + λ)−
1
2 (T + λ)

1
2 ‖ ≤ 2. (39)

Now we are in a position to estimate the sample variance.
Proposition C.4. Let η1κ2 ≤ 1 and (34) for all k ∈ [T ]. Assume that (39) holds. Then the following
holds for all t ∈ [T ] :
1) If ζ ≥ 1/2,

‖Sρνt+1 − Sρµt+1‖ρ

≤4(Rκ2ζ +
√
M)

(
κ

m
√
λ

+

√
2
√
vcγ√

mλγ

)(
t−1∑

k=1

ηk/2∑t
i=k+1 ηi

+ λ
t−1∑

k=1

ηk +
√

2κ2ηt

)
log

4

δ1
.

(40)

2) If ζ ≤ 1/2,

‖Sρνt+1 − Sρµt+1‖ρ ≤ 4


κ


κ2ζ−1 ∨

(
k∑

i=1

ηi

) 1
2−ζ

+

√
M




×
(
t−1∑

k=1

ηk/2∑t
i=k+1 ηi

+ λ
t−1∑

k=1

ηk +
√

2κ2ηt

)(
κ

m
√
λ

+

√
2
√
vcγ√

mλγ

)
log

4

δ1
. (41)

Proof. For notational simplicity, we let Tλ = T + λI and Tx,λ = Tx + λI. Note that by Lemma C.1,
we have (32). When k ∈ [t− 1], by rewriting T 1

2 Πt
k+1(Tx)Nk as

T 1
2 T −

1
2

x,λ T
1
2

x,λΠt
k+1(Tx)T

1
2

x,λT
− 1

2

x,λ T
1
2

λ T
− 1

2

λ Nk,

we can upper bound ‖T 1
2 Πt

k+1(Tx)Nk‖H as

‖T 1
2 Πt

k+1(Tx)Nk‖H ≤ ‖T
1
2 T −

1
2

x,λ ‖‖T
1
2

x,λΠt
k+1(Tx)T

1
2

x,λ‖‖T
− 1

2

x,λ T
1
2

λ ‖‖T
− 1

2

λ Nk‖H .
Applying (39), the above can be relaxed as

‖T 1
2 Πt

k+1(Tx)Nk‖H ≤ 4‖T
1
2

x,λΠt
k+1(Tx)T

1
2

x,λ‖‖T
− 1

2

λ Nk‖H ,
which is equivalent to

‖T
1
2

λ Πt
k+1(Tx)Nk‖H ≤ 4‖Tx,λΠt

k+1(Tx)‖‖T −
1
2

λ Nk‖H .
Thus, following from ηkκ

2 ≤ 1 which implies ηk‖Tx‖ ≤ 1,

‖Tx,λΠt
k+1(Tx)‖ ≤ ‖TxΠt

k+1(Tx)‖+ ‖λΠt
k+1(Tx)‖

≤ ‖TxΠt
k+1(Tx)‖+ λ.

Applying Lemma B.1 with ζ = 1 to bound ‖TxΠt
k+1(Tx)‖, we get

‖Tx,λΠt
k+1(Tx)‖ ≤ 1

e
∑t
j=k+1 ηj

+ λ.

When k = t,

‖T 1
2 Πt

k+1(Tx)Nk‖H = ‖T 1
2Nt‖H ≤ ‖T

1
2 ‖‖T

1
2

λ ‖‖T
− 1

2

λ Nt‖H
≤ ‖T ‖ 1

2 (‖T ‖+ λ)
1
2 ‖T −

1
2

λ Nt‖H .
Since λ ≤ ‖T ‖ ≤ tr(T ) ≤ κ2, we derive

‖T 1
2 Πt

k+1(Tx)Nt‖H ≤
√

2κ2‖T −
1
2

λ Nt‖H .
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From the above analysis, we conclude that
∑t
k=1 ηk

∥∥∥T 1
2 Πt

k+1(Tx)Nk

∥∥∥
H

can be upper bounded by

≤ sup
k∈[t]
‖T −

1
2

λ Nk‖H
(
t−1∑

k=1

ηk/2∑t
i=k+1 ηi

+ λ

t−1∑

k=1

ηk +
√

2κ2ηt

)
.

Plugging (34) (or (35)) into the above, and then combining with (32), we get the desired bound (40)
(or (41)). The proof is complete.

Setting ηt = η1t
−θ in the above proposition, with some basic estimates from Appendix A, we get the

following explicit bounds for the sample variance.
Proposition C.5. Let ηt = η1t

−θ and (34) for all t ∈ [T ], with η1 ∈]0, κ−2] and θ ∈ [0, 1[. Assume
that (39) holds. Then the following holds for all t ∈ [T ]:
1) If ζ ≥ 1/2,

‖Sρνt+1 − Sρµt+1‖ρ

≤4(Rκ2ζ +
√
M)

(
2λη1t

1−θ

1− θ + log t+ 1 +
√

2η1κ
2

)(
κ

m
√
λ

+

√
2
√
vcγ√

mλγ

)
log

4

δ1
.

(42)

2) If ζ ≤ 1/2,

‖Sρνt+1 − Sρµt+1‖ρ ≤ 4

(
κ

(
κ2ζ−1 ∨

(
2η1t

1−θ

1− θ

) 1
2−ζ
)

+
√
M

)

×
(

2λη1t
1−θ

1− θ + log t+ 1 +
√

2η1κ
2

)(
κ

m
√
λ

+

√
2
√
vcγ√

mλγ

)
log

4

δ1
. (43)

Proof. By Proposition C.4, we have (40). Note that

t−1∑

k=1

ηk∑t
i=k+1 ηi

=

t−1∑

k=1

k−θ∑t
i=k+1 i

−θ ≤
t−1∑

k=1

k−θ

(t− k)t−θ
.

Applying Lemma A.4, we get

t−1∑

k=1

ηk∑t
i=k+1 ηi

≤ 2 + 2 log t,

and by Lemma A.2,

t−1∑

k=1

ηk = η1

t−1∑

k=1

k−θ ≤ 2η1t
1−θ

1− θ .

Introducing the last two estimates into (40) and (42), one can get the desired results. The proof is
complete.

In conclusion, we get the following result for the sample variance.

Theorem C.6. Under Assumptions 1, 2 and 3, let δ1, δ2 ∈]0, 1[ and 9κ2

m log m
δ2
≤ λ ≤ ‖T ‖. Let

ηt = η1t
−θ for all t ∈ [T ], with η1 ∈]0, κ−2] and θ ∈ [0, 1[. Then with probability at least 1−δ1−δ2,

the following holds for all t ∈ [T ] :
1) if ζ ≥ 1/2, we have (42).
2) if ζ < 1/2, we have (43).

D Computational Variance

In this section, we estimate the computational variance, E[‖Sρωt − Sρνt‖2ρ]. For this, a series of
lemmas is necessarily introduced.
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D.1 Bounding the Empirical Risk

This subsection is devoted to upper bounding EJ[Ez(ωl)]. The process relies on some tools from
convex analysis and a decomposition related to the weighted averages and the last iterates from
[22, 12]. We begin by introducing the following lemma, a fact based on the square loss’ special
properties.
Lemma D.1. Given any sample z, and l ∈ N, let ω ∈ H be independent from Jl, then

ηl (Ez(ωl)− Ez(ω)) ≤ ‖ωl − ω‖2H − EJl‖ωl+1 − ω‖2H + η2l κ
2Ez(ωl). (44)

Proof. Since ωt+1 is given be (4), subtracting both sides of (4) by ω, taking the square H-norm, and
expanding the inner product,

‖ωl+1 − ω‖2H = ‖ωl − ω‖2H +
η2l
b2

∥∥∥∥∥∥

bl∑

i=b(l−1)+1

(〈ωl, xji〉H − yji)xji

∥∥∥∥∥∥

2

H

+
2ηl
b

bl∑

i=b(l−1)+1

(〈ωl, xji〉H − yji)〈ω − ωl, xji〉H .

By Assumption (3), ‖xji‖H ≤ κ, and thus
∥∥∥∥∥∥

bl∑

i=b(l−1)+1

(〈ωl, xji〉H − yji)xji

∥∥∥∥∥∥

2

H

≤




bl∑

i=b(l−1)+1

|〈ωl, xji〉H − yji |κ




2

≤ κ2b
bl∑

i=b(l−1)+1

(〈ωl, xji〉H − yji)2,

where for the last inequality, we used Cauchy-Schwarz inequality. Thus,

‖ωl+1 − ω‖2H ≤ ‖ωl − ω‖2H +
η2l κ

2

b

bl∑

i=b(l−1)+1

(〈ωl, xji〉H − yji)2

+
2ηl
b

bl∑

i=b(l−1)+1

(〈ωl, xji〉H − yji)(〈ω, xji〉H − 〈ωl, xji〉H).

Using the basic inequality a(b− a) ≤ (b2 − a2)/2,∀a, b ∈ R,

‖ωl+1 − ω‖2H ≤ ‖ωl − ω‖2H +
η2l κ

2

b

bl∑

i=b(l−1)+1

(〈ωl, xji〉H − yji)2

+
ηl
b

bl∑

i=b(l−1)+1

(
(〈ω, xji〉H − yji)2 − (〈ωl, xji〉H − yji)2

)
.

Noting that ωl and ω are independent from Jl, and taking the expectation on both sides with respect
to Jl,

EJl‖ωl+1 − ω‖2H ≤ ‖ωl − ω‖2H + η2l κ
2Ez(ωl) + ηl (Ez(ω)− Ez(ωl)) ,

which leads to the desired result by rearranging terms. The proof is complete.

Using the above lemma and a decomposition related to the weighted averages and the last iterates
from [22, 12], we can prove the following relationship.
Lemma D.2. Let η1κ2 ≤ 1/2 for all t ∈ N. Then

ηtEJ[Ez(ωt)] ≤ 4Ez(0)
1

t

t∑

l=1

ηl + 2κ2
t−1∑

k=1

1

k(k + 1)

t−1∑

i=t−k
η2i EJ[Ez(ωi)]. (45)
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Proof. For k = 1, · · · , t− 1,

1

k

t∑

i=t−k+1

ηiEJ[Ez(ωi)]−
1

k + 1

t∑

i=t−k
ηiEJ[Ez(ωi)]

=
1

k(k + 1)

{
(k + 1)

t∑

i=t−k+1

ηiEJ[Ez(ωi)]− k
t∑

i=t−k
ηiEJ[Ez(ωi)]

}

=
1

k(k + 1)

t∑

i=t−k+1

(ηiEJ[Ez(ωi)]− ηt−kEJ[Ez(ωt−k)]).

Summing over k = 1, · · · , t− 1, and rearranging terms, we get [12]

ηtEJ[Ez(ωt)] =
1

t

t∑

i=1

ηiEJ[Ez(ωi)] +
t−1∑

k=1

1

k(k + 1)

t∑

i=t−k+1

(ηiEJ[Ez(ωi)]− ηt−kEJ[Ez(ωt−k)]).

Since {ηt}t is decreasing and EJ[Ez(ωt−k)] is non-negative, the above can be relaxed as

ηtEJ[Ez(ωt)] ≤
1

t

t∑

i=1

ηiEJ[Ez(ωi)] +
t−1∑

k=1

1

k(k + 1)

t∑

i=t−k+1

ηiEJ[Ez(ωi)− Ez(ωt−k)]. (46)

In the rest of the proof, we will upper bound the last two terms of the above.

To bound the first term of the right side of (46), we apply Lemma D.1 with ω = 0 to get

ηlEJ (Ez(ωl)− Ez(0)) ≤ EJ[‖ωl‖2H − ‖ωl+1‖2H ] + η2l κ
2EJ[Ez(ωl)].

Rearranging terms,

ηl(1− ηlκ2)EJ[Ez(ωl)] ≤ EJ[‖ωl‖2H − ‖ωl+1‖2H ] + ηlEz(0).

It thus follows from the above and ηlκ2 ≤ 1/2 that

ηlEJ[Ez(ωl)]/2 ≤ EJ[‖ωl‖2H − ‖ωl+1‖2H ] + ηlEz(0).

Summing up over l = 1, · · · , t,
t∑

l=1

ηlEJ[Ez(ωl)]/2 ≤ EJ[‖w1‖2H − ‖ωt+1‖2H ] + Ez(0)
t∑

l=1

ηl.

Introducing with ω1 = 0, ‖ωt+1‖2H ≥ 0, and then multiplying both sides by 2/t, we get

1

t

t∑

l=1

ηlEJ[Ez(ωl)] ≤ 2Ez(0)
1

t

t∑

l=1

ηl. (47)

It remains to bound the last term of (46). Let k ∈ [t − 1] and i ∈ {t − k, · · · , t}. Note that given
the sample z, ωi is depending only on J1, · · · ,Ji−1 when i > 1 and ω1 = 0. Thus, we can apply
Lemma D.1 with ω = ωt−k to derive

ηi (Ez(ωi)− Ez(ωt−k)) ≤ ‖ωi − ωt−k‖2H − EJi‖ωi+1 − ωt−k‖2H + η2i κ
2Ez(ωi).

Therefore,

ηiEJ [Ez(ωi)− Ez(ωt−k)] ≤ EJ[‖ωi − ωt−k‖2H − ‖ωi+1 − ωt−k‖2H ] + η2i κ
2EJ[Ez(ωi)].

Summing up over i = t− k, · · · , t,
t∑

i=t−k
ηiEJ [Ez(ωi)− Ez(ωt−k)] ≤ κ2

t∑

i=t−k
η2i EJ[Ez(ωi)].
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Note that the left hand side is exactly
∑t
i=t−k+1 ηiEJ [Ez(ωi)− Ez(ωt−k)]. We thus know that the

last term of (46) can be upper bounded by

κ2
t−1∑

k=1

1

k(k + 1)

t∑

i=t−k
η2i EJ[Ez(ωi)]

= κ2
t−1∑

k=1

1

k(k + 1)

t−1∑

i=t−k
η2i EJ[Ez(ωi)] + κ2η2tEJ[Ez(ωt)]

t−1∑

k=1

1

k(k + 1)
.

Using the fact that

t−1∑

k=1

1

k(k + 1)
=

t−1∑

k=1

(
1

k
− 1

k + 1

)
= 1− 1

t
≤ 1,

and κ2ηt ≤ 1/2, we get that the last term of (46) can be bounded as

t−1∑

k=1

1

k(k + 1)

t∑

i=t−k+1

ηi(EJ[Ez(ωi)]− EJ[Ez(ωt−k)])

≤ κ2
t−1∑

k=1

1

k(k + 1)

t−1∑

i=t−k
η2i EJ[Ez(ωi)] + ηtEJ[Ez(ωt)]/2.

Plugging the above and (47) into the decomposition (46), and rearranging terms

ηtEJ[Ez(ωt)]/2 ≤ 2M2 1

t

t∑

l=1

ηl + κ2
t−1∑

k=1

1

k(k + 1)

t−1∑

i=t−k
η2i EJ[Ez(ωi)],

which leads to the desired result by multiplying both sides by 2. The proof is complete.

We also need to the following lemma, whose proof can be done by using an induction argument.
Lemma D.3. Let {ut}Tt=1, {At}Tt=1 and {Bt}Tt=1 be three sequences of non-negative numbers such
that u1 ≤ A1 and

ut ≤ At +Bt sup
i∈[t−1]

ui, ∀t ∈ {2, 3, · · · , T}. (48)

Let supt∈[T ]Bt ≤ B < 1. Then for all t ∈ [T ],

sup
k∈[t]

ut ≤
1

1−B sup
k∈[t]

Ak. (49)

Proof. When t = 1, (49) holds trivially since u1 ≤ A1 and B < 1. Now assume for some t ∈ N
with 2 ≤ t ≤ T,

sup
i∈[t−1]

ui ≤
1

1−B sup
i∈[t−1]

Ai.

Then, by (48), the above hypothesis, and Bt ≤ B, we have

ut ≤ At +Bt sup
i∈[t−1]

ui ≤ At +
Bt

1−B sup
i∈[t−1]

Ai ≤ sup
i∈[t]

Ai

(
1 +

Bt
1−B

)
≤ sup
i∈[t]

Ai
1

1−B .

Consequently,

sup
k∈[t]

ut ≤
1

1−B sup
k∈[t]

Ak,

thereby showing that indeed (49) holds for t. By mathematical induction, (49) holds for every t ∈ [T ].
The proof is complete.

Now we can bound EJ[Ez(ωk)] as follows.
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Lemma D.4. Let η1κ2 ≤ 1/2 and for all t ∈ [T ] with t ≥ 2,

1

ηt

t−1∑

k=1

1

k(k + 1)

t−1∑

i=t−k
η2i ≤

1

4κ2
. (50)

Then for all t ∈ [T ],

sup
k∈[t]

EJ[Ez(ωk)] ≤ 8Ez(0) sup
k∈[t]

{
1

ηkk

k∑

l=1

ηl

}
. (51)

Proof. By Lemma D.2, we have (45). Dividing both sides by ηt, we can relax the inequality as

EJ[Ez(ωt)] ≤ 4Ez(0)
1

ηtt

t∑

l=1

ηl + 2κ2
1

ηt

t−1∑

k=1

1

k(k + 1)

t−1∑

i=t−k
η2i sup

i∈[t−1]
EJ[Ez(ωi)].

In Lemma D.3, we let ut = EJ[Ez(ωt)], At = 4Ez(0) 1
ηtt

∑t
l=1 ηl and

Bt = 2κ2
1

ηt

t−1∑

k=1

1

k(k + 1)

t−1∑

i=t−k
η2i .

Condition (50) guarantees that supt∈[T ]Bt ≤ 1/2. Thus, (49) holds, and the desired result follows
by plugging with B = 1/2. The proof is complete.

Finally, we need the following lemma to bound Ez(0), whose proof follows from applying the
Bernstein Inequality from Lemma A.1.
Lemma D.5. Under Assumption 1, with probability at least 1− δ3 (δ3 ∈]0, 1[), there holds

Ez(0) ≤Mv + 2Mv

(
1

m
+

√
2√
m

)
log

2

δ3
.

In particular, if m ≥ 32 log2 2
δ3
, then

Ez(0) ≤ 2Mv. (52)

Proof. Following from (5),
∫

Z

y2ldρ ≤ 1

2
l!M l−2 · (2M2v), ∀l ∈ N,

and ∫

Z

y2dρ ≤Mv.

Therefore, ∫

Z

|y2 − Ey2|ldρ ≤
∫

Z

max(|y|2l, (Ey2)l)dρ

≤
∫

Z

(|y|2l + (Ey2)l)dρ

≤ 1

2
l!M l−2 · (2M2v) + (Mv)l

≤ 1

2
l!(Mv)l−2(2Mv)2,

where for the last inequality we used v ≥ 1. Applying Lemma A.1, with ωi = y2i for all i ∈ [n],
B = Mv and σ = 2Mv, we know that with probability at least 1− δ3, there holds

1

n

n∑

i=1

y2i −
∫

Z

y2dρ ≤ 2Mv

(
1

n
+

2√
n

)
log

2

δ3
.

The proof is complete.
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D.2 Bounding
∥∥∥T 1

2 Πt
k+1(Tx)

∥∥∥

Lemma D.6. Assume (39) holds for some λ > 0 and η1κ2 ≤ 1. Then

‖T 1
2 Πt

k+1(Tx)‖2 ≤ 1∑t
i=k+1 ηi

+ 4λ.

Proof. Note that we have

‖T 1
2 Πt

k+1(Tx)‖ ≤ ‖T 1
2 (Tx + λI)−

1
2 ‖‖(Tx + λI)

1
2 Πt

k+1(Tx)‖.
Using (39), we can relax the above as

‖T 1
2 Πt

k+1(Tx)‖ ≤ 2‖(Tx + λI)
1
2 Πt

k+1(Tx)‖,
which leads to

‖T 1
2 Πt

k+1(Tx)‖2 ≤ 4‖(Tx + λI)
1
2 Πt

k+1(Tx)‖2.
Since

‖(Tx + λI)
1
2 Πt

k+1(Tx)‖2 = ‖(Tx + λI)Πt
k+1(Tx)Πt

k+1(Tx)‖

≤ ‖TxΠt
k+1(Tx)Πt

k+1(Tx)‖+ λ

= ‖T
1
2

x Πt
k+1(Tx)‖2 + λ,

and with ηtκ2 ≤ 1, ‖Tx‖ ≤ tr(Tx) ≤ κ2, by Lemma B.1,

‖T
1
2

x Πt
k+1(Tx)‖2 ≤ 1

2e
∑t
i=k+1 ηi

≤ 1

4
∑t
i=k+1 ηi

,

we thus derive the desired result. The proof is complete.

D.3 Deriving Error Bounds

With Lemmas D.4 and D.6, we are ready to estimate the computational variance , EJ‖ft − gt‖2ρ, as
follows.
Proposition D.7. Assume (39) holds for some λ > 0, η1κ2 ≤ 1/2, (50) and (52). Then, we have for
all t ∈ [T ],

EJ‖Sρωt+1−Sρνt+1‖2ρ ≤
16Mvκ2

b
sup
k∈[t]

{
1

ηkk

k∑

l=1

ηl

}(
t−1∑

k=1

η2k∑t
i=k+1 ηi

+ 4λ

t−1∑

k=1

η2k + η2t κ
2

)
.

(53)

Proof. Since ωt+1 and νt+1 are given by (4) and (19), respectively,

ωt+1 − νt+1 = (ωt − νt) + ηt



(Txνt − S∗xy)− 1

b

bt∑

i=b(t−1)+1

(〈ωt, xji〉H − yji)xji





= (I − ηtTx)(ωt − νt) +
ηt
b

bt∑

i=b(t−1)+1

{(Txωt − S∗xy)− (〈ωt, xji〉H − yji)xji} .

Applying this relationship iteratively,

ωt+1 − νt+1 = Πt
1(Tx)(ω1 − ν1) +

1

b

t∑

k=1

bk∑

i=b(k−1)+1

ηkΠt
k+1(Tx)Mk,i,

where we denote
Mk,i = (Txωk − S∗xy)− (〈ωk, xji〉H − yji)xji . (54)

22



Introducing with ω1 = ν1 = 0,

ωt+1 − νt+1 =
1

b

t∑

k=1

bk∑

i=b(k−1)+1

ηkΠt
k+1(Tx)Mk,i.

Therefore,

EJ‖Sρωt+1 − Sρνt+1‖2ρ =
1

b2
EJ

∥∥∥∥∥∥

t∑

k=1

bk∑

i=b(k−1)+1

ηkΠt
k+1(Tx)Mk,i

∥∥∥∥∥∥

2

ρ

=
1

b2

t∑

k=1

bk∑

i=b(k−1)+1

η2kEJ

∥∥Πt
k+1(Tx)Mk,i

∥∥2
ρ
, (55)

where for the last equality, we use the fact that if k 6= k′, or k = k′ but i 6= i′6, then

EJ〈Πt
k+1(Tx)Mk,i,Π

t
k′+1(Tx)Mk′,i′〉ρ = 0.

Indeed, if k 6= k′, without loss of generality, we consider the case k < k′. Recalling that Mk,i is
given by (54) and that given any z, fk is depending only on J1, · · · ,Jk−1, we thus have

EJ〈Πt
k+1(Tx)Mk,i,Π

t
k′+1(Tx)Mk′,i′〉ρ

= EJ1,··· ,Jk′−1
〈Πt

k+1(Tx)Mk,i,Π
t
l+1(Tx)EJk′ [Mk′,i′ ]〉ρ = 0.

If k = k′ but i 6= i′, without loss of generality, we assume i < i′. By noting that ωk is depending
only on J1, · · · ,Jk−1 and Mk,i is depending only on ωk and zji (given any sample z),

EJ〈Πt
k+1(Tx)Mk,i,Π

t
k+1(Tx)Mk,i′〉ρ

= EJ1,··· ,Jk−1
〈Πt

k+1(Tx)Eji [Mk,i],Π
t
l+1(Tx)Eji′ [Mk,i′ ]〉ρ = 0.

Using the isometry property (17) to (55),

EJ

∥∥Πt
k+1(Tx)Mk,i

∥∥2
ρ

= EJ

∥∥∥T 1
2 Πt

k+1(Tx)Mk,i

∥∥∥
2

H
≤
∥∥∥T 1

2 Πt
k+1(Tx)

∥∥∥
2

EJ ‖Mk,i‖2H ,

and by applying the inequality E[‖ξ − E[ξ]‖2H ] ≤ E[‖ξ‖2H ],

EJ ‖Mk,i‖2H ≤ EJ ‖(〈ωk, xji〉H − yji)xji‖2H ≤ κ2EJ[(〈ωk, xji〉H − yji)2] = κ2EJ[Ez(ωk)],

where for the last inequality we use (3). Therefore,

EJ‖Sρωt+1 − Sρνt+1‖2ρ ≤
κ2

b

t∑

k=1

η2k

∥∥∥T 1
2 Πt

k+1(Tx)
∥∥∥
2

EJ[Ez(ωk)].

According to Lemma D.4, we have (51). It thus follows that

EJ‖Sρωt+1 − Sρνt+1‖2ρ ≤
8Ez(0)κ2

b
sup
k∈[t]

{
1

ηkk

k∑

l=1

ηl

}
t∑

k=1

η2k

∥∥∥T 1
2 Πt

k+1(Tx)
∥∥∥
2

.

Now the proof can be finished by applying Lemma D.6 which tells us that

t∑

k=1

η2k

∥∥∥T 1
2 Πt

k+1(Tx)
∥∥∥
2

=
t−1∑

k=1

η2k

∥∥∥T 1
2 Πt

k+1(Tx)
∥∥∥
2

+ η2t

∥∥∥T 1
2

∥∥∥
2

≤
t−1∑

k=1

η2k∑t
i=k+1 ηi

+ 4λ
t−1∑

k=1

η2k + η2t κ
2,

and (52) to the above. The proof is complete.

6This is possible only when b ≥ 2.
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Setting ηt = η1t
−θ for some appropriate η1 and θ in the above proposition, we get the following

explicitly upper bounds for EJ‖Sρωt − Sρωt‖2ρ.
Proposition D.8. Assume (39) holds for some λ > 0 and (52). Let ηt = η1t

−θ for all t ∈ [T ], with
θ ∈ [0, 1[ and

0 < η1 ≤
tmin(θ,1−θ)

8κ2(log t+ 1)
, ∀t ∈ [T ]. (56)

Then, for all t ∈ [T ],

EJ‖ωt+1 − νt+1‖2ρ ≤
16Mvκ2

b(1− θ)
(

5η1t
−min(θ,1−θ) + 8λη21t

(1−2θ)+
)

(1 ∨ log t). (57)

Proof. We will use Proposition D.7 to prove the result. Thus, we need to verify the condition (50).
Note that

t−1∑

k=1

1

k(k + 1)

t−1∑

i=t−k
η2i =

t−1∑

i=1

η2i

t−1∑

k=t−i

1

k(k + 1)
=

t−1∑

i=1

η2i

(
1

t− i −
1

t

)
≤

t−1∑

i=1

η2i
t− i .

Substituting with ηi = ηi−θ, and by Lemma A.4,
t−1∑

k=1

1

k(k + 1)

t−1∑

i=t−k
η2i ≤ η21

t−1∑

i=1

i−2θ

t− i ≤ 2η21t
−min(2θ,1)(log t+ 1).

Dividing both sides by ηt (= ηt−θ), and then using (56),

1

ηt

t−1∑

k=1

1

k(k + 1)

t−1∑

i=t−k
η2i ≤ 2η1t

−min(θ,1−θ)(log t+ 1) ≤ 1

4κ2
.

This verifies (50). Note also that by taking t = 1 in (56), for all t ∈ [T ] ,

ηtκ
2 ≤ η1κ2 ≤

1

8κ2
≤ 1

2
.

We thus can apply Proposition D.7 to derive (53). What remains is to control the right hand side of
(53). Since

t−1∑

k=1

η2k∑t
i=k+1 ηi

= η1

t−1∑

k=1

k−2θ∑t
i=k+1 i

−θ ≤ η1
t−1∑

k=1

k−2θ

(t− k)t−θ
,

combining with Lemma A.4,
t−1∑

k=1

η2k∑t
i=k+1 ηi

≤ 2η1t
−min(θ,1−θ)(log t+ 1).

Also, by Lemma A.2,

1

ηkk

k∑

l=1

ηl =
1

k1−θ

k∑

l=1

l−θ ≤ 1

1− θ ,

and by Lemma A.3,
t−1∑

k=1

η2k = η21

t−1∑

k=1

k−2θ ≤ η21tmax(1−2θ,0)(log t+ 1).

Introducing the last three estimates into (53) and using that η2t κ
2 ≤ η1t−θ by (56), we get the desired

result. The proof is complete.

Collect some of the above analysis, we get the following result for the computational variance.

Theorem D.9. Under Assumptions 1 and 3, let δ2 ∈]0, 1[, 9κ2

m log m
δ2
≤ λ ≤ ‖T ‖, δ3 ∈]0, 1[,

m ≥ 32 log2 2
δ3
, and ηt = ηt−θ for all t ∈ [T ], with θ ∈ [0, 1[ and η such that (56). Then, with

probability at least 1− δ2 − δ3, (57) holds for all t ∈ [T ].
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E Deriving Total Error Bounds

The purpose of this section is to derive total error bounds.

E.1 Attainable Case

We have the following general theorem for ζ ≥ 1/2, with which we prove our main results stated in
Section 3.
Theorem E.1. Under Assumptions 1, 2 and 3, let ζ ≥ 1/2, T ∈ N with T ≥ 3, δ ∈]0, 1[, ηt =
ηκ−2t−θ for all t ∈ [T ], with θ ∈ [0, 1[ and η such that

0 < η ≤ tmin(θ,1−θ)

8(log t+ 1)
, ∀t ∈ [T ]. (58)

If for some ε ∈]0, 1],

m ≥
(

18κ2

ε‖T ‖ log

(
27κ2

ε‖T ‖δ

))1/ε

, (59)

then the following holds with probability at least 1− δ: for all t ∈ [T ],

EJ[E(ωt+1)]− inf
ω∈H
E(ω) ≤ q1(ηt1−θ)−2ζ + q2m

γ(1−ε)−1(1 ∨ η2m2ε−2t2−2θ)(log T )2 log2 12

δ

+q3ηb
−1(t−min(θ,1−θ) ∨mε−1ηt(1−2θ)+) log T.

(60)

Here, q1 = 2R2ζ2ζ , q2 =
800(Rκ2ζ+

√
M)2(κ/

√
‖T ‖+

√
2
√
vcγ/‖T ‖γ)2

(1−θ)2 , and q3 = 208Mv
1−θ .

Proof. Let λ = ‖T ‖mε−1. Clearly, λ ≤ ‖T ‖. For any A ≥ 0 and B ≥ 1, by applying (25) with
ζ = 1, x = (Bm)ε and c = ε

2ABε ,

A log(Bm) =
A

ε
log((Bm)ε) ≤ A

ε
log

(
2ABε

eε

)
+

1

2
mε ≤ A

ε
log

(
AB

ε

)
+

1

2
mε. (61)

Using the above inequality with A = 9κ2

‖T ‖ and B = 1
δ2
, one can prove that the condition (59) ensures

that 9κ2

m log m
δ2
≤ λ is satisfied with δ2 = δ

3 , Therefore, by Lemma C.3, (39) holds with probability
at least 1− δ2. Similarly the condition (59) implies that m ≥ 32 log2 2

δ3
is satisfied with δ3 = δ

3 , and
thus by Lemma D.5, (52) holds with probability at least 1 − δ3. Combining with Lemma C.2, by
taking the union bound, we know that with probability at least 1− δ1 − δ2 − δ3, (39), (52) and (34)
hold for all k ∈ [T ]. Now, we can apply Propositions C.5 and D.8 to get (42) and (57). Noting that by
(56),

√
2η ≤ 1, and by a simple calculation, we derive from (42) that

‖Sρνt+1 − Sρµt+1‖2ρ

≤400(Rκ2ζ +
√
M)2(κ/

√
‖T ‖+

√
2
√
vcγ/‖T ‖γ)2

(1− θ)2 mγ(1−ε)−1(1 ∨ λ2η2κ−4t2−2θ ∨ log2 t) log2 4

δ1

≤400(Rκ2ζ +
√
M)2(κ/

√
‖T ‖+

√
2
√
vcγ/‖T ‖γ)2

(1− θ)2 mγ(1−ε)−1(1 ∨ η2m2ε−2t2−2θ)(log T )2 log2 4

δ1
,

where for the last inequality, we used ‖T ‖ ≤ κ2. Similarly, by a simple calculation, we get from (57)
that

EJ‖Sρωt+1 − Sρνt+1‖2ρ ≤ 208Mv

b(1− θ) (ηt−min(θ,1−θ) ∨ λη2κ−2t(1−2θ)+)(1 ∨ log t)

≤ 208Mv

b(1− θ) (ηt−min(θ,1−θ) ∨mε−1η2t(1−2θ)+) log T.

Letting δ1 = δ
3 , and introducing the above estimates and (27) into (16), we get (60). The proof is

complete.
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Proof of Theorem 3.3. By choosing ε = 1 − 1
2ζ+γ and θ = 0 in Theorem E.1, then the condition

(59) reduces to m ≥ mδ , where

mδ =

(
18κ2p

‖T ‖ log

(
27κ2p

‖T ‖δ

))p
, p =

2ζ + γ

2ζ + γ − 1
. (62)

The desired result thus follows by applying Theorem E.1.

E.2 Non Attainable Case

Theorem E.2. Under Assumptions 1, 2 and 3, let ζ ≤ 1/2, T ∈ N with T ≥ 3, δ ∈]0, 1[, ηt =
ηκ−2t−θ for all t ∈ [T ], with θ ∈ [0, 1[ and η such that (58) and for some ε ∈]0, 1], (59) holds. Then
the following holds with probability at least 1− δ: for all t ∈ [T ],

EJ[E(ωt+1)]− inf
ω∈H
E(ω) . (ηt1−θ)−2ζ +mγ(1−ε)−1(1 ∨ η2m2ε−2t2−2θ)

(
1 ∨ ηt1−θ

)1−2ζ
log2 t log2 4

δ1

+ηb−1(t−min(θ,1−θ) ∨mε−1ηt(1−2θ)+) log T.
(63)

Proof. The proof is similar to that for Theorem E.1. We include the sketch only. Similar to the proof
of Theorem E.1, one can prove that with probability at least 1 − δ1 − δ2 − δ3, (39), (52) and (35)
hold for all k ∈ [T ]. Now, we can apply Propositions C.5 and D.8 to get (43) and (57). Noting that by
(56),

√
2η ≤ 1, and by a simple calculation, we derive from (43) that

‖Sρνt+1 −Sρµt+1‖2ρ ≤
400

(
κ2ζ

(
1 ∨ 2ηt1−θ

1−θ

) 1
2−ζ

+
√
M

)2

(κ/
√
‖T ‖+

√
2
√
vcγ/‖T ‖γ)2

(1− θ)2

×mγ(1−ε)−1(1 ∨ λ2η2κ−4t2−2θ ∨ log2 t) log2 4

δ1
.

The rest of the proof parallelizes to that for Theorem E.1.

Remark E.3. Letting θ = 0 in the above theorem, and ignoring the logarithmic terms, the bound
(63) reads as

EJ[E(ωt+1)]− inf
ω∈H
E(ω) . (ηt)−2ζ +mγ(1−ε)−1(1 ∨mε−1ηt)2 (1 ∨ ηt)1−2ζ + ηb−1(1 ∨mε−1ηt).

Remark E.4. Better bounds for the case ζ ≤ 1/2 will be proved in the longer version of this paper.
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