
A Weighted alternating minimization

Algorithm 2 provides a detailed explanation of WAltMin, which follows a standard procedure for
matrix completion. We use R

⌦

(A) = w. ⇤ P
⌦

(A) to denote the Hadamard product between w
and P

⌦

(A): R
⌦

(A)(i, j) = w(i, j) ⇤ P
⌦

(A)(i, j) for (i, j) 2 ⌦ and 0 otherwise, where w 2
Rn1⇥n2

= 1/q̂ij is the weight matrix. Similarly we define the matrix R
1/2
⌦

(A) as R1/2
⌦

(A)(i, j) =p
w(i, j) ⇤ P

⌦

(A)(i, j) for (i, j) 2 ⌦ and 0 otherwise.

The algorithm contains two parts: initialization (Step 2-6) and weighted alternating minimization
(Step 7-10). In the first part, we compute SVD of the weighted sampled matrix R

⌦

(

fM) and then set
row i of U (0) to be zero if its norm is larger than a threshold (Step 6). More details of this trim step
can be found in [3]. In the second part, the goal is to solve the following non-convex problem by
alternating minimization:

min

U,V

X

(i,j)2⌦

wij(e
T
i UV T ej � fM(i, j))2, (8)

where ei, ej are standard base vectors. After running T iterations, the algorithm outputs a rank-r
approximation of fM presented in the convenient factored form.

Algorithm 2 WAltMin [3]

1: Input: P
⌦

(

fM) 2 Rn1⇥n2 , ⌦, r, q̂, and T
2: wij = 1/q̂ij when q̂ij > 0, 0 else, 8i, j
3: Divide ⌦ in 2T + 1 equal uniformly random subsets, i.e., ⌦ = {⌦

0

, . . . ,⌦
2T }

4: R
⌦0(

fM) = w. ⇤ P
⌦0(

fM)

5: U (0)

⌃

(0)

(V (0)

)

T
= SVD(R

⌦0(
fM), r)

6: Trim U (0) and let bU (0) be the output
7: for t = 0 to T � 1 do
8: bV (t+1)

= argminV kR1/2
⌦2t+1

(

fM � bU (t)V T
)k2F

9: bU (t+1)

= argminU kR1/2
⌦2t+2

(

fM � U(

bV (t+1)

)

T
)k2F

10: end for
11: Output: bU (T ) 2 Rn1⇥r and bV (T ) 2 Rn2⇥r.

B Technical Lemmas

We will frequently use the following concentration inequality in the proof.
Lemma B.1. (Matrix Bernstein’s Inequality [33]). Consider p independent random matrices
X

1

, ...., Xp in Rn⇥n, where each matrix has bounded deviation from its mean:

||Xi � E[Xi]||  L, 8i.

Let the norm of the covariance matrix be

�2

= max

(�����

�����E
"

pX

i=1

(Xi � E[Xi])(Xi � E[Xi])
T

#�����

����� ,

�����

�����E
"

pX

i=1

(Xi � E[Xi])
T
(Xi � E[Xi])

#�����

�����

)

Then the following holds for all t � 0:

P
"�����

�����

pX

i=1

(Xi � E[Xi])

�����

�����

#
 2n exp(

�t2/2

�2

+ Lt/3
).

A formal definition of JL transform is given below [29][34].
Definition B.2. A random matrix ⇧ 2 Rk⇥d forms a JL transform with parameters ✏, �, f or
JLT(✏, �, f ) for short, if with probability at least 1 � �, for any f -element subset V ⇢ Rd, for all
v, v0 2 V it holds that |h⇧v,⇧v0i � hv, v0i|  ✏||v|| · ||v0||.
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The following lemma [34] characterizes the tradeoff between the reduced dimension k and the error
level ✏.
Lemma B.3. Let 0 < ✏, � < 1, and ⇧ 2 Rk⇥d be a random matrix where the entries ⇧(i, j) are
i.i.d. N (0, 1/k) random variables. If k = ⌦(log(f/�)✏�2

), then ⇧ is a JLT(✏, �, f ).

We now present two lemmas that connect eA 2 Rk⇥n and eB 2 Rd⇥n with A 2 Rd⇥n and B 2 Rd⇥n.

Lemma B.4. Let 0 < ✏, � < 1, if k = ⌦(

log(2n/�)
✏2 ), then with probability at least 1� �,

(1� ✏)||A||2F  || eA||2F  (1 + ✏)||A||2F , (1� ✏)||B||2F  || eB||2F  (1 + ✏)||B||2F ,

|| eAT eB �ATB||F  ✏||A||F ||B||F .

Proof. This is again a standard result of JL transformation, e.g., see Definition 2.3 and Theorem 2.1
of [34] and Lemma 6 of [29] .

Lemma B.5. Let 0 < ✏, � < 1, if k = ⇥(

r̃+log(1/�)
✏2 ), where r̃ = max{ ||A||2F

||A||2 ,
||B||2F
||B||2 } is the

maximum stable rank, then with probability at least 1� �,

|| eAT eB �ATB||  ✏||A||||B||.

Proof. This follows from a recent paper [12].

Using the above two lemmas, we can prove the following two lemmas that relate fM with ATB, for
fM defined in Algorithm 1. A more compact definition of fM is DA

eAT eBDB , where DA and DB are
diagonal matrices with (DA)ii = ||Ai||/|| eAi|| and (DB)jj = ||Bj ||/|| eBj ||.

Lemma B.6. Let 0 < ✏ < 1/14, 0 < � < 1, if k = ⌦(

log(2n/�)
✏2 ), then with probability at least 1� �,

|fMij �AT
i Bj |  ✏||Ai|| · ||Bj ||, ||fM �ATB||F  ✏||A||F ||B||F .

Proof. Let 0 < ✏ < 1/2, 0 < � < 1, according to the Definition B.2 and Lemma B.3, we have that if
k = ⌦(

log(2n/�)
✏2 ), then with probability at least 1� �, and for all i, j

1� ✏  (DA)ii  1 + ✏, 1� ✏  (DB)jj  1 + ✏, | eAT
i
eBj �AT

i Bj |  ✏||Ai||||Bj ||. (9)

We can now bound |fMij �AT
i Bj | as

|fMij �AT
i Bj |

⇠1
= | eAT

i
eBj(DA)ii(DB)jj �AT

i Bj |
⇠2
 max{| eAT

i
eBj(1 + ✏)2 �AT

i Bj |, | eAT
i
eBj(1� ✏)2 �AT

i Bj |}
⇠3
 max{(1 + ✏)2✏||Ai||||Bj ||+ ((1 + ✏)2 � 1)|AT

i Bj |, (1� ✏)2✏||Ai||||Bj ||+ (1� (1� ✏)2)|AT
i Bj |}

⇠4
 7✏||Ai||||Bj ||, (10)

where ⇠
1

follows from the definition of fMij , ⇠
2

follows from the bound in Eq.(9), ⇠
3

follows from
triangle inequality and Eq.(9), and ⇠

4

follows from |AT
i Bj |  ||Ai||||Bj ||. Now rescaling ✏ as ✏/7

gives the desired bound in Lemma B.6.

Hence, ||fM �ATB||F =

qP
ij |fMij �AT

i Bj |2 
qP

ij ✏
2||Ai||2||Bj ||2 = ✏||A||F ||B||F .

Lemma B.7. Let 0 < ✏ < 1/14, 0 < � < 1, if k = ⌦(

r̃+log(n/�)
✏2 ), then with probability at least

1� �,
||fM �ATB||  ✏||A||||B||.
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Proof. We can bound the spectral norm of the difference matrix as follows:

||fM �ATB|| ⇠1
= ||DA

eAT eBDB �DAA
TBDB +DAA

TBDB �DAA
TB +DAA

TB �ATB||
 ||DA|||| eAT eB �ATB||||DB ||+ ||DA||||ATB||||DB � I||+ ||DA � I||||ATB||
⇠3
 (1 + ✏)2✏||A||||B||+ (1 + ✏)✏||A||||B||+ ✏||A||||B||
 7✏||A||||B||, (11)

where ⇠
1

follows from the definition of fMij , and ⇠
2

follows from Lemma B.5 and bound in Eq.(9).
Rescaling ✏ as ✏/7 gives the desired bound in Lemma B.7.

We will frequently use the term with high probability. Here is a formal definition.
Definition B.8. We say that an event E occurs with high probability (w.h.p.) in n if the probability
that its complement ¯E happens is polynomially small, i.e., Pr( ¯E) = O(

1

n↵ ) for some constant
↵ > 0.

The following two lemmas define a "nice" ⇧ and when this happens with high probability.
Definition B.9. The random Gaussian matrix ⇧ is "nice" with parameter ✏ if for all (i, j) such that
qij  1 (i.e., qij = q̂ij), the sketched values fMij satisfies the following two inequalities:

|fMij |
q̂ij

 (1 + ✏)
n

m
(||A||2F + ||B||2F ),

X

{j:q̂ij=qij}

fM2

ij

q̂ij
 (1 + ✏)

2n

m
(||A||2F + ||B||2F )2.

Lemma B.10. If k = ⌦(

log(n)
✏2 ), and 0 < ✏ < 1/14, then the random Gaussian matrix ⇧ 2 Rk⇥d is

"nice" w.h.p. in n.

Proof. According to Lemma B.6, if k = ⌦(

log(n)
✏2 ), then w.h.p. in n, for all (i, j) we have |fMij �

AT
i Bj |  ✏||Ai|| · ||Bj ||. In other words, the following holds with probability at least 1� �:

|fMij |  |AT
i Bj |+ ✏||Ai|| · ||Bj ||  (1 + ✏)||Ai|| · ||Bj ||, 8(i, j)

The above inequality is sufficient for ⇧ to be "nice":
fMij

q̂ij
 (1 + ✏)

||Ai|| · ||Bj ||
q̂ij

 (1 + ✏)
(||Ai||2 + ||Bj ||2)/2

m · ( ||Ai||2
2n||A||2F

+

||Bj ||2
2n||B||2F

)

 (1 + ✏)
n

m
(||A||2F + ||B||2F )

X

{j:q̂ij=qij}

fM2

ij

q̂ij


X

{j:q̂ij=qij}

(1 + ✏)2||Ai||2||Bj ||2

q̂ij

 (1 + ✏)
X

{j:q̂ij=qij}

||Ai||4 + ||Bj ||4

m · ( ||Ai||2
2n||A||2F

+

||Bj ||2
2n||B||2F

)

 (1 + ✏)
2n

m
(||A||2F + ||B||2F )2.

Therefore, we conclude that if k = ⌦(

log(n)
✏2 ), then ⇧ is "nice" w.h.p. in n.

C Proofs

C.1 Proof overview

We now present the key steps in proving Theorem 3.1. The framework is similar to that of LELA [3].

Our proof proceeds in three steps. In the first step, we show that the sampled matrix provides a
good approximation of the actual matrix ATB. The result is summarized in Lemma C.1. Here
R

⌦

(

fM) denotes the sampled matrix weighted by the inverse of sampling probability (see Line 4
of Algorithm 2). Detailed proof can be found in Appendix C.2. For consistency, we will use Ci

(i = 1, 2, ...) to denote global constant that can vary from step to step.
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Lemma C.1. (Initialization) Let m and k satisfy the following conditions for sufficiently large
constants C

1

and C
2

:

m � C
1

✓
||A||2F + ||B||2F

||ATB||F

◆
2

n

�2
log(n),

k � C
2

r̃ + log(n)

�2
· ||A||2||B||2

||ATB||2F
,

then the following holds w.h.p. in n:

||R
⌦

(

fM)�ATB||  �||ATB||F .

In the second step, we show that at each iteration of WAltMin algorithm, there is a geometric
decrease in the distance between the computed subspaces bU , bV and the optimal ones U⇤, V ⇤.
The result is shown in Lemma C.2. Appendix C.3 provides the detailed proof. Here for any two
orthonormal matrices X and Y , we define their distance as the principal angle based distance, i.e.,
dist(X,Y ) = ||XT

?Y ||, where X? denotes the subspace orthogonal to X .
Lemma C.2. (WAltMin Descent) Let k, m, and T satisfy the conditions stated in Theorem 3.1. Also,
consider the case when ||ATB � (ATB)r||F  1

576⇢r1.5 ||(A
TB)r||F . Let ˆU (t) and ˆV (t+1) be the

t-th and (t+1)-th step iterates of the WAltMin procedure. Let U (t) and V (t+1) be the corresponding
orthonormal matrices. Let ||(U (t)

)

i||  8

p
r⇢||Ai||/||A||F and dist(U (t), U⇤

)  1/2. Denote
ATB as M , then the following holds with probability at least 1� �/T :

dist(V t+1, V ⇤
)  1

2

dist(U t, U⇤
) + ⌘||M �Mr||F /�⇤

r + ⌘,

||(V (t+1)

)

j ||  8

p
r⇢||Bj ||/||B||F .

In the third step, we prove the spectral norm bound in Theorem 3.1 using results from the above two
lemmas. Comparing Lemma C.1 and C.2 with their counterparts of LELA (see Lemma C.2 and C.3
in [3]), we notice that Lemma C.1 has the same bound as that of LELA, but the bound in Lemma C.2
contains an extra term ⌘. This term eventually leads to an additive error term ⌘�⇤

r in Eq.(7). Detailed
proof is in Appendix C.4.

C.2 Proof of Lemma C.1

We first prove the following lemma, which shows that R
⌦

(

fM) is close to fM . For simplicity of
presentation, we define CAB :=

(||A||2F+||B||2F )

2

||ATB||2F
.

Lemma C.3. Suppose ⇧ is fixed and is "nice". Let m � C
1

· CAB
n
�2 log(n) for sufficiently large

global constant C
1

, then w.h.p. in n, the following is true:

||R
⌦

(

fM)� fM ||  �||ATB||F .

Proof. This lemma can be proved in the same way as the proof of Lemma C.2 in [3]. The key idea
is to use the matrix Bernstein inequality. Let Xij = (�ij � q̂ij)wij

fMijeie
T
j , where �ij is a {0, 1}

random variable indicating whether the value at (i, j) has been sampled. Since ⇧ is fixed, {Xij}ni,j=1

are independent zero mean random matrices. Furthermore,
P

i,j{Xij}ni,j=1

= R
⌦

(

fM)� fM .

Since ⇧ is "nice" with parameter 0 < ✏ < 1/14, we can bound the 1st and 2nd moment of Xij as
follows:

||Xij || = max{|(1� q̂ij)wij
fMij |, |q̂ijwij

fMij |}  |fMij |
q̂ij

⇠1
 (1 + ✏)

n

m
(||A||2F + ||B||2F );

�2

= max{

������

������
E

2

4
X

ij

XijX
T
ij

3

5

������

������
,

������

������
E

2

4
X

ij

XT
ijXij

3

5

������

������
} ⇠2
= max

i

������

X

j

q̂ij(1� q̂ij)w
2

ij
fM2

ij

������

= max

i
|( 1

q̂ij
� 1)

fM2

ij |
⇠3


X

{j:q̂ij=qij}

fM2

ij

q̂ij

⇠1
 (1 + ✏)

2n

m
(||A||2F + ||B||2F )2,
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where ⇠
1

follows from Lemma B.10, ⇠
2

follows from a direct calculation, and ⇠
3

follows from the
fact that q̂ij  1. Now we can use matrix Bernstein inequality (see Lemma B.1) with t = �||ATB||F
to show that if m � (1 + ✏)C

1

CAB
n
�2 log(n), then the desired inequality holds w.h.p. in n, where

C
1

is some global constant independent of A and B. Note that since 0 < ✏ < 1/14, (1 + ✏) < 2.
Rescaling C

1

gives the desired result.

Now we are ready to prove Lemma C.1, which is a counterpart of Lemma C.2 in [3].

Proof. We first show that ||R
⌦

(

fM)� fM ||  �||ATB||F holds w.h.p. in n over the randomness of
⇧. Note that in Lemma C.3, we have shown that it is true for a fixed and "nice" ⇧, now we want to
show that it also holds w.h.p. in n even for a random chosen ⇧.

Let G be the event that we desire, i.e., G = {||R
⌦

(

eAT eB) � eAT eB||  �||ATB||F }. Let ¯G be the
complimentary event. By conditioning on ⇧, we can bound the probability of ¯G as

Pr( ¯G) = Pr( ¯G|⇧ is "nice")Pr(⇧ is "nice") + Pr( ¯G|⇧ is not "nice")Pr(⇧ is not "nice")
 Pr( ¯G|⇧ is "nice") + Pr(⇧ is not "nice").

According to Lemma C.3 and Lemma B.10, if m � C
1

· CAB
n
�2 log(n), and k � C

2

log(n)
✏2 , then

both events {G|⇧ is "nice"} and Pr(⇧ is "nice") happen w.h.p. in n. Therefore, the the probability
of ¯G is polynomially small in n, i.e., the desired event G happens w.h.p. in n.

Next we show that ||fM � ATB||  �||ATB||F holds w.h.p. in n. According to Lemma B.7, if
k = ⇥(

r̃+log(n)
✏2 ), then w.h.p. in n, we have ||fM � ATB||  ✏||A||||B||. Now let ✏ := � ||ATB||F

||A||||B|| ,

we have that if k = ⇥(

r̃+log(n)
�2 · ||A||2||B||2

||ATB||2F
), then ||fM �ATB||  �||ATB||F holds w.h.p. in n.

By triangle inequality, we have ||R
⌦

(

fM)� ATB||  ||R
⌦

(

fM)� fM ||+ ||fM � ATB||. We have
shown that w.h.p. in n, both terms are less than �||ATB||F . By rescaling � as �/2, we have that the
desired inequality ||R

⌦

(

eAT eB)�ATB||  �||ATB||F holds w.h.p. in n, when m and k are chosen
according to the statement of Lemma C.1.

Because the bound of Lemma C.1 has the same form as that of Lemma C.2 in [3], the corollary of
Lemma C.2 also holds for R

⌦

(

fM), which is stated here without proof: if ||ATB � (ATB)r||F 
1

576r1.5 ||(A
TB)r||F , then w.h.p. in n we have

||(bU (0)

)

i||  8

p
r||Ai||/||A||F and dist(bU (0), U⇤

)  1/2,

where bU (0) is the initial iterate produced by the WAltMin algorithm (see Step 6 of Algorithm 2). This
corollary will be used in the proof of Lemma C.2.

Similar to the original proof in [3], we can now consider two cases separately: (1) ||ATB �
(ATB)r||F � 1

576⇢r1.5 ||(A
TB)r||F ; (2) ||ATB � (ATB)r||F  1

576⇢r1.5 ||(A
TB)r||F . The first

case is simple: use Lemma C.1 and Wely’s inequality [31] already implies the desired bound in
Theorem 3.1. To see why, note that Lemma C.1 and Wely’s inequality imply that

||(ATB)r � (R
⌦

(

fM)r||
⇠1
 ||ATB � (ATB)r||+ ||ATB �R

⌦

(

fM)||+ ||R
⌦

(

fM)� (R
⌦

(

fM))r||
⇠2
 ||ATB � (ATB)r||+ �||ATB||F + ||R

⌦

(

fM)�ATB||+ ||ATB � (ATB)r||
⇠3
 2||ATB � (ATB)r||+ 2�||ATB||F , (12)

where Mr denotes the best rank-r approximation of M , ⇠
1

follows triangle inequality, ⇠
2

follows
from Lemma C.1 and Wely’s inequality, and ⇠

3

follows from Lemma C.1. If ||ATB � (ATB)r||F �
1

576⇢r1.5 ||(A
TB)r||F , then ||ATB||F = ||(ATB)r||F + ||ATB � (ATB)r||F  O(⇢r1.5)||ATB �

(ATB)r||F . Setting � = O(⌘/(⇢r1.5)) in Eq.(12) gives the desired error bound in Theorem 3.1.
Therefore, in the following analysis we only need to consider the second case.
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C.3 Proof of Lemma C.2

We first prove the following lemma, which is a counterpart ofLemma C.5 in [3]. For simplicity of
presentation, we use M to denote ATB in the following proof.
Lemma C.4. If m � C

1

nr log(n)T/(��2) and k � C
2

(r̃ + log(n))/✏2 for sufficiently large global
constants C

1

and C
2

, then the following holds with probability at least 1� �/T :

||(U (t)
)

TR
⌦

(

fM �Mr)� (U (t)
)

T
(M �Mr)||  �||M �Mr||F + �✏||A||F ||B||F + ✏||A||||B||.

Proof. For a fixed ⇧, we have that if m � C
1

nr log(n)T/(��2), then following holds with probabil-
ity at least 1� �/T :

||(U (t)
)

TR
⌦

(

fM �Mr)� (U (t)
)

T
(

fM �Mr)||  �||fM �Mr||F . (13)

The proof of Eq.(13) is exactly the same as the proof of Lemma C.5/B.6/B.2 in [3], so we omit
its details here. The key idea is to define a set of zero-mean random matrices Xij such thatP

ij Xij = (U (t)
)

TR
⌦

(

fM �Mr)� (U (t)
)

T
(

fM �Mr), and then use second moment-based matrix
Chebyshev inequality to obtain the desired bound.

According to Lemma B.6 and Lemma B.7, if k = ⇥((r̃+log(n))/✏2), then w.h.p. in n, the following
holds:

||fM �ATB||F  ✏||A||F ||B||F , ||fM �ATB||  ✏||A||||B||. (14)

Using triangle inequality, we have that if m and k satisfy the conditions of Lemma C.4, then the
following holds with probability at least 1� �/T :

||(U (t)
)

TR
⌦

(

fM �Mr)� (U (t)
)

T
(M �Mr)||

 ||(U (t)
)

TR
⌦

(

fM �Mr)� (U (t)
)

T
(

fM �Mr)||+ ||(U (t)
)

T
(M � fM)||

⇠1
 �||fM �Mr||F + ||M � fM ||

 �||M �Mr||F + �||M � fM ||F + ||M � fM ||
⇠2
 �||M �Mr||F + �✏||A||F ||B||F + ✏||A||||B||,

where ⇠
1

follows from Eq.(13), and ⇠
2

follows from Eq.(14).

Now we are ready to prove Lemma C.2. For simplicity, we focus on the rank-1 case here. Rank-r
proof follows a similar line of reasoning and can be obtained by combining the current proof with
the rank-r analysis in the original proof of LELA [3]. Note that compared to Lemma C.5 in [3],
Lemma C.4 contains two extra terms �✏||A||F ||B||F + ✏||A||||B||. Therefore, we need to be careful
for steps that involve Lemma C.4.

In the rank-1 case, we use ût and v̂t+1 to denote the t-th and (t+1)-th step iterates (which are column
vectors in this case) of the WAltMin algorithm. Let ut and vt+1 be the corresponding normalized
vectors.

Proof. This proof contains two parts. In the first part, we will prove that the distance dist(vt+1, v⇤)
decreases geometrically over time. In the second part, we show that the j-th entry of vt+1 satisfies
|vt+1

j |  c
1

||Bj ||/||B||F , for some constant c
1

.

Bounding dist(vt+1, v⇤):

In Lemma C.4, set ✏ = ||ATB||
2||A||||B||⌘ and � =

⌘
2r̃ , where 0 < ⌘ < 1, then we have �✏||A||F ||B||F 

||A||F ||B||F
||A||||B|| · ⌘2

2r̃ ||A
TB||  ⌘||ATB||/2, and ✏||A||||B||  ⌘||ATB||/2. Therefore, with probability

at least 1� �/T , the following holds:

||(ut
)

TR
⌦

(

fM �M
1

)� (ut
)

T
(M �M

1

)||  ⌘||M �M
1

||F /r̃ + ⌘�⇤
1

. (15)

Hence, we have ||(ut
)

TR
⌦

(

fM �M
1

)||  dist(ut, u⇤
)||M �M

1

||+ ⌘||M �M
1

||F /r̃ + ⌘�⇤
1

.
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Using the explicit formula for WAltMin update (see Eq.(46) and Eq.(47) in [3]), we can bound
hv̂t+1, v⇤i and hv̂t+1, v⇤?i as follows.

||ût||hv̂t+1, v⇤i/�⇤
1

� hut, u⇤i � �
1

1� �
1

p
1� hut, u⇤i2 � 1

1� �
1

(⌘
||M �M

1

||F
r̃�⇤

1

+ ⌘).

||ût||hv̂t+1, v⇤?i/�⇤
1

 �
1

1� �
1

p
1� hut, u⇤i2+ 1

1� �
1

(dist(ut, u⇤
)

||M �M
1

||
�⇤
1

+⌘
||M �M

1

||F
r̃�⇤

1

+⌘).

As discussed in the end of Appendix C.2, we only need to consider the case when ||ATB �
(ATB)r||F  1

576⇢r1.5 ||(A
TB)r||F , where ⇢ = �⇤

1

/�⇤
r . In the rank-1 case, this condition reduces

to ||M � M
1

||F  �⇤

576

. For sufficiently small constants �
1

and ⌘ (e.g., �
1

 1

20

, ⌘  1

20

), and
use the fact that hut, u⇤i � hu0, u⇤i and dist(u0, u⇤

)  1/2, we can further bound hv̂t+1, v⇤i and
hv̂t+1, v⇤?i as

||ût||hv̂t+1, v⇤i/�⇤
1

� hu0, u⇤i � 1

10

p
1� hu0, u⇤i2 � 1

10

�
p
3

2

� 2

10

� 1

2

. (16)

||ût||hv̂t+1, v⇤?i/�⇤
1

 �
1

1� �
1

dist(ut, u⇤
) +

1

576(1� �
1

)

dist(ut, u⇤
) +

1

1� �
1

(⌘
||M �M

1

||F
r̃�⇤

1

+ ⌘)

⇠1
 1

4

dist(ut, u⇤
) + 2(⌘||M �M

1

||F /�⇤
1

+ ⌘), (17)

where ⇠
1

uses the fact that r̃ � 1 and the assumption that �
1

is sufficiently small.

Now we are ready to bound dist(vt+1, v⇤) as

dist(vt+1, v⇤) =
p
1� hvt+1, v⇤i2 =

hv̂t+1, v⇤?ip
hv̂t+1, v⇤?i2 + hv̂t+1, v⇤i2

 hv̂t+1, v⇤?i
hv̂t+1, v⇤i

⇠1
 1

2

dist(ut, u⇤
) + 4(⌘||M �Mr||F /�⇤

1

+ ⌘), (18)

where ⇠
1

follows from substituting Eqs. (16) and (17). Rescaling ⌘ as ⌘/4 gives the desired bound of
Lemma C.2 for the rank-1 case. Rank-r proof can be obtained by following a similar framework.

Bounding vt+1

j :

In this step, we need to prove that the j-th entry of vt+1 satisfies |vt+1

j |  c
1

||Bj ||
||B||F for all j, under

the assumption that ut satisfies the norm bound |ut
i|  c

1

||Ai||
||A||F for all i.

The proof follows very closely to the second part of proving Lemma C.3 in [3], except that an extra
multiplicative term (1 + ✏) will show up when bounding

P
i �ijwiju

t
i
fMij using Bernstein inequality.

More specifically, let Xi = (�ij � q̂ij)wiju
t
i
fMij . Note that if q̂ij = 1, then �ij = 1, Xi = 0, so we

only need to consider the case when q̂ij < 1, i.e., q̂ij = qij , where qij is defined in Eq.(1).

Suppose ⇧ is fixed and its dimension satisfies k = ⌦(

log(n)
✏2 ), then according to Lemma B.6, we have

that w.h.p. in n,

|fMij |  |Mij |+ ✏||Ai|| · ||Bj ||  (1 + ✏)||Ai|| · ||Bj ||, 8(i, j). (19)

Hence, we have

fM2

ij

q̂ij

⇠1
 (1 + ✏)2||Ai||2||Bj ||2

m · ( ||Ai||2
2n||A||2F

+

||Bj ||2
2n||B||2F

)

 2n(1 + ✏)2

m
· ||Bj ||2||A||2F , (20)

(ut
i)

2

q̂ij

⇠2
 c2

1

||Ai||2/||A||2F
m · ( ||Ai||2

2n||A||2F
+

||Bj ||2
2n||B||2F

)

 2nc2
1

m
, (21)

where ⇠
1

follows from substituting Eqs.(19) and (1), and ⇠
2

follows from the assumption that
|ut

i|  c
1

||Ai||/||A||F .
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We can now bound the first and second moments of Xi as

|Xi|  |wiju
t
i
fMij | 

s
(ut

i)
2

q̂ij

s
fM2

ij

q̂ij

⇠1
 2nc

1

(1 + ✏)

m
||Bj ||||A||F .

X

i

V ar(Xi) =

X

i

q̂ij(1� q̂ij)w
2

ij(u
t
i)

2fM2

ij 
X

i

(ut
i)

2

q̂ij
(1 + ✏)2||Ai||2||Bj ||2

⇠2
 2nc2

1

(1 + ✏)2

m
||Bj ||2||A||2F ,

where ⇠
1

and ⇠
2

follows from substituting Eqs.(20) and (21).

The rest proof involves applying Bernstein’s inequality to derive a high-probability bound on
P

i Xi,
which is almost the same as the second part of proving Lemma C.3 in [3], so we omit the details here.
The only difference is that, because of the extra multiplicative term (1 + ✏) in the bound of the first
and second moments, the lower bound on the sample complexity m should also be multiplied by an
extra (1 + ✏)2 term. By restricting 0 < ✏ < 1/2, this extra multiplicative term can be ignored as long
as the original lower bound of m contains a large enough constant.

C.4 Proof of Theorem 3.1

We now prove our main theorem for rank-1 case here. Rank-r proof follows a similar line of reasoning
and can be obtained by combining the current proof with the rank-r analysis in the original proof of
LELA [3]. Similar to the previous section, we use but and bvt+1 to denote the t-th and (t+1)-th step
iterates (which are column vectors in this case) of the WAltMin algorithm. Let ut and vt+1 be the
corresponding normalized vectors.

The closed form solution for WAltMin update at t+ 1 iteration is

||but||bvt+1

j = �⇤
1

v⇤j

P
i �ijwiju

t
iu

⇤
iP

i �ijwij(ut
i)

2

+

P
i �ijwiju

t
i(
fM �M

1

)ijP
i �ijwij(ut

i)
2

.

Writing in matrix form, we get

||but||bvt+1

j = �⇤
1

hu⇤, utiv⇤ � �⇤
1

B�1

(hu⇤, utiB � C)v⇤ +B�1y, (22)

where B and C are diagonal matrices with Bjj =
P

i �ijwij(u
t
i)

2 and Cjj =
P

i �ijwiju
t
iu

⇤
i , and y

is the vector R
⌦

(

fM �M
1

)

Tut with entries yj =
P

i �ijwiju
t
i(
fM �M

1

)ij .

Each term of Eq.(22) can be bounded as follows.

||(hu⇤, utiB � C)v⇤||  dist(ut, u⇤
), ||B�1||  2, (23)

||y|| = ||R
⌦

(

fM �M
1

)

Tut||
⇠1
 dist(ut, u⇤

)||M �M
1

||+ ⌘||M �M
1

||F /r̃ + ⌘�⇤
1

, (24)

where ⇠
1

follows directly from Lemma C.4. The proof of Eq.(23) is exactly the same as the proof of
Lemma B.3 and B.4 in [3].

According to Lemma C.2, since the distance is decreasing geometrically, after O(log(

1

⇣ )) iterations
we get

dist(ut, u⇤
)  ⇣ + 2⌘||M �M

1

||F /�⇤
1

+ 2⌘. (25)
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Now we are ready to prove the spectral norm bound in Theorem 3.1:

||M
1

� but
(bvt+1

)

T ||
 ||M

1

� ut
(ut

)

TM
1

||+ ||ut
(ut

)

TM
1

� but
(bvt+1

)

T ||
 ||(I � ut

(ut
)

T
)M

1

||+ ||ut
[(ut

)

TM
1

� ||but||(bvt+1

)

T
]||

⇠1
 �⇤

1

dist(ut, u⇤
) + ||�

1

hut, u⇤iv⇤ � ||but||(bvt+1

)

T ||
⇠2
 �⇤

1

dist(ut, u⇤
) + ||�⇤

1

B�1

(hu⇤, utiB � C)v⇤||+ ||B�1y||
⇠3
 �⇤

1

dist(ut, u⇤
) + 2�⇤

1

dist(ut, u⇤
) + 2dist(ut, u⇤

)||M �M
1

||+ 2⌘||M �M
1

||F /r̃ + 2⌘�⇤
1

⇠4
 5(⇣�⇤

1

+ 2⌘||M �M
1

||F + 2⌘�⇤
1

) + 2⌘||M �M
1

||F + 2⌘�⇤
1

= 5⇣�⇤
1

+ 12⌘||M �M
1

||F + 12⌘�⇤
1

(26)

where ⇠
1

follows from the definition of dist(ut, u⇤
), the fact that ||ut|| = 1, and (ut

)

TM
1

=

�
1

hut, u⇤iv⇤, ⇠
2

follows from substituting Eq.(22), ⇠
3

follows from Eqs.(23) and (24), and ⇠
4

follows
from the Eq.(25), and fact that ||M �M

1

||  �⇤
1

, r̃ � 1. Rescaling ⇣ to ⇣/(5�⇤
1

) (this will influence
the number of iterations) and also rescaling ⌘ to ⌘/12 gives us the desired spectral norm error bound
in Eq.(7). This completes our proof of the rank-1 case. Rank-r proof follows a similar line of
reasoning and can be obtained by combining the current proof with the rank-r analysis in the original
proof of LELA [3].

C.5 Sampling

We describe a way to sample m elements in O(m log(n)) time using distribution qij defined in
Eq. (1). Naively one can compute all the n2 entries of min{qij , 1} and toss a coin for each entry,
which takes O(n2

) time. Instead of this binomial sampling we can switch to row wise multinomial
sampling. For this, first estimate the expected number of samples per row mi = m(

||Ai||2
2||A||2F

+

1

2n ).
Now sample m

1

entries from row 1 according to the multinomial distribution,

eq
1j =

m

m
1

· ( ||A
1

||2

2n||A||2F
+

||Bj ||2

2n||B||2F
) =

||A1||2
2n||A||2F

+

||Bj ||2
2n||B||2F

||Ai||2
2||A||2F

+

1

2n

.

Note that
P

j eq1j = 1. To sample from this distribution, we can generate a random number in
the interval [0, 1], and then locate the corresponding column index by binary searching over the
cumulative distribution function (CDF) of eq

1j . This takes O(n) time for setting up the distribution
and O(m

1

log(n)) time to sample. For subsequent row i, we only need O(mi log(n)) time to sample
mi entries. This is because for binary search to work, only O(mi log(n)) entries of the CDF vector
needs to be computed and checked. Note that the specific form of eqij ensures that its CDF entries
can be updated in an efficient way (since we only need to update the linear shift and scale). Hence,
sampling m elements takes a total O(m log(n)) time. Furthermore, the error in this model is bounded
up to a factor of 2 of the error achieved by the Binomial model [7] [21]. For more details please see
our Spark implementation.

D Related work

Approximate matrix multiplication: In the seminal work of [14], Drineas et al. give a random-
ized algorithm which samples few rows of A and B and computes the approximate product. The
distribution depends on the row norms of the matrices and the algorithm achieves an additive error
proportional to ||A||F ||B||F . Later Sarlos [29] propose a sketching based algorithm, which computes
sketched matrices and then outputs their product. The analysis for this algorithm is then improved
by [10]. All of these results compare the error ||ATB � ˜AT

˜B||F in Frobenius norm.

For spectral norm bound of the form ||ATB � C||
2

 ✏||A||
2

||B||
2

, the authors in [29, 11] show
that the sketch size needs to satisfy O(r/✏2), where r = rank(A) + rank(B). This dependence on
rank is later improved to stable rank in [26], but at the cost of a weaker dependence on ✏. Recently,
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Cohen et al. [12] further improve the dependence on ✏ and give a bound of O(r̃/✏2), where r̃ is the
maximum stable rank. Note that the sketching based algorithm does not output a low rank matrix. As
shown in Figure 2, rescaling by the actual column norms provide a better estimator than just using
the sketched matrices. Furthermore, we show that taking SVD on the sketched matrices gives higher
error rate than our algorithm (see Figure 3(b)).

Low rank approximation: [16] introduced the problem of computing low rank approximation of
a given matrix using only few passes over the data. They gave an algorithm that samples few rows
and columns of the matrix and computes its SVD for low rank approximation. They show that this
algorithm achieves additive error guarantees in Frobenius norm. [15, 29, 19, 13] have later developed
algorithms using various sketching techniques like Gaussian projection, random Hadamard transform
and volume sampling that achieve relative error in Frobenius norm.[35, 28, 18, 6] improved the
analysis of these algorithms and provided error guarantees in spectral norm. More recently [11]
presented an algorithm based on subspace embedding that computes the sketches in the input sparsity
time.

Another class of methods use entrywise sampling instead of sketching to compute low rank approx-
imation. [1] considered an uniform entrywise sampling algorithm followed by SVD to compute
low rank approximation. This gives an additive approximation error. More recently [3] considered
biased entrywise sampling using leverage scores, followed by matrix completion to compute low
rank approximation. While this algorithm achieves relative error approximation, it takes two passes
over the data.

There is also lot of interesting work on computing PCA over streaming data under some statistical
assumptions, e.g., [2, 27, 5, 30]. In contrast, our model does not put any assumptions on the input
matrix. Besides, our goal here is to get a low rank matrix and not just the subspace.
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