
Supplementary Material for “Graphical Time
Warping for Joint Alignment of Multiple Curves”

CONTENTS
1 List of symbols ... 1

2 A working example of GTW .. 2

2.1 Determining curve pairings ... 2

2.2 Determining graph structure .. 2

2.3 Building dual graphs for each pair .. 3

2.4 Connecting the single pair dual graphs to the GTW graph ... 5

2.5 Solving the problem and obtaining the path .. 7

3 Proofs .. 7

4 Extensions to single pair DTW... 9

5 Details of likelihood function .. 9

6 Parameter and hyperparameter estimation ... 11

6.1 Pseudo-likelihood based approach ... 11

6.2 Cross validation based approach .. 12

7 Experiments on synthetic calcium movie ... 14

8 Execution Speed comparison of max flow algorithms .. 14

References .. 14

1 LIST OF SYMBOLS
Symbol Description

𝑷𝒏 Path in DTW for single pair (𝑥𝑛 , 𝑦𝑛)

𝑾𝒏 Warping function for 𝑛𝑡ℎ pair (𝑥𝑛, 𝑦𝑛)

𝑲 Number of time points in each time series or curve

𝒌𝟏, 𝒌𝟐 Index of element in a sequence

𝑳 Labels for either single or multiple pair dual graphs

𝑳(𝒊) Label for the 𝑖𝑡ℎ node

𝑵 Total number of pairs

𝒊, 𝒋 Node ID in dual graph

(𝒊, 𝒋) Directed edge in dual graph from 𝑖 to 𝑗

𝒎, 𝒏 Indices for pairs of curves

𝒔, 𝒕 Source and sink in dual graph 𝐺𝑛
′ or 𝐺𝑔𝑡𝑤

𝑺, 𝑻 Node groups corresponding to 𝑠 and 𝑡

𝑪, 𝑪𝒏 Sets of edges in the cuts for GTW and a dual graph 𝐺𝑛

𝑮𝒏, 𝑮𝒏
′ , 𝑮𝒈𝒕𝒘 Graph for the 𝑛𝑡ℎ pair, dual for a pair, GTW graph

𝑬𝒏, 𝑬𝒏
′ , 𝑬𝒈𝒕𝒘 Edges for the above graph. 𝐸𝑛

′ may also mean a subset of 𝐸𝑔𝑡𝑤

𝑽𝒏, 𝑽𝒏
′ , 𝑽𝒈𝒕𝒘 Nodes for the above graph. 𝑉𝑛

′ may also mean a subset of 𝑉𝑔𝑡𝑤

𝑪𝒎𝒇, 𝑳𝒎𝒇 Cut and labels obtained from maximum flow algorithm

𝑽𝒏,𝒊 The 𝑖𝑡ℎ element of the ordered node set 𝑉𝑛

𝒆, 𝒆′ Edges in primal and dual graphs, respectively

𝒇(𝑷), 𝒈(𝑳) Primal and dual form cost functions

𝝓 Empty set

|𝑿| Cardinality of set 𝑋

𝜿 Smoothness cost coefficient

𝜶 Direction cost coefficient

𝜷 Off-diagonal distance cost coefficient

 𝝈𝟐 Noise variance

𝒄𝒐𝒔𝒕(𝑷𝒏) The cost for a single warping path

𝒅𝒊𝒔𝒕(𝑷𝒎, 𝑷𝒏) Distance between warping paths for pair 𝑚 and 𝑛

𝒄𝒂𝒑(𝒆), 𝒄𝒂𝒑(𝒊, 𝒋) Capacity of the directed edge 𝑒 from 𝑖 to 𝑗 in the dual graph

𝒘𝒆𝒊𝒈𝒉𝒕(𝒆) Weight for edge 𝑒 in primal graph 𝐺

𝒄𝒖𝒕(𝑳), 𝒄𝒖𝒕(𝑪) Cut for labeling 𝐿 or corresponding cut set 𝐶, which is the sum
of capacities of involved edges from 𝑆 to 𝑇

𝑼(𝒊, 𝒋), 𝑽(𝒊, 𝒋) Data cost and smoothness cost

2 A WORKING EXAMPLE OF GTW
In this section we provide a step by step walk through for graphical time warping, starting from the raw

data. Assume we get 5 time-series, or curves, each with length 4:

𝑥1 = [0.0511 1.0036 0.0103 0.1555]

𝑥2 = [0.0426 0.9392 0.8486 − 0.0145]

𝑥3 = [0.0362 0.9849 1.0829 − 0.0198]

𝑥4 = [0.1004 0.0832 0.9972 0.0272]

𝑥5 = [−0.1651 − 0.1167 1.2430 − 0.0521]

The curves are shown in Supplement Figure 1 (left). Curve 𝑥2 looks similar to 𝑥3 while 𝑥4 is similar to 𝑥5.

𝑥1 is different from the remaining curves.

2.1 Determining curve pairings
Given the data, the first thing to do is to determine the pairings between curves. Assume here we know

that curves 𝑥2 through 𝑥5 are generated from curve 𝑥1; then the pairings could be: (𝑥1, 𝑥2), (𝑥1, 𝑥3),

(𝑥1, 𝑥4), and (𝑥1, 𝑥5). The order of elements in a pairing is important since the warping path from 𝑥1 to

𝑥2 is usually different from the warping path from 𝑥2 to 𝑥1.

2.2 Determining graph structure
After pairing the curves, we treat each pair as a node and need to determine the structure of the graph

that consists of those nodes. For example, if we know curve 𝑥2 is related to 𝑥3, 𝑥3 is related to 𝑥4, 𝑥4 to

𝑥5, and 𝑥5 to 𝑥2, we might reasonably suppose that after all of them are paired with 𝑥1, the pairs preserve

these relationships. The graph is shown in Supplement Figure 1 (right). Note that, different from a pairing

between curves, the relationships defined between pairs are un-directed. After applying GTW, we will get

the warping functions that map 𝑥1 to 𝑥2, 𝑥1 to 𝑥3, 𝑥1 to 𝑥4, and 𝑥1 to 𝑥5, under the constraints of the

graph.

Supplement Figure 1. Left: five observed curves. Right: graph structure between pairs of curves. Each node is a curve pair.

The relationship between pairs is not directional, so we use edges without arrows.

2.3 Building dual graphs for each pair
For each pair of curves, we need to build primal and dual graphs. We use pair (𝑥1, 𝑥2) as an example.

Graphs for all the other pairs can be constructed in exactly the same way. We first compute the 4 × 4

distance matrix 𝐷12:

𝐷12 = [

0.0001 0.7886 0.6360 0.0043
0.9235 0.0042 0.0240 1.0365
0.0010 0.8627 0.7027 0.0006
0.0127 0.6141 0.4803 0.0289

]

Each element of 𝐷 is the Euclidean distance between a sample from 𝑥1 at one time instant and a sample

from 𝑥2 at one time instant. For example, the element in the second row and third column (shown as red)

is the cost of mapping the second element of 𝑥1 to the third element of 𝑥2. In other words, 𝐷12(2,3) =

[𝑥1(2) − 𝑥2(3)]2. For the other three pairs, we compute in the same way the distance matrices 𝐷13, 𝐷14,

and 𝐷15.

Next we build the dual graphs for each pair, assigning a weight to every edge of these graphs. Let us

continue using pair (𝑥1, 𝑥2) as an example. For simplicity, we assume the first time point of 𝑥1 is aligned

to the first time point of 𝑥2 and the last time point of 𝑥1 is aligned to the last time point of 𝑥2. The primal

graph, along with the edge weights, are shown in Supplement Figure 2. In the implementation, we only

need to build the dual graph. We show the primal graph here to make the construction of the dual graph

easier to understand.

Now we discuss the details in building the primal graph. As there are four time points in 𝑥1 and four time

points in 𝑥2, we build a graph with 4 × 4 = 16 nodes. Each node represents aligning one time point of 𝑥1

to another time point in 𝑥2. We connect those nodes in the way shown in Supplement Figure 2 (left). The

bottom left green node represents aligning the first time point of 𝑥1 to the first time point of 𝑥2 while the

top right blue node represents aligning the fourth time point of 𝑥1 to the fourth time point of 𝑥2. Then we

can assign weights to each edge. Let’s consider node (2,2), drawn with a purple dot, which means aligning

the second time point of 𝑥1 to the second time point of 𝑥2. There are three edges originating from that

one and we draw them as purple lines with arrows. We might assign the weights of all three edges as

𝐷12(2,2), where 𝐷12 is the distance matrix for pair (𝑥1, 𝑥2).

Supplement Figure 2. Primal graph for pair (𝒙𝟏, 𝒙𝟐). The sub-figures on the bottom and left of each graph are the two curves

in that pair. Left: the weight of each edge corresponds to an element in distance matrix 𝑫𝟏𝟐. Right: the weight for each edge

is shown in the graph.

Supplement Figure 3. Dual graph for pair (𝒙𝟏, 𝒙𝟐). The reverse edges with infinite capacity are not shown.

Of course, we can assign different weights for those three edges. For example, we can assign lower weight

for the edge along the diagonal. In this way, we prefer directions of the warping path that change less

frequently. This is one advantage of assigning weights to edges, instead of nodes, though the main reason

is to allow the dual graph formulation that allows the constraints between curve pairs.

For some nodes, there are less than three edges that originate from them. For example, node (4,1) has

only one edge starting from it and the weight for it is 𝐷12(4,1). For the top right node, there is no edge

starting from it. This is easy to understand since as we require the last time point of 𝑥1 must align to the

last time point of 𝑥2, the cost of aligning those two time points has no impact on the warping path – this

node must be on the warping path. The weights for all edges in the primal graph for pair (𝑥1, 𝑥2) are

shown in Supplement Figure 2 (right).

The dual graph can be immediately obtained once we have the primal graph, as shown in Supplement

Figure 3. Each face in the primal graph is a node in the dual graph. If, in the primal graph, two faces are

separated by an edge, then this edge corresponds to an edge in the dual graph that connects the two

nodes that originate from these two faces. The direction of the edge in the dual graph is obtained by a

counterclockwise rotation of the corresponding edge in the primal graph. The capacity of each dual edge

is the weight for the corresponding edge in the primal graph. For each dual edge, we need to add another

edge with opposite direction, whose weight is infinite. Those edges are not shown in Supplement Figure

3, but must be specified in the implementation for most max flow algorithm software packages.

Supplement Figure 4. Complete graph with four pairs. Only several edges are drawn between pairs for clarity, though all

corresponding nodes between pairs specified by Error! Reference source not found. need to be connected (except for nodes 𝒔

and 𝒕). Note that there is only one node 𝒕 and one node 𝒔. They are shown in the dual graph for each pair for clarity.

2.4 Connecting the single pair dual graphs to the GTW graph
As we already have four dual graphs, each for one pair, we can now connect those graphs according to

the graph structures shown in Supplement Figure 1 (right). First let’s consider the edge in Supplement

Figure 1 (right) that connects pair (𝑥1, 𝑥2) and pair (𝑥1, 𝑥3). To connect those two pairs, we simply add an

un-directed edge between each pair of corresponding nodes in the two dual graphs, as shown in

Supplement Figure 4. Similarly, we repeat this for all other edges required by Supplement Figure 1 (right).

These newly introduced edges between pairs do not have directions. However, as the edges in each dual

graph have directions, we need to replace these un-directed edges with directed ones, unless the max

flow routine can support a mix of directed and un-directed edges. This can be simply done by replacing

the un-directed edge 𝐴 ↔ 𝐵 by two directed edges 𝐴 → 𝐵 and 𝐵 → 𝐴 that have the same capacity as

𝐴 ↔ 𝐵.

Supplement figure 5. Left: GTW gives labelling and cutting edges for nodes on the dual graph for pair (𝒙𝟏, 𝒙𝟐). We do not

need to consider edges across pairs. Nodes are labelled as either 0 (blue nodes, source, 𝒔) or 1 (green nodes, sink, 𝒕). The

cutting edges are drawn in thick blue arrow. Right: from cutting edges we can recover the warping path. The path is drawn in

thick orange arrows.

Supplement Figure 6. Warping paths from GTW. All four curve pairs are also shown.

The capacity for each edge we introduced here is the smoothness parameter 𝜅, which can usually be

chosen by cross validation or maximum likelihood-based methods. Here we simply choose 𝜅 = 2𝜎2 =

0.02 for all edges introduced here, though it is possible to choose different values for different edges.

Finally, note that although in Supplement Figure 4 node 𝑠 and node 𝑡 are drawn in the dual graph for each

pair, there must be just one node 𝑠 and one node 𝑡 in the implementation. In other words, all 𝑠 and 𝑡

shown in Supplement Figure 4 must be treated as the same node, respectively.

2.5 Solving the problem and obtaining the path
Given the graph shown in Supplement Figure 4, we can apply the max flow algorithm to label each node

as either 0 or 1, which correspond to source and sink, respectively. Then our task is to recover the path

for each pair from the labeling. We still use pair (𝑥1, 𝑥2) as an example. The labelling for the dual graph

for pair (𝑥1, 𝑥2) is shown in Supplement figure 5 (left), where the green dots are labelled as 1 and blue

dots are labelled as 0. We do not need to consider the edges across single pair dual graphs. Usually the

max flow algorithm can tell you where the cut happens. Those cutting edges are drawn in thick dark blue

lines. Given those cutting edges in dual graph, we need to find the corresponding edges in the primal

graph, which are draw as thick orange lines in Supplement figure 5 (right). Connecting those orange edges,

we obtain the warping path for pair (𝑥1, 𝑥2). Repeat this process, we can get the paths for all pairs, as

shown in Supplement Figure 6.

3 PROOFS
Lemma 1 Given labeling 𝐿𝑚𝑓,𝑛 ⊂ 𝐿𝑚𝑓, 𝑆𝑛 forms a single connected area within graph 𝐺𝑛

′ . That is, ∀𝑖 ∈ 𝑆𝑛,

there is a path with nodes {𝑖, 𝑗, 𝑘, … , 𝑠} ⊂ 𝑆𝑛 from 𝑖 to 𝑠. Similarly, 𝑇 also forms a single connected area.

Proof. Assume node set 𝑇0 ⊂ 𝑇 is surrounded by 𝑆. Then for any node 𝑡0 ∈ 𝑇0, we can always construct

a path from 𝑡 to 𝑡0 along the infinite capacity reverse edges (Supplementary Fig.1, left). But this path must

include an adjacent pair 𝑠1 ∈ 𝑆 and 𝑡1 ∈ 𝑇0 at some place, since 𝑇0 is completely surrounded by 𝑆. Then

it cannot be a minimum cut -- by relabeling all nodes in 𝑇0 to 𝑆, we will have an even smaller cut. But the

max flow algorithm should have already given the min cut. Similarly, assume 𝑆0 is surrounded by 𝑇. For

any node 𝑠0 ∈ 𝑇, we can always construct a path from 𝑠0 back to 𝑠 along the reverse edges. But this path

must include an adjacent pair 𝑠2 ∈ 𝑆0 and 𝑡2 ∈ 𝑇 at some place since 𝑆0 is completely surrounded by 𝑇.

Then it cannot be a minimum cut either. □

Lemma 1 ensures that a valid labeling for 𝐺𝑔𝑡𝑤 is also valid for 𝐺𝑛 , which means all nodes in 𝑆 are

reachable by 𝑠.

Lemma 2 𝐶𝑚𝑓,𝑛 is a directed cut within 𝐺𝑛
′ given 𝐿𝑚𝑓,𝑛 ⊂ 𝐿𝑚𝑓.

Proof: Due to reverse edges, the 𝐶𝑚𝑓 that contains a reverse edge (𝑖, 𝑗) so that 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝑇 will give

infinite cut. So 𝐶𝑚𝑓 is a directed cut. Since 𝐶𝑚𝑓,𝑛 ⊂ 𝐶𝑚𝑓, it is also a directed cut. □

Lemma 3. For directed cut 𝐶𝑛 for 𝐺𝑔𝑡𝑤, there is a set of valid warping paths {𝑃𝑛|1 ≤ 𝑛 ≤ 𝑁} for {𝐺𝑛|1 ≤

𝑛 ≤ 𝑁} so that 𝑐𝑢𝑡(𝐶𝑛) = 𝑐𝑜𝑠𝑡(𝑃𝑛), and vice versa.

Proof. Since 𝐶𝑛 is a directed cut for subgraph 𝐺𝑛
′ (Lemma 2), for edge 𝑒′ ∈ 𝐶𝑛 in 𝐺𝑛

′ , there is a

corresponding primal directed edge 𝑒 ∈ 𝐸𝑛 according to the construction of 𝐺𝑛
′ from 𝐺𝑛 (Definition of the

dual graph). Since 𝐶𝑛 is a directed cut, the collection 𝑃𝑛
𝑎𝑢𝑥: = 𝑃𝑛 ∪ {𝑒0} = {𝑒′|𝑒′ ∈ 𝐶𝑚𝑓,𝑛} ∪ {𝑒0} forms a

circuit in 𝐺𝑛 since each directed cut in the dual graph is a circuit in the primal graph (corollary 2.44 in [1]).

Here 𝑒0 is the auxiliary edge (Fig.1c), which corresponds to auxiliary cut (𝑡, 𝑠). Removing 𝑒0, 𝑃𝑛 is a path

from source to sink in the primal graph, where the reverse edges do not exist. Then we show 𝑃𝑛 satisfies

all constraints of DTW.

𝑇0

𝑇 𝑆

𝑡

𝑠

𝑡0

𝑠1
𝑡1

𝑆0

𝑇

𝑆

𝑠

𝑡

𝑠0
𝑠2 𝑡2

Supplement Figure 7. One node whose label is completely surrounded by another group. By finding paths to s or from t, we

show this case cannot occur as part of a min cut. Left: T_0 surrounded by S. Right: S_0 surrounded by T.

Boundary conditions: since 𝑃𝑛
𝑎𝑢𝑥 is a loop that must go through the auxiliary edge from sink to source, 𝑃𝑛

must go through source and sink, which is the desired boundary point to start and stop.

Monotonicity: all edges defined in the primal graph 𝐺𝑛 go from time matching pair (𝑘1, 𝑘2) to (𝑘1
′ , 𝑘2

′) so

that 𝑘1 ≤ 𝑘1
′ and 𝑘2 ≤ 𝑘2

′ but (𝑘1, 𝑘2) ≠ (𝑘1
′ , 𝑘2

′). So all edges in 𝑃𝑛 satisfy this.

Continuity: in the version of DTW we considered here, edges can only connect (𝑘1, 𝑘2) with (𝑘1 + 1, 𝑘2),
(𝑘1, 𝑘2 + 1) or (𝑘1 + 1, 𝑘2 + 1), so the continuity constraints are also satisfied by 𝑃𝑛.

Since for each corresponding edge 𝑒 and 𝑒′, 𝑐𝑎𝑝(𝑒′) = 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒), we have

𝑐𝑢𝑡(𝐶𝑛) = ∑ 𝑐𝑎𝑝(𝑒′)

𝑒′∈𝐶𝑛

= ∑ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒)

𝑒∈𝑃𝑛

= 𝑐𝑜𝑠𝑡(𝑃𝑛).

Conversely, for each 𝑃𝑛, we transform every 𝑒 ∈ 𝑃𝑛 to 𝑒′ with the auxiliary edges introduced as above.

Then this loop will become a directed cut 𝐶𝑛 = {𝑒′} in the dual. □

Lemma 4 For two neighboring pairs (𝑥𝑚, 𝑦𝑚) and (𝑥𝑛 , 𝑦𝑛), if 𝐿𝑚 and 𝐿𝑛 correspond to directed cuts,

𝑑𝑖𝑠𝑡(𝐿𝑛, 𝐿𝑚) = 0.5|𝐶𝑚,𝑛|, where we denote 𝐶𝑚,𝑛: = {(𝑉𝑚,𝑖
′ , 𝑉𝑛,𝑖

′)|𝑉𝑚,𝑖
′ ∈ 𝑆, 𝑉𝑛,𝑖

′ ∈ 𝑇 𝑜𝑟 𝑉𝑚,𝑖
′ ∈ 𝑇, 𝑉𝑛,𝑖

′ ∈ 𝑆}.

Proof. As 𝐿𝑚 corresponds to directed cut 𝐶𝑚 , by Lemma 3, we get a valid warping path 𝑃𝑚 from 𝐶𝑚 .

Similarly, we get a valid 𝑃𝑛 from 𝐿𝑛. Assume we put time points of 𝑥 on the 𝑥 axis. Consider time segment

Δk = [𝑘, 𝑘 + 1]. In 𝐺𝑚 , assume during Δk , 𝑒𝑚 = {(𝑘, 𝑘𝑚), (𝑘 + 1, 𝑘𝑚)} ∈ 𝑃𝑚 . Then the area under Δ

(𝑆Δkm) is 𝑘𝑚 . Similarly, if, during Δk , 𝑃𝑛 goes from 𝑒𝑛 = {(𝑘, 𝑘𝑛), (𝑘 + 1, 𝑘𝑛)} ∈ 𝑃𝑛 , 𝑆Δkn = 𝑘𝑛 . The

difference of areas is |𝑘𝑚 − 𝑘𝑛|.

For (𝑥𝑚, 𝑦𝑚), during Δk, 𝑒𝑚 gives an area 𝐴𝑚 bounded by (𝑘, 1), (𝑘 + 1,1), (𝑘, 𝑘𝑚) and (𝑘 + 1, 𝑘𝑚) in

𝐺𝑛. Faces within it become nodes 𝑉 in 𝐺𝑛
′ and 𝑉 ⊂ 𝑆. Otherwise, assume 𝑣 ∈ 𝑉𝑚

′ and 𝑣 ∈ 𝑇. Utilizing the

structure of 𝐺𝑚
′ , we can always find 𝑣′ ∈ 𝑉𝑚

′ within 𝐴𝑚 so that (𝑣, 𝑣′) ∈ 𝐸𝑚
′ and 𝑣′ ∈ 𝑆.

This will induce a cut with infinite cost. We have |𝑉| = 2𝑘𝑚. Similarly, for pair (𝑥𝑛, 𝑦𝑛), the above edge

gives |𝑉| = 2𝑘𝑛. So the number of cuts will be 2|𝑘𝑚 − 𝑘𝑛|.

So for duration Δk with the above edge directions for both pairs, 𝑑𝑖𝑠𝑡(𝐿𝑛, 𝐿𝑚)Δk
= 0.5|𝐶𝑚,𝑛,Δk

|, where

𝐶𝑚,𝑛,Δk
 is the neighborhood cuts within Δk. The proofs for other direction combinations are the same as

above. So we have

𝑑𝑖𝑠𝑡(𝐿𝑛, 𝐿𝑚) = ∑ 𝑑𝑖𝑠𝑡(𝐿𝑛, 𝐿𝑚)Δk

𝐾
𝑘=1 = ∑ 0.5|𝐶𝑚,𝑛,Δk

|𝐾
𝑘=1 = 0.5|𝐶𝑚,𝑛|. □

Corollary 1. If 𝜅1 = 𝜅2 = 0, 𝐿 that minimizes 𝑔(𝐿) corresponds to the 𝑃 = {𝑃𝑛|1 ≤ 𝑛 ≤ 𝑁} where 𝑃𝑛 is

the solution of the single pair DTW for (,)n nx y .

Proof. From Theorem 1, using the maximum flow results 𝐿 we can get 𝑃 that minimizes 𝑓(𝑃) as 𝜅1 =

0.5𝜅2 can still be applied. Then

max
𝑃={𝑃𝑛|1≤𝑛≤𝑁}

𝑓(𝑃) = max
𝑃={𝑃𝑛|1≤𝑛≤𝑁}

∑ 𝑐𝑜𝑠𝑡(𝑃𝑛)

𝑁

𝑛=1

= ∑ max
𝑃𝑛

𝑐𝑜𝑠𝑡(𝑃𝑛)

𝑁

𝑛=1

 .

So 𝑃𝑛 solves the single pair DTW problem. □

4 EXTENSIONS TO SINGLE PAIR DTW
The original form of DTW needs to be extended in practice to account for real applications. First,

windowing is widely used to reduce the computational cost and avoid spurious warping [2]. Second, since

the first/last time point in 𝑥𝑛 does not necessarily correspond to the first/last point in 𝑦𝑛, we need to

allow partial matching. Third, for different data sets, different path characteristics may be most realistic,

e.g. how rapidly the direction should change [3]. Finally, paths that deviate far from the diagonal may

need to be penalized [4]. The former two are achieved by modifying the structure of the graph and the

latter two by changing the cost function. Our established theoretical results also hold under these

modifications of DTW. The dual graph approach in GTW requires the original DTW graph to be planar.

However, as discussed in [2] other step patterns that cannot be represented by planar graphs make little

difference empirically from the classical pattern GTW used in this paper.

5 DETAILS OF LIKELIHOOD FUNCTION
We perform joint inference and learning based on the maximum likelihood principle [5]. Consider the

likelihood function

((|))

(;)
()

exp E L
p l

Z









Since in GTW the observation error is encoded in the edge cost, we assume a factorization of the likelihood

function as follows:

 2 2(,(,) | , ,2 ,) ((,) | ; , ,2) (;),p L x y p x y l p l       

where the likelihood function for the data is

2 2

,(,)2
1 (,)

1
(, , 2) : ((,) | ; , , 2) exp (,) ,

(, , 2)
n

N

a n i j

n i j E

L p x y l U i j
z

     
    

 
   

 
 

and where the likelihood function encoding neighborhood similarity is

, ,

(,) 1

1
() : (;) exp (,) .

()

nV

b n i m i
m n Neib i

L p l V V V
z

 




 

 

 
    

 
 

Given labels 𝐿 , we can estimate the parameters and hyperparameters, 𝜃, seeking to maximize the

likelihood. Then we use the updated 𝜃 to get new labels, 𝐿. Multiplying these two likelihoods together,

we can express the joint likelihood as a Gibbs distribution for the neighborhood-connected dual form

graph based on extended DTW:

'

' '

,(,) , ,

1 (,) (,) 1

1
(;) exp (,) (,) .

()

n

n

VN

n i j n i m i

n i j E m n Neib i

p l U i j V V V
Z


   

 
   
 
 

   

Here 𝜃 ∶= (𝛼, 𝛽, 𝜎2, 𝜅) is the set of parameters and 𝐸(𝐿|𝜃) is the dual form energy function, the

exponent in p(l; 𝜃). 𝑉𝑛,𝑖
′ ∈ 𝑉𝑛

′ ⊂ 𝑉𝑔𝑡𝑤, which is a node coming from 𝐺𝑛
′ . 𝑍(𝛼, 𝛽, 2𝜎2, 𝜅) is the partition

function, the proper normalization term. We will explain each parameter in the following.

The first double summation in the exponential is the single pair DTW cost, i.e.

 ,(,)

(,)

(,) : cost(),
n

n i j n

i j E

U i j P




which is edge dependent. Given an edge (𝑖, 𝑗) ∈ 𝐸𝑛, 𝑈𝑛,(𝑖,𝑗) takes the matrix form

,

_2
,(,)

(,)
0 (,) (,)

2

0

n dist

direct off diag
n i j

f i j
f i j f i j

U 

 
  

   

 .

Note that this similarity cost is not symmetric due to the asymmetric path constraints in the DTW problem.

If 𝑖 = 0 and 𝑗 = 1, it is a cut and we have three terms. Assume nodes 𝑖 and 𝑗 match time points 𝑘1 and

𝑘2 along direction 𝑑(𝑖, 𝑗). It can take the value of east, north, or northeast, where northeast means the

path in the primal graph is along the diagonal line. Then we have

 2

, 1 2(,) (() ()) .n dist n nf i j y k x k 

The direction penalty is

0, (,)

.
, (,) { , }

direct

if d i j northeast
f

if d i j east north


 



In many cases, we prefer to penalize the path that is far away from the diagonal, so we have

_ 2 1| |.off diagf k k 

The second double summation in 𝐸(𝐿|𝜃) is the cost of neighboring pairs:

'

'

,

1

'

,(,) (,), (,) .
nV

n i m i

i

m nV V V cut L L m n Neib


 

We define the neighborhood similarity cost

0,

(,) .
,

i i j

i

f
V i j

if j


 



If neighboring nodes across different pairs have different labels, we incur cost κ.

6 PARAMETER AND HYPERPARAMETER ESTIMATION

6.1 Pseudo-likelihood based approach
First we estimate the smoothness term 𝜅. Since 𝐿𝑏(𝜅) involves the complicated partition function 𝑧(𝜅),

we replace it with the pseudo likelihood [5]:

'

: (,)

:1 1

: (,) :

' '

, ,

' '

, ,

(,)

exp (,)

exp (0,) exp ,

()

(1)

m m i n iV

n i n

n m n Neib

b

m m N i

n m n Neib n m n e b

i

N i

V V V

V V V V

L 


  

 





 

 
 
 

   
   

   


 

 

.

As this pseudo-likelihood is concave in 𝜅, we solve for it numerically by interior point methods.

We estimate other parameters in the primal domain. 𝜎2 is estimated by the residual error after applying

the estimated warping function:

2

2

1

11 1

1
() ˆ

1
,ˆˆ

N

n nn

n

n

n

N

W N
N

y x P


  

  .

The vector difference (ˆ)n n ny W x is computed by mapping all points in 𝑥𝑛 using the warping function

and calculating the difference. We allow a single 𝑥𝑛,𝑘 to be mapped to multiple 𝑦𝑛,𝑘 estimates.

For 𝛼, we use the pseudo-likelihood to approximate 𝑝(𝑃; 𝛼) for the primal problem. All pairs are treated

as independent. Within one pair, each step of the warping function is also treated as independent in the

pseudo-likelihood:

𝑝(𝑃; 𝛽) ≈ ∏ 𝑝(𝑃𝑛; 𝛽)

𝑛

≈ ∏ ∏ 𝑝(𝑑𝑛,𝑡; 𝛼)

𝑡𝑛

Here 𝑑𝑛,𝑡 is the direction at the 𝑡𝑡ℎ step (which is an edge in the primal graph) of warping function 𝑃𝑛. We

define

𝑝(𝑑𝑛,𝑡; 𝛼) =
exp (−𝑐𝑜𝑠𝑡𝛼(𝑑𝑛,𝑡))

∑ exp(−𝑐𝑜𝑠𝑡𝛼(𝑖))𝑖∈{0,1}

Here 𝑐𝑜𝑠𝑡𝛼 = 𝑓𝑑𝑖𝑟𝑒𝑐𝑡. We can then estimate 𝛼 using maximum likelihood based on the warping function

we estimated.

As an extension, we can estimate 𝛼 as the direction consistency cost, or the smoothness of the path in

terms of direction changing. For each step of the warping function, the probability is determined by

whether the previous or next step has the same direction (diagonal moving or not).

𝑝(𝑃; 𝛼) ≈ ∏ 𝑝(𝑃𝑛; 𝛼)

𝑛

≈ ∏ ∏ 𝑝(𝑑𝑛,𝑡|𝑑𝑛,𝑡−1, 𝑑𝑛,𝑡+1; 𝛼)

𝑡𝑛

Here 𝑑𝑛,𝑡 is the direction at the 𝑡𝑡ℎ step for warping function 𝑃𝑛. Its value is 0 if it is a diagonal step (or

edge) in the warping path and 1 if it is non-diagonal.

And we have:

𝑝(𝑑𝑛,𝑡|𝑑𝑛,𝑡−1, 𝑑𝑛,𝑡+1; 𝛼) =
𝑝(𝑑𝑛,𝑡 , 𝑑𝑛,𝑡−1, 𝑑𝑛,𝑡+1; 𝛼)

𝑝(𝑑𝑛,𝑡−1, 𝑑𝑛,𝑡+1; 𝛼)

=
exp (−𝑐𝑜𝑠𝑡𝛼(𝑑𝑛,𝑡 , 𝑑𝑛,𝑡−1) − 𝑐𝑜𝑠𝑡𝛼(𝑑𝑛,𝑡, 𝑑𝑛,𝑡+1))

∑ exp (−𝑐𝑜𝑠𝑡𝛼(𝑖, 𝑑𝑛,𝑡−1) − 𝑐𝑜𝑠𝑡𝛼(𝑖, 𝑑𝑛,𝑡+1)𝑖∈{0,1})

,

where 𝑐𝑜𝑠𝑡𝛼 is the cost of neighboring steps in the warping having the same or different directions, which

is specified by 𝛼.

The estimation of 𝛽 can be done using the same approach. Now the pseudo-likelihood becomes:

𝑝(𝑃; 𝛽) ≈ ∏ 𝑝(𝑃𝑛; 𝛽)

𝑛

≈ ∏ ∏ 𝑝(𝑒𝑛,𝑡; 𝛽)

𝑡𝑛

Here 𝑒𝑛,𝑡 is the distance of path 𝑛 from the diagonal line at time 𝑡. And we define

𝑝(𝑒𝑛,𝑡; 𝛽) =
exp (−𝑐𝑜𝑠𝑡𝛽(𝑒𝑛,𝑡))

∑ exp (−𝑐𝑜𝑠𝑡𝛽(𝑖))𝑖∈𝑁

Then we can estimate 𝛽 using the maximum likelihood. Here 𝑐𝑜𝑠𝑡𝛽 = 𝑓𝑜𝑓𝑓_𝑑𝑖𝑎𝑔.

As the pseudo-likelihood only approximates the true likelihood function, it sometimes differs significantly

from the true one for certain labelling patterns, which may cause the parameter estimation diverge. To

deal with this, we add some perturbation to the labels by randomly flipping about 1% of them multiple

times and then using the median to obtain the estimated parameters.

6.2 Cross validation based approach
We may use cross validation to estimate the hyperparameters. Below we discuss two possible ways of

designing the cross validation scheme.

If we have multiple realizations of the time series pairs, we can hold out some of them as the validation

set, on which the accuracy of warping paths estimated from the training set is evaluated. For each pair

(𝑥𝑣𝑎𝑙,𝑛, 𝑦𝑣𝑎𝑙,𝑛) in the validation set, given the corresponding warping paths (or functions) from the

training set 𝑃𝑛, we can calculate the fitting error for pair 𝑛 in the validation set as ‖𝑊𝑛(𝑥𝑣𝑎𝑙,𝑛) − 𝑦𝑣𝑎𝑙,𝑛‖
2
,

where 𝑊𝑛 is the warping function corresponding to path 𝑃𝑛 . Repeating this for different choices of a

hyperparameter 𝜅, we can choose the best one.

Otherwise, we can divide each curve into two halves. For the first half of all curves, given a candidate

choice for 𝜅, we build the graph and estimate the parameters such as noise variance, as discussed above.

Then we used the estimated parameters and the given hyperparameter to evaluate the overall cost

function based on the collection of second half curves. We can scan the hyperparameter 𝜅 over a range

of interest in this way and choose the value of 𝜅 that performs best. Then, given this choice of 𝜅 fixed,

GTW is run again, applied to the whole curves to learn the set of warping functions and all parameters.

Supplement Figure 8 Synthetic calcium move. Left: movie at a certain time instant with Gaussian noise added. Right: all the

FIUs generated and labelled by different colors.

Supplement Figure 9. Performance comparison of DTW and GTW on the synthetic data set with 24 FIUs under the same noise

variance. The experiment on each FIU is repeated 10 times.

7 EXPERIMENTS ON SYNTHETIC CALCIUM MOVIE
We generated synthetic calcium movies to quantitatively evaluate the performance of GTW for a realistic

application, in addition to the qualitative comparison performed in the experiment part of the main text.

In an astrocyte calcium movie, we define Function Independent Units (FIUs) as the smallest region that

can contain a calcium wave activity [6]. A calcium wave activity consists of the rising, propagation and

disappearing of a wave. Each activity is limited to an FIU and an FIU can only contain one activity at one

time instant. Supplement Figure 8 (left) shows one time instant for synthetic data and the right part uses

different colors to indicate different FIUs. 24 FIUs are simulated and totally there are 300 time points.

Assume we already know the exact locations of those FIUs. For each FIU, we use a ground truth curve for

that FIU (without noise) as the common reference curve and the time series for all other pixels as test

curves. The reference curve thus maps to all test curves. For both GTW and DTW, we set the off-diagonal

cost to be 0.5. The noise variance of 0.052 is assumed to be known. For each FIU we repeated the

experiment 10 times. We calculated the ground truth warping functions using the noiseless data. For each

FIU, we compared the performance of GTW and DTW, as shown in Supplement Figure 9. We can find that

for all FIUs, GTW produces smaller error.

8 EXECUTION SPEED COMPARISON OF MAX FLOW ALGORITHMS
Max flow is used in the inference part of our model. Since we use pseudo-likelihood for parameter and

hyperparameter estimation, the inference part takes the majority of the running time. We compare two

popular max flow algorithms: Boykov-Kolmogorov (BK) [7] and iterative breadth first search (IBFS) [8] for

our model. As shown in Supplementary Table 1, BK runs about three times faster. The only exception is

the first iteration, where the similarity term is 0. This confirms that BK is suitable for generally sparse and

grid-like structures. The simulation was performed with Matlab 2015b on a Dell T7910 workstation with

dual 8-core Intel Xeon CPU E5-2630 @ 2.40GHz and 128 GB RAM. However, only a single process was used

in the simulation. We use the C++ max flow implementation that can be found at [9].

Supplement Table 1. Running time for max flow in seconds

Method BK IBFS

Iter 1 0.339 0.338

Iter 3 0.726 2.478

Iter 5 0.698 2.595

The complexity of GTW depends on the window size, the number of time points, and the number of pairs.

There are several possible solutions for large data sets: 1) reduce the dimension of the problem temporally

or spatially or 2) break the problem into smaller pieces and solve them all in parallel. This strategy is widely

used in fast graph cut implementations. Such an extension is possible for GTW and may be considered in

future.

REFERENCES
[1] B. Korte, J. Vygen, B. Korte, and J. Vygen, Combinatorial optimization, vol. 2. Springer, 2012.
[2] A. Mueen and E. Keogh, “Extracting Optimal Performance from Dynamic Time Warping,” presented

at the KDD 2016:, 2016, pp. 2129–2130.

[3] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken word recognition,”
IEEE Trans. Acoust. Speech Signal Process., vol. 26, no. 1, pp. 43–49, Feb. 1978.

[4] Y.-S. Jeong, M. K. Jeong, and O. A. Omitaomu, “Weighted dynamic time warping for time series
classification,” Pattern Recognit., vol. 44, no. 9, pp. 2231–2240, Sep. 2011.

[5] S. Z. Li, Markov random field modeling in image analysis. Springer Science & Business Media, 2009.
[6] Y. Wang et al., “FASP: A machine learning approach to functional astrocyte phenotyping from time-

lapse calcium imaging data,” in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI),
2016, pp. 351–354.

[7] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max- flow algorithms for
energy minimization in vision,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124–1137,
Sep. 2004.

[8] A. V. Goldberg, S. Hed, H. Kaplan, R. E. Tarjan, and R. F. Werneck, “Maximum Flows by Incremental
Breadth-First Search,” in Algorithms – ESA 2011, C. Demetrescu and M. M. Halldórsson, Eds. Springer
Berlin Heidelberg, 2011, pp. 457–468.

[9] “aosokin (Anton Osokin),” GitHub. [Online]. Available: https://github.com/aosokin. [Accessed: 26-
Oct-2016].

