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Abstract

The combinatorial stochastic semi-bandit problem is an extension of the classical
multi-armed bandit problem in which an algorithm pulls more than one arm at
each stage and the rewards of all pulled arms are revealed. One difference with the
single arm variant is that the dependency structure of the arms is crucial. Previous
works on this setting either used a worst-case approach or imposed independence
of the arms. We introduce a way to quantify the dependency structure of the
problem and design an algorithm that adapts to it. The algorithm is based on linear
regression and the analysis develops techniques from the linear bandit literature.
By comparing its performance to a new lower bound, we prove that it is optimal,
up to a poly-logarithmic factor in the number of pulled arms.

1 Introduction and setting

The multi-armed bandit problem (MAB) is a sequential learning task in which an algorithm takes at
each stage a decision (or, “pulls an arm”). It then gets a reward from this choice, with the goal of
maximizing the cumulative reward [Robbins, 1985]. We consider here its stochastic combinatorial
extension, in which the algorithm chooses at each stage a subset of arms [Audibert et al., 2013,
Cesa-Bianchi and Lugosi, 2012, Chen et al., 2013, Gai et al., 2012]. These arms could form, for
example, the path from an origin to a destination in a network. In the combinatorial setting, contrary
to the the classical MAB, the inter-dependencies between the arms can play a role (we consider that
the distribution of rewards is invariant with time). We investigate here how the covariance structure
of the arms affects the difficulty of the learning task and whether it is possible to design a unique
algorithm capable of performing optimally in all cases from the simple scenario with independent
rewards to the more challenging scenario of general correlated rewards.

Formally, at each stage t ∈ N, t ≥ 1, an algorithm pulls m ≥ 1 arms among d ≥ m. Such a set of m
arms is called an “action” and will be denoted by At ∈ {0, 1}d, a vector with exactly m non-zero
entries. The possible actions are restricted to an arbitrary fixed subset A ⊂ {0, 1}d. After choosing
action At, the algorithm receives the reward A>t Xt, where Xt ∈ Rd is the vector encapsulating the
reward of the d arms at stage t. The successive reward vectors (Xt)t≥1 are i.i.d with unknown mean
µ ∈ Rd. We consider a semi-bandit feedback system: after choosing the action At, the algorithm
observes the reward of each of the arms in that action, but not the other rewards. Other possible
feedbacks previously studied include bandit (only A>t Xt is revealed) and full information (Xt is
revealed). The goal of the algorithm is to maximize the cumulated reward up to stage T ≥ 1 or
equivalently to minimize the expected regret, which is the difference of the reward that would have
been gained by choosing the best action in hindsight A∗ and what was actually gained:

ERT = E
T∑
t=1

(A∗>µ−A>t µ) .
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For an action A ∈ A, the difference ∆A = (A∗>µ−A>µ) is called gap of A. We denote by ∆t the
gap of At, so that regret rewrites as ERT = E

∑T
t=1 ∆t. We also define the minimal gap of an arm,

∆i,min = min{A∈A:i∈A}∆A.

This setting was already studied Cesa-Bianchi and Lugosi [2012], most recently in Combes et al.
[2015], Kveton et al. [2015], where two different algorithms are used to tackle on one hand the case
where the arms have independent rewards and on the other hand the general bounded case. The regret
guaranties of the two algorithms are different and reflect that the independent case is easier. Another
algorithm for the independent arms case based on Thompson Sampling was introduced in Komiyama
et al. [2015]. One of the main objectives of this paper is to design a unique algorithm that can adapt
to the covariance structure of the problem when prior information is available.

The following notations will be used throughout the paper: given a matrix M (resp. vector v), its
(i, j)th (resp. ith) coefficient is denoted by M (ij) (resp. v(i)). For a matrix M , the diagonal matrix
with same diagonal as M is denoted by ΣM .

We denote by ηt the noise in the reward, i.e. ηt := Xt − µ. We consider a subgaussian setting, in
which we suppose that there is a positive semi-definite matrix C such that for all t ≥ 1,

∀u ∈ Rd,E[eu
>ηt ] ≤ e 1

2u
>Cu .

This is equivalent to the usual setting for bandits where we suppose that the individual arms are
subgaussian. Indeed if we have such a matrix C then each η(i)

t is
√
C(ii)-subgaussian. And under

a subgaussian arms assumption, such a matrix always exists. This setting encompasses the case of
bounded rewards.

We call C a subgaussian covariance matrix of the noise (see appendix A of the supplementary
material). A good knowledge of C can simplify the problem greatly, as we will show. In the case
of 1-subgaussian independent rewards, in which C can be chosen diagonal, a known lower bound
on the regret appearing in Combes et al. [2015] is d

∆ log T , while Kveton et al. [2015] proves a
dm
∆ log T lower bound in general. Our goal here is to investigate the spectrum of intermediate cases

between these two settings, from the uninformed general case to the independent case in which one
has much information on the relations between the arm rewards. We characterize the difficulty of the
problem as a function of the subgaussian covariance matrix C. We suppose that we know a positive
semi-definite matrix Γ such that for all vectors v with positive coordinates, v>Cv ≤ v>Γv, property
that we denote by C �+ Γ. Γ reflects the prior information available about the possible degree of
independence of the arms. We will study algorithms that enjoy regret bounds as functions of Γ.

The matrix Γ can be chosen such that all its coefficients are non-negative and verify for all i, j,
Γ(ij) ≤

√
Γ(ii)Γ(jj). From now on, we suppose that it is the case. In the following, we will use εt

such that ηt = C1/2εt and write for the reward: Xt = µ+ C1/2εt.

2 Lower bound

We first prove a lower bound on the regret of any algorithm, demonstrating the link between the sub-
gaussian covariance matrix and the difficulty of the problem. It depends on the maximal off-diagonal
correlation coefficient of the covariance matrix. This coefficient is γ = max{(i,j)∈[d],i6=j}

C(ij)
√
C(ii)C(jj)

.
The bound is valid for consistent algorithms [Lai and Robbins, 1985], for which the regret on any
problem verifies ERt = o(ta) as t→ +∞ for all a > 0.
Theorem 1. Suppose to simplify that d is a multiple of m. Then, for any ∆ > 0, for any consistent
algorithm, there is a problem with gaps ∆, σ-subgaussian arms and correlation coefficients smaller
than γ ∈ [0, 1] on which the regret is such that

lim inf
t→+∞

ERt
log t

≥ (1 + γ(m− 1))
2σ2(d−m)

∆

This bound is a consequence of the classical result of Lai and Robbins [1985] for multi-armed bandits,
applied to the problem of choosing one among d/m paths, each of which has m different successive
edges (Figure 1). The rewards in the same path are correlated but the paths are independent. A
complete proof can be found in appendix B.1 of the supplementary material.
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Figure 1: Left: parallel paths problem. Right: regret of OLS-UCB as a function of m and γ in the
parallel paths problem with 5 paths (average over 1000 runs).

3 OLS-UCB Algorithm and analysis

Faced with the combinatorial semi-bandit at stage t ≥ 1, the observations from t− 1 stages form as
many linear equations and the goal of an algorithm is to choose the best action. To find the action with
the highest mean, we estimate the mean of all arms. This can be viewed as a regression problem. The
design of our algorithm stems from this observation and is inspired by linear regression in the fixed
design setting, similarly to what was done in the stochastic linear bandit literature [Rusmevichientong
and Tsitsiklis, 2010, Filippi et al., 2010]. There are many estimators for linear regression and we
focus on the one that is simple enough and adaptive: Ordinary Least Squares (OLS).

3.1 Fixed design linear regression and OLS-UCB algorithm

For an action A ∈ A, let IA be the diagonal matrix with a 1 at line i if A(i) = 1 and 0 otherwise. For
a matrix M , we also denote by MA the matrix IAMIA. At stage t, if all actions A1, . . . , At were
independent of the rewards, we would have observed a set of linear equations

IA1
X1 = IA1

µ+ IA1
η1

...
IAt−1Xt−1 = IAt−1µ+ IAt−1ηt−1

and we could use the OLS estimator to estimate µ, which is unbiased and has a known subgaussian
constant controlling its variance. This is however not true in our online setting since the successive
actions are not independent. At stage t, we define

n
(i)
t =

t−1∑
s=1

I{i ∈ As}, n(ij)
t =

t−1∑
s=1

I{i ∈ As}I{j ∈ As} and Dt =

t−1∑
s=1

IAs
,

where n(i)
t is the number of times arm i has been pulled before stage t and Dt is a diagonal matrix of

these numbers. The OLS estimator is, for an arm i ∈ [d],

µ̂
(i)
t =

1

n
(i)
t

∑
s<t:i∈As

X(i)
s = µ(i) + (D−1

t

t−1∑
s=1

IAs
C

1/2εs)
(i) .

Then for all A ∈ A, A>(µ̂t − µ) in the fixed design setting has a subgaussian matrix equal to
D−1
t (
∑t−1
s=1 CAs

)D−1
t . We get confidence intervals for the estimates and can use an upper confidence

bound strategy [Lai and Robbins, 1985, Auer et al., 2002]. In the online learning setting the actions
are not independent but we will show that using this estimator still leads to estimates that are
well concentrated around µ, with confidence intervals given by the same subgaussian matrix. The
algorithm OLS-UCB (Algorithm 1) results from an application of an upper confidence bound strategy
with this estimator.

We now turn to an analysis of the regret of OLS-UCB. At any stage t ≥ 1 of the algorithm, let
γt = max{(i,j)∈At,i6=j}

Γ(ij)
√

Γ(ii)Γ(jj)
be the maximal off-diagonal correlation coefficient of ΓAt

and
let γ = max{t∈[T ]} γt be the maximum up to stage T .
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Algorithm 1 OLS-UCB.
Require: Positive semi-definite matrix Γ, real parameter λ > 0.

1: Choose actions such that each arm is pulled at least one time.
2: loop: at stage t,
3: At = arg maxAA

>µ̂t + Et(A)

with Et(A) =
√

2f(t)
√
A>D−1

t (λΣΓDt +
∑t−1
s=1 ΓAs

)D−1
t A.

4: Choose action At, observe IAt
Xt.

5: Update µ̂t, Dt.
6: end loop

Theorem 2. The OLS-UCB algorithm with parameter λ > 0 and f(t) = log t+ (m+ 2) log log t+
m
2 log(1 + e

λ ) enjoys for all times T ≥ 1 the regret bound

E[RT ] ≤16f(T )
∑
i∈[d]

Γ(ii)

∆i,min

(
5(λ+ 1− γ)

⌈
logm

1.6

⌉2

+ 45γm

)

+
8dm2 maxi{C(ii)}∆max

∆2
min

+ 4∆max ,

where dxe stands for the smallest positive integer bigger than or equal to x. In particular, d0e = 1.

This bound shows the transition between a general case with a dm log T
∆ regime and an independent

case with a d log2m log T
∆ upper bound (we recall that the lower bound is of the order of d log T

∆ ). The
weight of each case is given by the maximum correlation parameter γ. The parameter λ seems to be
an artefact of the analysis and can in practice be taken very small or even equal to 0.

Figure 1 illustrates the regret of OLS-UCB on the parallel paths problem used to derive the lower
bound. It shows a linear dependency in γ and supports the hypothesis that the true upper bound
matches the lower bound with a dependency in m and γ of the form (1 + γ(m− 1)).
Corollary 1. The OLS-UCB algorithm with matrix Γ and parameter λ > 0 has a regret bounded as

E[RT ] ≤ O(

√√√√dT log T max
i∈[d]
{Γ(ii)}

(
5(λ+ 1− γ)

⌈
logm

1.6

⌉2

+ 45γm

)
) .

Proof. We write that the regret up to stage T is bounded by ∆T for actions with gap smaller than
some ∆ and bounded using theorem 2 for other actions (with ∆min ≥ ∆). Maximizing over ∆ then
gives the result.

3.2 Comparison with other algorithms

Previous works supposed that the rewards of the individual arms are in [0, 1], which gives them a
1/2-subgaussian property. Hence we suppose (∀i ∈ [d], C(ii) = 1/2) for our comparison.

In the independent case, our algorithm is the same as ESCB-2 from Combes et al. [2015], up to the
parameter λ. That paper shows that ESCB-2 enjoys an O(d

√
m log T
∆ ) upper bound but our analysis

tighten it to O(d log2m log T
∆ ).

In the general (worst) case, Kveton et al. [2015] prove an O(dm log T
∆ ) upper bound (which is tight)

using CombUCB1, a UCB based algorithm introduced in Chen et al. [2013] which at stage t uses

the exploration term
√

1.5 log t
∑
i∈A 1/

√
n

(i)
t . Our exploration term always verifies Et(A) ≤√

f(t)
∑
i∈A 1/

√
n

(i)
t with f(t) ≈ log t (see section 3.6). Their exploration term is a worst-case

confidence interval for the means. Their broader confidence intervals however have the desirable
property that one can find the action that realizes the maximum index by solving a linear optimization
problem, making their algorithm computationally efficient, quality that both ESCB and OLS-UCB
are lacking.
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None of the two former algorithms benefits from guaranties in the other regime. The regret of ESCB
in the general possibly correlated case is unknown and the regret bound for CombUCB1 is not
improved in the independent case. In contrast, OLS-UCB is adaptive in the sense that its performance
gets better when more information is available on the independence of the arms.

3.3 Regret Decomposition

Let Hi,t = {|µ̂(i)
t − µ(i)| ≥ ∆t

2m} and Ht = ∪di=1Hi,t. Ht is the event that at least one coordinate of
µ̂t is far from the true mean. Let Gt = {A∗>µ ≥ A∗>µ̂t + Et(A

∗)} be the event that the estimate
of the optimal action is below its true mean by a big margin. We decompose the regret according to
these events:

RT ≤
T∑
t=1

∆tI{Gt,Ht}+

T∑
t=1

∆tI{Gt}+

T∑
t=1

∆tI{Ht}

Events Gt and Ht are rare and lead to a finite regret (see below). We first simplify the regret due to
Gt ∩Ht and show that it is bounded by the "variance" term of the algorithm.

Lemma 1. With the algorithm choosing at stage t the action At = arg maxA(A>µ̂t + Et(A)), we
have ∆tI{Gt,Ht} ≤ 2Et(At)I{∆t ≤ Et(At)}.

Proof in appendix B.2 of the supplementary material. Then the regret is cut into three terms,

RT ≤ 2

T∑
t=1

Et(At)I{∆t ≤ 2Et(At)}+

T∑
t=1

∆tI{Gt}+

T∑
t=1

∆tI{Ht} .

The three terms will be bounded as follows:

• The Ht term leads to a finite regret from a simple application of Hoeffding’s inequality.

• The Gt term leads to a finite regret for a good choice of f(t). This is where we need to show
that the exploration term of the algorithm gives a high probability upper confidence bound
of the reward.

• The Et(At) term, or variance term, is the main source of the regret and is bounded using
ideas similar to the ones used in existing works on semi-bandits.

3.4 Expected regret from Ht

Lemma 2. The expected regret due to the event Ht is E[
∑T
t=1 ∆tI{Ht}] ≤ 8dm2 maxi{C(ii)}∆max

∆2
min

.

The proof uses Hoeffding’s inequality on the arm mean estimates and can be found in appendix B.2
of the supplementary material.

3.5 Expected regret from Gt

We want to bound the probability that the estimated reward for the optimal action is far from its mean.
We show that it is sufficient to control a self-normalized sum and do it using arguments from Peña
et al. [2008], or Abbasi-Yadkori et al. [2011] who applied them to linear bandits. The analysis also
involves a peeling argument, as was done in one dimension by Garivier [2013] to bound a similar
quantity.

Lemma 3. Let δt > 0. With f̃(δt) = log(1/δt) + m log log t + m
2 log(1 + e

λ ) and an algorithm

given by the exploration term Et(A) =
√

2f̃(δt)
√
A>D−1

t (λΣΓDt +
∑t−1
s=1 ΓAs

)D−1
t A , then the

event Gt = {A∗>µ ≥ A∗>µ̂t + Et(A
∗)} verifies P{Gt} ≤ δt .

With δ1 = 1 and δt = 1
t log2 t

for t ≥ 2, such that f̃(δt) = f(t), the regret due to Gt is finite in
expectation, bounded by 4∆max.
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Proof. We use a peeling argument: let η > 0 and for a = (a1, . . . , am) ∈ Nm, let Da ⊂ [T ] be a
subset of indices defined by (t ∈ Da ⇔ ∀i ∈ A∗, (1 + η)ai ≤ n(i)

t < (1 + η)ai+1). For any Bt ∈ R,

P
{
A∗>(µ− µ̂t) ≥ Bt

}
≤
∑
a

P
{
A∗>(µ− µ̂t) ≥ Bt|t ∈ Da

}
.

The number of possible sets Da for t is bounded by (log t/ log(1 + η))m, since each number of pulls
n

(i)
t for i ∈ A∗ is bounded by t. We now search a bound of the form P

{
A∗>(µ− µ̂t) ≥ Bt|t ∈ Da

}
.

Suppose t ∈ Da and let D be a positive definite diagonal matrix (that depends on a).

Let St =
∑t−1
s=1 IAs∩A∗C

1/2εs, Vt =
∑t−1
s=1 CAs∩A∗ and IVt+D(ε) = 1

2 ‖St‖
2
(Vt+D)−1 .

Lemma 4. Let δt > 0 and let f̃(δt) be a function of δt. With a choice of D such that IA∗D �
λIA∗ΣCDt for all t in Da,

P
{
A∗>(µ−µ̂t)≥

√
2f̃(δt)A∗>D

−1
t (λΣCDt+Vt)D

−1
t A∗

∣∣∣t∈Da} ≤ P
{
IVt+D(ε)≥f̃(δt)|t∈Da

}
.

Proof in appendix B.2 of the supplementary material.

The self-normalized sum IVt
(ε) is an interesting quantity for the following reason: exp( 1

2IVt
(ε)) =

maxu∈Rd

∏t−1
s=1 exp(u>IAs∩A∗C

1/2εs − u>CAs∩A∗u). For a given u, the exponential is smaller
that 1 in expectation, from the subgaussian hypothesis. The maximum of the expectation is then
smaller than 1. To control IVt

(ε), we are however interested in the expectation of this maximum and
cannot interchange max and E. The method of mixtures circumvents this difficulty: it provides an
approximation of the maximum by integrating the exponential against a multivariate normal centered
at the point V −1

t St, where the maximum is attained. The integrals over u and ε can then be swapped
by Fubini’s theorem to get an approximation of the expectation of the maximum using an integral of
the expectations. Doing so leads to the following lemma, extracted from the proof of Theorem 1 of
Abbasi-Yadkori et al. [2011].
Lemma 5. Let D be a positive definite matrix that does not depend on t and
Mt(D) =

√
detD

det(Vt+D) exp(IVt+D(ε)). Then E[Mt(D)] ≤ 1.

We rewrite P
{
IVt+D(ε) ≥ f̃(δt)

}
to introduce Mt(D),

P
{
IVt+D(ε) ≥ f̃(δt)|t∈Da

}
= P

{
Mt(D) ≥ 1√

det(Id +D−1/2VtD−
1/2)

exp(f̃(δt))
∣∣∣t∈Da} .

The peeling lets us bound Vt. Let Da be the diagonal matrix with entry (i, i) equal to (1 + η)ai for
i ∈ A∗ and 0 elsewhere.

Lemma 6. With D = λΣCDa + I[d]\A∗ , det(Id +D−1/2VtD
−1/2) ≤ (1 + 1+η

λ )m .

The union bound on the sets Da and Markov’s inequality give

P
{
A∗>(µ− µ̂t) ≥

√
2f̃(δt)

√
λA∗>ΣCD

−1
t A∗ +A∗>D−1

t VtD
−1
t A∗

}
≤
∑
Da

P
{
Mt(D) ≥ (1 +

1 + η

λ
)−m/2 exp(f̃(δt))|t ∈ Da

}

≤
(

log t

log(1 + η)

)m
(1 +

1 + η

λ
)m/2 exp(−f̃(δt))

For η = e − 1 and f̃(δt) as in lemma 3, this is bounded by δt. The result with Γ instead of C is a
consequence of C �+ Γ. With δ1 = 1 and δt = 1/(t log2 t) for t ≥ 2, the regret due to Gt is

E[

T∑
t=1

∆tI{Gt}] ≤ ∆max(1 +

T∑
t=2

1

t log2 t
) ≤ 4∆max .
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3.6 Bounding the variance term

The goal of this section is to bound Et(At) under the event {∆t ≤ Et(At)}. Let γt ∈ [0, 1] such
that for all i, j ∈ At with i 6= j, Γ(ij) ≤ γt

√
Γ(ii)Γ(jj). From the Cauchy-Schwartz inequality,

n
(ij)
t ≤

√
n

(i)
t n

(j)
t . Using these two inequalities,

A>t D
−1
t (

t−1∑
s=1

ΓAs
)D−1

t At =
∑
i,j∈At

n
(ij)
t Γ(ij)

n
(i)
t n

(j)
t

≤ (1− γt)
∑
i∈At

Γ(ii)

n
(i)
t

+ γt(
∑
i∈At

√
Γ(ii)

n
(i)
t

)2 .

We recognize here the forms of the indexes used in Combes et al. [2015] for independent arms (left
term) and Kveton et al. [2015] for general arms (right term). Using ∆t ≤ Et(At) we get

∆2
t

8f(t)
≤ (λ+ 1− γt)

∑
i∈At

Γ(ii)

n
(i)
t

+ γt(
∑
i∈At

√
Γ(ii)

n
(i)
t

)2 . (1)

The strategy from here is to find events that must happen when (1) holds and to show that these events
cannot happen very often. For positive integers j and t and for e ∈ {1, 2}, we define the set of arms

in At that were pulled less than a given threshold: Sjt,e = {i ∈ At, n(i)
t ≤ αj,e

8f(t)Γ(ii)ge(m,γt)
∆2

t
},

with ge(m, γt) to be stated later and (αi,e)i≥1 a decreasing sequence. Let also S0
t,e = At. (Sjt,e)j≥0

is decreasing for the inclusion of sets and we impose limj→+∞ αj,e = 0, such that there is an index
j∅ with Sj∅t,e = ∅. We introduce another positive sequence (βj,e)j≥0 and consider the events that
at least mβj,e arms in At are in the set Sjt,e and that the same is false for k < j, i.e. for t ≥ 1,
Ajt,e = {|Sjt,e| ≥ mβj,e;∀k < j, |Skt,e| < mβk,e}. To avoid having some of these events being
impossible we choose (βj,e)j≥0 decreasing. We also impose β0,e = 1, such that |S0

t,e| = mβ0,e.

Let then At,e = ∪+∞
j=1A

j
t,e and At = At,1 ∪ At,2. We will show that At must happen for (1) to be

true. First, remark that under a condition on (βj,e)j≥0, At is a finite union of events,

Lemma 7. For e ∈ {1, 2}, if there exists j0,e such that βj0,e,e ≤ 1/m, then At,e = ∪j0j=1A
j
t,e.

We now show that At is impossible by proving a contradiction in (1).

Lemma 8. Under the event At,1, if there exists j0 such that βj0,1 ≤ 1/m, then

∑
i∈At

Γ(ii)

n
(i)
t

<
m∆2

t

8f(t)g1(m, γt)

 j0∑
j=1

βj−1,1 − βj,1
αj,1

+
βj0,1
αj0,1

 .

Under the event At,2, if limj→+∞ βj,2/
√
αj,2 = 0 and

∑+∞
j=1

βj−1,2−βj,2√
αj,2

exists, then

∑
i∈At

√
Γ(ii)

n
(i)
t

≤ m∆t√
8f(t)g2(m, γt)

+∞∑
j=1

βj−1,2 − βj,2√
αj,2

.

A proof can be found in appendix B.2 of the supplementary material. To ensure that the con-
ditions of these lemmas are fulfilled, we impose that (βi,1)i≥0 and (βi,2)i≥0 have limit 0 and
that limj→+∞ βj,2/

√
αj,2 = 0. Let j0,1 be the smallest integer such that βj0,1,1 ≤ 1/m. Let

l1 =
βj0,1,1

αj0,1,1
+
∑j0,1
j=1

βj−1,1−βj,1

αj,1
and l2 =

∑+∞
j=1

βj−1,2−βj,2√
αj,2

. Using the two last lemmas with (1),

we get that if At is true,

∆2
t

8f(t)
<

∆2
t

8f(t)

(
(λ+ 1− γt)

ml1
g1(m, γt)

+ γt
m2l22

g2(m, γt)

)
.

Taking g1(m, γt) = 2(λ + 1 − γt)ml1 and g2(m, γt) = 2γtm
2l22, we get a contradiction. Hence

with these choices At must happen. The regret bound will be obtained by a union bound on the events
that form At. First suppose that all gaps are equal to the same ∆.
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Lemma 9. Let γ = maxt≥1 γt. For j ∈ N∗, the event Ajt,e happens at most
dαj,e8f(T ) maxi{Γ(ii)}ge(m,γ)

mβj,e∆2 times.

Proof. Each time that Ajt,e happens, the counter of plays n(i)
t of at least mβje arms is incremented.

After αj,e8f(T ) maxi{Γ(ii)}ge(m,γ)
∆2 increments, an arm cannot verify the condition on n(i)

t any more.

There are d arms, so the event can happen at most d 1
mβje

αj,e8f(T ) maxi{Γ(ii)}ge(m,γ)
∆2 times.

If all gaps are equal to ∆, an union bound for At gives

E[

T∑
t=1

∆I{Ht ∩Gt}] ≤ 16 max
i∈[d]
{Γ(ii)}f(T )

∆
d

(λ+ 1− γ)l1

j0,1∑
j=1

αj,1
βj,1

+ γml22

+∞∑
j=1

αj,2
βj,2

 .

The general case requires more involved manipulations but the result is similar and no new important
idea is used. The following lemma is proved in appendix B.2 of the supplementary material:
Lemma 10. Let γ(i) = max{t,i∈At} γt. The regret from the event Ht ∩Gt is such that

E[

T∑
t=1

∆tI{Ht ∩Gt}] ≤ 16f(T )
∑
i∈[d]

Γ(ii)

∆i,min

(λ+ 1− γ)l1

j0∑
j=1

αj,1
βj,1

+ γml22

+∞∑
j=1

αj,2
βj,2

 .

Finally we can find sequences (αj,1)j≥1, (αj,2)j≥1, (βj,1)j≥0 and (βj,2)j≥0 such that

E[

T∑
t=1

∆I{Ht ∩Gt}] ≤ 16f(T )
∑
i∈[d]

Γ(ii)

∆i,min

(
5(λ+ 1− γ(i))

⌈
logm

1.6

⌉2

+ 45γ(i)m

)
See appendix C of the supplementary material. In Combes et al. [2015], αi,1 and βi,1 were such
that the log2m term was replaced by

√
m. Our choice is also applicable to their ESCB algorithm.

Our use of geometric sequences is only optimal among sequences such that βi,1 = αi,1 for all i ≥ 1.
It is unknown to us if one can do better. With this control of the variance term, we finally proved
Theorem 2.

4 Conclusion

We defined a continuum of settings from the general to the independent arms cases which is suitable
for the analysis of semi-bandit algorithms. We exhibited a lower bound scaling with a parameter that
quantifies the particular setting in this continuum and proposed an algorithm inspired from linear
regression with an upper bound that matches the lower bound up to a log2m term. Finally we showed
how to use tools from the linear bandits literature to analyse algorithms for the combinatorial bandit
case that are based on linear regression.

It would be interesting to estimate the subgaussian covariance matrix online to attain good regret
bounds without prior knowledge. Also, our algorithm is not computationally efficient since it requires
the computation of an argmax over the actions at each stage. It may be possible to compute this
argmax less often and still keep the regret guaranty, as was done in Abbasi-Yadkori et al. [2011] and
Combes et al. [2015].

On a broader scope, the inspiration from linear regression could lead to algorithms using different
estimators, adapted to the structure of the problem. For example, the weighted least-square estimator
is also unbiased and has smaller variance than OLS. Or one could take advantage of a sparse
covariance matrix by using sparse estimators, as was done in the linear bandit case in Carpentier and
Munos [2012].
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