
The Product Cut
(Supplementary Material)

Xavier Bresson
Nanyang Technological University

Singapore
xavier.bresson@ntu.edu.sg

Thomas Laurent
Loyola Marymount University

Los Angeles
tlaurent@lmu.edu

Arthur Szlam
Facebook AI Research

New York
aszlam@fb.com

James H. von Brecht
California State University, Long Beach

Long Beach
james.vonbrecht@csulb.edu

1 Algorithmic Details: Closed-form Solution of the Linear Program (16)

The algorithm for the Product Cut objective proceeds by solving a sequence of random linear programs

maximize Lk(F ) (1)
subject to F ∈ C (2)

ψi(F ) = 0 for i ∈ Ik. (3)

where Lk(F ) is the linearization of the energy E(F ) around the current iterate F k. This LP has
closed-form solution obtained by gradient thresholding. Starting from (P-rlx), we see that the
convex function E to be maximized is

E(F ) = E(f1, . . . , fR) =

R∑
r=1

e(fr) (4)

and its linearization around the current iterate F k = (fk1 , . . . , f
k
R) is

Lk(F ) = Lk(f1, . . . , fR) = E(fk1 , . . . , f
k
R) +

R∑
r=1

〈
∇e(fkr ), fr − fkr

〉
(5)

Recall that C is the bounded convex set [0, 1]n× . . .× [0, 1]n and the n affine constraints ψi(F ) = 0

correspond to the row-stochastic constraints
∑R
r=1 fi,r = 1. Plugging (5) in the Linear Program

(1)-(3) and ignoring the constant terms, we obtain:

maximize
R∑
r=1

〈
∇e(fkr ), fr

〉
=

n∑
i=1

R∑
r=1

fir ∇e(fkr )i (6)

subject to 0 ≤ fi,r ≤ 1 for 1 ≤ i ≤ n and 1 ≤ r ≤ R (7)
R∑
r=1

fi,r = 1 for i ∈ Ik (8)

where∇e(fkr )i stands for the ith entry of the vector∇e(fkr ). Note that the above problem decouples
in i and can be solved explicitly: if i ∈ Ik then

fk+1
i,r =

{
1 if ∇e(fkr )i > ∇e(fks )i for all s 6= r

0 otherwise
(9)
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Algorithm 1 Gradient Thresholding Algorithm to solve the Linear Program (1)-(3)
Input: Current iterate F k = (fk1 , . . . , f

k
R) and set Ik ⊂ {1, . . . , n}.

for r = 1 to R do
f̂r = fkr /(

∑n
i=1 f

k
i,r)

Solve Mαur = f̂r
gi,r = fi,r/ui,r for i = 1, . . . n.
Solve MT

α vr = gr
hr = log ur + vr − 1

end for
for all i ∈ Ik do

fk+1
i,r =

{
1 if r = arg maxs his
0 otherwise

end for
for all i /∈ Ik do

fk+1
i,r =

{
1 if hi,r > 0

0 otherwise
end for

Ouput: Next iterate F k+1 = (fk+1
1 , . . . , fk+1

R )

In case of a tie we break it randomly. On the other hand, if i /∈ Ik we have:

fk+1
i,r =

{
1 if ∇e(fkr )i ≥ 0

0 otherwise
(10)

So each vertex i ∈ Ik is assigned to exactly one and only one cluster, whereas a vertex i /∈ Ik can be
assigned to multiple clusters or no cluster at all. The gradient of e(f) is given by the formula:

∇e(f) = log

(
M−1α f

〈f,1V 〉

)
+ (M−1α )T g − 1V where gi :=

fi

(M−1α f)i
. (11)

So the Linear Program (1)-(3) is solved by Algorithm 1 above. The first loop computes

hr = ∇e(fr) for r = 1, . . . , R

according to formula (11), and the two following loops perform the gradient thresholding according
to formula (9) and (10). The Randomized SLP algorithm for PCut presented in the main body of the
paper is obtained by simply adding an outer loop over the variable k to the above algorithm.

2 Algorithmic Details: Algebraic Multigrid

This section details our approach for approximately solving the linear systems

Mαx = b and M−1α x = b

required by our algorithm. Let W denote an n×n matrix with non-negative entries and P = D−1W
for D the diagonal matrix of vertex degrees. Note that P is row stochastic, so that P1 = 1 holds.
We create a hierarchy P `1≤`≤L of row-stochastic matrices, together with inter-grid transfer operators
(I`, R`) in the following way.

Starting from P = D−1W , we first create a set of nc ≈ n/2 coarse-level vertices through a simple
pair-wise merging of vertices. At the most abstract level, this involves the following process:

(i) Choose some permutation π : {1, . . . , n} 7→ {1, . . . , n} of the vertices. Initialize empty lists
Vparent and Vchild of parent and child vertices. Initialize Vorphan = {1, . . . , n} as a list of
un-paired vertices.

(ii) Visit each vertex according to the ordering given by π, and if π(i) ∈ Vorphan (i.e. π(i) is
currently un-paired) then
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(a) If π(i) has no un-paired column neighbor, then leave π(i) in the Vorphan list and continue
to the next vertex.

(b) Otherwise, select an un-paired column neighbor j∗ ∈ {j : Pj,π(i) > 0, j ∈ Vorphan} of
π(i) according to some criterion

j∗ = argmax{j:Pjπ(i)>0, j∈Vorphan} F (π(i), j).

Push back π(i) onto Vparent and j∗ onto Vchild, then remove both j∗ and π(i) from the
Vorphan list.

We generally choose
F (i, j) = f(Pij , Pji, di, dj)

as some function of the weights and vertex degrees, such as F (i, j) = Pij + Pji for instance.

At the end of the process, we have a list of (parent, child) pairs and the remaining list Vorphan
of unmarked vertices. Let np denote the number of parents and no the number of orphans. Set
nc = np + no as the total number of coarse-level vertices. We then use the result of this merging
process to create an nc×n restriction matrix R and an n×nc interpolation matrix I as follows. Each
coarse level vertex 1 ≤ i ≤ nc (listed in some arbitrary order) corresponds to either a (parent, child)
pair (j1, j2) with 1 ≤ j1, j2 ≤ n of fine-level vertices or a singleton 1 ≤ j1 ≤ n orphan vertex. We
define the n× nc prolongation or interpolation matrix I by a simple copy procedure. If a coarse level
vertex i↔ (j1, j2) corresponds to a pair of fine-level vertices, we set

Ij1,i = 1 and Ij2,i = 1

and all other entries Iki of the ith column to zero. If i↔ j1 corresponds to an orphan vertex we set
Ij1,i = 1 and all other entries Iki of the ith column to zero. Thus each column of I contains either
one or two non-zero entries, while each row of I contains a single non-zero entry. Exact interpolation
of constants I1 = 1 therefore holds. We define the restriction

R =
(
diag(IT1)

)−1
IT

as the transpose of prolongation, followed by a row-normalization. Thus R either averages values or
copies values of fine-level vertices, depending on whether a coarse level vertex corresponds to a pair
or a singleton. Finally we use

Pc := RPI

for the coarse level weights. Note Pc is entri-wise positive, and moreover

Pc1 = RPI1 = RP1 = R1 = 1

so row-stochasticity is preserved. A simple calculation shows that

RI = Id,

and so restriction provides a left-inverse for interpolation. Given the output P 2 = Pc of the first
coarsening, we then iteratively apply this coarsening strategy to obtain a sequence of coarsened
matrices P ` and an L-level hierarchy {P `}1≤`≤L of row-stochastic weight matrices. We adopt
the convention that P 1 = P is the original weight matrix, so PL corresponds to the coarsest level
weights. We terminate the procedure when PL contains no more than 500 rows. We also have a
collection {I`, R`}2≤`≤L of inter-level interpolation and restriction operators, so P ` = R`P `−1I`

according to our convention.

We then use this hierarchy to approximate the solution of the linear systems

(Id− αP )x = b,

where 0 < α < 1 the random-walk parameter. We accomplish this by applying a sequence of “half
V-cycles.” A single “half V-cycle” consists of the following steps.

(i) Compute the current residual r = b− x+ αPx.
(ii) Restrict the current residual to the coarsest level rL = RLRL−1 · · ·R2r.

(iii) Solve (Id− αPL)eL = rL exactly for the error on the coarsest level.
(iv) For ` = L− 1 to ` = 1,
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(a) Interpolate the error e` = I`+1e`+1

(b) Perform k` iterations of Gauss-Seidel on the system (Id− αP )e = r` with e` as initializa-
tion, and update e` to the result.

(v) Correct x← x+ e1

In practice we find one iteration of this process is enough for our purposes, in that this is generally
sufficient to propagate information across the full graph. We also take k` = 1 for all levels of the
hierarchy in our experiments.

To solve the transposed system

(Id− αPT )x = b,

we note that P = D−1W for W = WT a symmetric weight matrix and D the diagonal matrix of
vertex degrees. By a simple change of variables we have

(Id− αPT )−1 = D(Id− αP )−1D−1.

We therefore slightly modify the half V-cycle strategy. We use r1 := D−1(Id− αD−1W )x as the
initial residual, apply the half V-cyle above for the system (Id−αP )e1 = r1, then apply x← x+De1

to update the result.

3 Algorithmic Details: Dataset Construction

• 20NEWS (unweighted similarity matrix): The word count from the raw documents was
computed using the Rainbow library [1] with a default list of stop words. Words appearing
less than 20 times were also removed. The similarity matrix was then obtained by 5 nearest
neighbors using cosine similarity between tf-idf features. Source: http://www.cs.cmu.
edu/~mccallum/bow/rainbow/

• RCV1 (weighted similarity matrix): This dataset was obtained in preprocessed format from
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html with the tf-idf
features were already computed. We then simply used cosine similarity and 5-NN.

• WEBKB4 (unweighted similarity matrix): The word count from the raw documents was
done with the Rainbow library [1]. A list of stop word was removed. Words appearing less
than 5 times were removed. The similarity matrix was then obtained by 5 nearest neighbors
using cosine similarity between tf-idf features. Source: http://www.cs.cmu.edu/afs/
cs/project/theo-20/www/data/

• CITESEER (weighted similarity matrix): This dataset was obtained in prepro-
cessed format from http://linqs.cs.umd.edu/projects//projects/lbc/index.
html where each publication in the dataset is described by a 0/1-valued word vector indicat-
ing the absence/presence of the corresponding word from the dictionary. We then simply
used cosine similarity and 5-NN.

• MNIST, PENDIGITS, OPTDIGITS (unweighted similarity matrix): The similarity matrices
were obtained from [2], where the authors first extracted scattering features using [3] for
images before calculating the 10-NN graph. Source: http://users.ics.aalto.fi/
rozyang/nmfr/index.shtml

• USPS (weighted similarity matrix): We computed a 10-NN graph using standard Euclidean
distance between the raw images. Each edge in the 10-NN graph was given the weight

wij = e−
‖xi−xj‖

2

2σ2

where each xi denotes a vector containing the raw pixel data. The parameter σ was
chosen as the mean distance between each vertex and its 10th nearest neighbor. Source:
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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4 Theoretical Details: Equivalence of (4) and (5) with Pcut and Ncut

The fact that maximizing the geometric average
(∏

r

∏
i∈Ar prAr (vi)

)1/n
is equivalent to minimiz-

ing Pcut(P) simply comes from the equality:

Pcut(P) =

(∏
i∈V prV (vi)

)1/n(∏
r

∏
i∈Ar prAr (vi)

)1/n . (12)

This equality can easily be verified by using the fact that prA(vi) = 1
|A|
∑
j∈A ωij . To show that

maximizing the arithmetic average 1
n

∑
r

∑
i∈Ar prAr (vi) is equivalent to minimizing Ncut(P),

note that:

R∑
r=1

∑
i∈Ar

prAr (vi) =

R∑
r=1

1−
∑
i∈Acr

prAr (vi)

 = R−
R∑
r=1

∑
i∈Acr

∑
j∈Ar ωij

|Ar|

= R−
R∑
r=1

∑
i∈Acr

∑
j∈Ar ωij∑

i∈V
∑
j∈Ar ωij

(13)

5 Theoretical Details: Proof of Theorem 1

In this section we prove the inequality:

e−H(P) ≤ Pcut(P) ≤ 1. (14)

The upper bound can be directly read from the definition of the Product Cut. Using (12), we see that
the upperbound is equivalent to(∏

i∈V
prV (vi)

)1/n

≤

(∏
r

∏
i∈Ar

prAr (vi)

)1/n

(15)

Taking the logarithm of both sides, and using the fact that

e(1Ar ) =
∑
i∈Ar

log

(
M−1α 1Ar

)
i

|Ar|
=
∑
i∈Ar

log
(
prAr (vi)

)
where e(f) is the energy defined in section 3 of the paper, we see that (15) is equivalent to

e(1V ) ≤
∑
r

e(1Ar )

Since e(f) is 1-homogeneous and convex (see Theorem 3), e(f) is subadditive and therefore

e(1V ) = e

(∑
r

1Ar

)
≤
∑
r

e(1Ar )

6 Theoretical Details: Proof of Theorem 2

The unperturbed graph Gn = (Vn,Wn) was constructed in a way so that the personalized page-
rank vectors prAn and prBn can be explicitly computed. The formula for prAn is provided in the
following lemma. The formula for prBn is obtained by exchanging the role of An and Bn.

Lemma 1 The personalized page-rank vector prAn on the unperturbed graph Gn = (Vn,Wn) is
given by the formula:

prAn = x
1An
|An|

+ y
1Bn
|Bn|

where x =
1− α+ αµ

1− α+ 2αµ
and y = 1− x.
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Proof. The solution u = M−1α 1A satisfies

u = αWD−1u+ (1− α)1A (16)

where we use have dropped the subscript on Wn for simplicity of notation. Since each vertex in Gn
has degree k and is connected to µk vertices in the opposite cluster, we have that:

WD−11A = (1− µ)1A + µ1B (17)

WD−11B = µ1A + (1− µ)1B (18)

Let us look for a solution u of equation (16) that has the form u = x1A + y1B . For such a u we have

WD−1u = (x(1− µ) + yµ)1A + (xµ+ y(1− µ))1B

and equation (16) implies:{
x = α (x(1− µ) + yµ) + (1− α)

y = α (xµ+ y(1− µ))
or

{
x+ y = 1

αµx+ (α− αµ− 1)y = 0

The solution of this system is:

x =
1− α+ αµ

1− α+ 2αµ

The formula for prAn = M−1α 1An/|An| is obtained by scaling u by a factor 1/|An| and by noting
that An = Bn. �

We will also need an explicit formula for prVn on the unperturbed graph, but this one is trivial:

Lemma 2 prVn =
1Vn
|Vn|

We next get an estimate for the personalized page-rank vector pr0C on the perturbed graph G0n:

Lemma 3 pr0C(vi) ≥ 1
|C|

1−α
1−α+αµ0

for all vi ∈ C.

Proof. Consider the two following Markov processes on the graph G0n:

• Process 1: At each step, the random walker has a probability 1−α to be teleported to the set
C, and a probability α to move to a neighboring vertex via a step of regular graph random
walk.
• Process 2: The directed version of process 1 where edges connecting C to Cc only exit C.

In other words, when performing a step of regular random walk, the random walker can use
the edges connecting C to Cc only to exit C. Once the random walker is outside of C, the
only way he can come back to C is by teleportation.

Process 1 is the process associated with personalized page-rank. The stationary distribution of process
1 is the vector pr0C . Let pr0,mod

C be the stationary distribution of the process 2. Since the only
difference between process 1 and process 2 is that when the random walker is outside of C, he is less
likely to comeback in C, it is clear that

pr0C(vi) ≥ pr0,mod
C (vi) for all vi ∈ C.

Since all the vertices in C are equivalent (due to the graph construction), Process 2 reduces to a two
states process, where the first state is “in C" and the second state is “out C". The (column stochastic)
transition matrix is of this two states process is:

N =

[
α(1− µ0) + (1− α) 1− α

αµ0 α

]
=

[
1− αµ0 1− α
αµ0 α

]
and the stationary distribution (that is, the solution of Nu = u), is

u =

[ 1−α
1−α+αµ0

αµ0

1−α+αµ0

]
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Again, since all the vertices in C are equivalent, we obtain

pr0,mod
C (vi) =

1

|C|
1− α

1− α+ αµ0
for all vi ∈ C.

which concludes the proof. �

The following lemma is quite technical. Its proof can be found in the next section.

Lemma 4 (First Technical Lemma)

lim
n→∞

∣∣∣∣∣ ∑
vi∈Vn

pr0Vn(vi)−
∑
vi∈Vn

prVn(vi)

∣∣∣∣∣ = 0 (19)

lim
n→∞

∣∣∣∣∣ ∑
vi∈An

pr0An(vi)−
∑
vi∈An

prAn(vi)

∣∣∣∣∣ = 0 (20)

lim
n→∞

∣∣∣∣∣ ∑
vi∈Bn

pr0Bn∪C(vi)−
∑
vi∈Bn

prBn(vi)

∣∣∣∣∣ = 0 (21)

lim
n→∞

∑
vi∈C

pr0Bn∪C(vi) = 0 (22)

We are now ready to prove the normalized cut is not stable, which is the first part of Theorem 2:

Proposition 1 Suppose that µ, µ0, k, k0, n0 are fixed. Then

µ0 < 2µ ⇒ Ncut(P0,good
n ) > Ncut(P0,bad

n ) for n large enough. (23)

Proof. Define:

E0
n(P0,good

n ) = E0
n(An, Bn ∪ C) =

∑
vi∈An

pr0An(vi) +
∑

vi∈Bn∪C
pr0Bn∪C(vi) (24)

E0
n(P0,bad

n ) = E0
n(An ∪Bn, C) =

∑
vi∈An∪Bn

pr0An∪Bn(vi) +
∑
vi∈C

pr0C(vi) (25)

Since minimizing the Normalized Cut is equivalent to maximizing the arithmetic average of the per-
sonalized page-rank vectors, we need to show that µ0 < 2µ implies that E0

n(P0,good
n ) < E0

n(P0,bad
n )

for n large enough.

Since
∑
vi∈Vn prVn(vi) = 1, convergence (40) from lemma (4) simply states that

lim
n→∞

∑
vi∈An∪Bn

pr0An∪Bn(vi) = 1.

Combining this with the lower bound from lemma (3) on pr0C we get:

E0
n(P0,bad

n ) ≥ 1− ε(n) +
1− α

1− α+ αµ0
(26)

for some function ε(n) satisfying limn→∞ ε(n) = 0. Consider now the energy of the good partition:

E0(P0,good
n ) =

∑
vi∈An

pr0An(vi) +
∑
vi∈Bn

pr0Bn∪C(vi) +
∑
vi∈C

pr0Bn∪C(vi) (27)

Using lemma 1 we see that, on the unperturbed graph, we have:∑
vi∈An

prAn(vi) =
∑
vi∈Bn

prBn(vi) =
1− α+ αµ

1− α+ 2αµ

Combining this with convergences (41), (42) and (43) from lemma (4) leads to:

lim
n→∞

∑
vi∈An

pr0An(vi) = lim
n→∞

∑
vi∈An

pr0Bn∪C(vi) =
∑
vi∈An

prAn(vi) =
1− α+ µα

1− α+ 2µα

7



together with the fact that limn→∞
∑
vi∈C pr0Bn∪C(vi) = 0 we obtain that

lim
n→∞

E0(P0,good
n ) = 2

1− α+ µα

1− α+ 2µα
= 1 +

1− α
1− α+ 2µα

(28)

Comparing (26) and (28) and noticing that µ0 < 2µ implies that 1−α
1−α+µ0α

> 1−α
1−α+2µα conclude the

proof. �

From lemma 1 and 2 we know that

2n prAn(vi) = 2x for all vi ∈ An (29)

2n prBn(vi) = 2x for all vi ∈ Bn (30)

2n prVn(vi) = 1 for all vi ∈ Vn. (31)

where x is the quantity defined in lemma 1. The following technical lemma, whose proof can be
found in the next section, is require to prove the Product Cut is stable.

Lemma 5 (Second Technical Lemma)

lim
n→∞

( ∏
i∈An

2n pr0An(vi)
∏
i∈Bn

2n pr0Bn∪C(vi)

)1/(2n)

= 2x (32)

lim
n→∞

(∏
i∈Vn

2n pr0Vn∪C(vi)

)1/(2n)

= 1 (33)

We are now ready to prove the Product Cut is stable, which is the second part of Theorem 2:

Proposition 2 Suppose that µ, µ0, k, k0, n0 are fixed. Then

Pcut(P0,good
n ) < Pcut(P0,bad

n ) for n large enough. (34)

The sequence of partitions P0,bad
n becomes arbitrarily ill-balanced, which from (14) implies the

following limit on the perturbed graph G0n:

lim
n→∞

PcutG0
n
(P0,bad

n ) = 1. (35)

From equation (12), lemma 1 and lemma 2, we have that

PcutGn(An, Bn) =
1

2x
< 1 (36)

where x is defined in lemma (1) In order to conclude we will show that

lim
n→∞

PcutG0
n
(An, Bn ∪ C) =

1

2x
. (37)

Indeed, combined with (35), since 1/(2x)<1, the above limit shows that the Product Cut of P0,good
n =

(An, Bn ∪ C) becomes eventually smaller than the Product Cut of P0,bad
n .
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We now prove (37). Using equality (12), and noting that the perturbed graph G0n has 2n+n0 vertices,
we have:

PcutG0
n
(An, Bn ∪ C) =

(∏
i∈Vn∪C pr0Vn∪C(vi)

)1/(2n+n0)(∏
i∈An pr

0
An

(vi)
∏
i∈Bn∪C pr0Bn∪C(vi)

)1/(2n+n0)

=

(∏
i∈Vn∪C 2n pr0Vn∪C(vi)

)1/(2n+n0)(∏
i∈An 2n pr0An(vi)

∏
i∈Bn∪C 2n pr0Bn∪C(vi)

)1/(2n+n0)

=

[(∏
i∈Vn 2n pr0Vn∪C(vi)

)1/(2n)]2n/(2n+n0) [∏
i∈C 2n pr0Vn∪C(vi)

]1/(2n+n0)[(∏
i∈An 2n pr0An(vi)

∏
i∈Bn 2n pr0Bn∪C(vi)

)1/(2n)]2n/(2n+n0) [∏
i∈C 2n pr0Bn∪C(vi)

]1/(2n+n0)

=
term1× term2
term3× term4

According to lemma 5 term 1 converges to 1 and term 3 converges to 2x. We now show that terms 2
and 4 both converges to 1, which will conclude the proof. Let’s prove it form term 4. First note that

pr0Bn∪C(vi) ≥ (1− α)/|Bn ∪ C| for all vertex in Bn ∪ C (38)

This is a simple consequence of the fact that the vector u = pr0Bn∪C = M−1α
1Bn∪C
|Bn∪C| satisfies the

equation

u = αWD−1u+ (1− α)
1Bn∪C
|Bn ∪ C|

Using (38) we get

0 ≥ log(term 4) =
1

2n+ n0

∑
i∈C

log
(
2n pr0Bn∪C(vi)

)
≥ 1

2n+ n0
|C| log

(
2n

1− α
|Bn ∪ C|

)
=

n0
2n+ n0

log

(
2n

n+ n0
(1− α)

)
→ 0

Term 2 can be handled similarly. �

7 Theoretical Details: Proof Lemmas 4 and 5

We begin two intermediate lemmata that, while elementary, will prove useful in proving lemmas 4
and 5. Let P denote an n× n matrix with non-negative entries. We say P is column sub-stochastic if

Pij ≥ 0 and max
1≤j≤n

n∑
i=1

Pij ≤ 1,

or in other words if the maximal column sum of P remains bounded by unity. After recalling the
definition of the `1 → `1 operator norm ‖P‖1 of a matrix

‖P‖1 := max
{u∈Rn, ‖u‖`1=1}

‖Pu‖`1 = max
1≤j≤n

n∑
i=1

|Pij |,

we note that a column sub-stochastic matrix P has norm ‖P‖1 at most one. Similarly, we say P is
row sub-stochastic if

Pij ≥ 0 and max
1≤i≤n

n∑
j=1

Pij ≤ 1,

and note analogously that any row sub-stochastic matrix P has `∞ operator norm ‖P‖∞ at most one.
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Lemma 6 Let P denote a column (row) sub-stochastic matrix. Then

M−1α,P := (1− α)(I − αP )−1

exists and is also column (row) sub-stochastic. Moreover, for any n × n matrices P1 and P2, the
identity

M−1α,P2
= M−1α,P1

+
α

1− α
M−1α,P2

(P2 − P1)M−1α,P1
,

holds whenever both inverses exist. As a consequence, for any u ∈ Rn and any 1 ≤ p ≤ ∞ the
corresponding estimates

‖M−1α,P2
u−M−1α,P1

u‖`p ≤
α

1− α
‖M−1α,P2

(P2 − P1)M−1α,P1
u‖`p

hold.

proof The first assertion is well-known and standard. It follows, for instance, by appealing to the
convergent Neumann series representation

M−1α,P = (1− α)

(
I +

∞∑
k=1

αkP k

)
for the inverse. The second statement follows from observing that

(I − αP2)−1 =
[
(I − αP1)−1 + α(I − αP2)−1(P2 − P1)(I − αP1)−1

]
,

then simply applying the first part of the lemma. �

We shall use this lemma to estimate the difference between personalized page-rank vectors computed
on the original and perturbed graphs. Let Vn := {1, . . . , n} denote the original vertex set and
C := {n+ 1, . . . , n+ n0} the perturbation set of vertices. Take A ⊂ {1, . . . , n, n+ 1, . . . n+ n0}
arbitrary and decompose its indicator 1A as

1A =

(
1A∩Vn
1A∩C ,

)
and similarly let

‖u‖`1(Vn) :=

n∑
i=1

|ui| ‖u‖`1(C) :=

n+n0∑
i=n+1

|ui|

‖u‖`∞(Vn) := max
1≤i≤n

|ui| ‖u‖`∞(C) := max
n+1≤i≤n+n0

|ui|

denote the corresponding decompositions of vector norms. We shall then use

prA := (1− α)(I −WD−1)−1
(

1A∩Vn
|A ∩ Vn|

)
and pr0A := M−1α,P2

(
1A
|A|

)
to denote the personalized page-rank vectors of A induced by the original and perturbed graphs,
respectively.

To simplify the analysis, let us consider the original n× n symmetric weight matrix W as embedded
in the (n+ n0)× (n+ n0) matrix W 0 of the perturbed graph, where we order the vertices so that

W 0 =

[
W 0n,n0

0n0,n 0n0,n0

]
+

[
0n,n W̃n,n0

W̃n0,n W̃n0,n0

]
. (39)

The sub-matrix W̃n,n0 = WT
n0,n thus encodes any additional edges between vertices in {1, . . . , n} and

the n0 newly added vertices, while the sub-matrix W̃n0,n0
describes the connectivity relation between

the added vertices themselves. We may partition the corresponding degree matrices accordingly, so
that

D0 =

[
D 0n,n0

0n0,n 0n0,n0

]
+

[
D̃ 0n,n0

0n0,n D̃n0

]
.
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We use D = diag(W1) to denote the degree matrix of the original graph, D̃ = diag(W̃n,n01) is the
degree perturbation of the original n vertices and Dn0

= diag(W̃n0,n1 + W̃n0,n0
1) is simply the

degree matrix of the added vertices. We may then define
P2 = W 0(D0)−1

as the random-walk matrix of the perturbed graph and

P1 =

[
WD−1 0n,n0

0n0,n 0n0,n0

]
as the (n+ n0)× (n+ n0) embedding of the original random walk matrix into the larger vertex set.
Finally, we let

∆RW := W (D + D̃)−1 −WD−1

denote the perturbation of the original random walk matrix itself. With these conventions and
definitions in place, we may prove the second intermediate lemma.

Lemma 7 Let W denote an n× n symmetric matrix and W 0 an (n+ n0)× (n+ n0) perturbation
of the form (39). Define B̃ ⊂ {1, . . . , n}

B̃ := {i ∈ {1, . . . , n} : D̃ii 6= 0}
as those vertices in W affected by the perturbation. Then for any A ⊂ Vn ∪ C, the estimate

‖(1−α)1A∩C−|A|pr0A‖`1(C)+‖|A∩Vn|prA−|A|pr0A‖`1(Vn) ≤
2α|A ∩ Vn|

1− α
‖prA‖`1(B̃)+α|A∩C|

holds for the difference between induced page-rank vectors.

proof The fact that Dii = (D + D̃)ii unless i ∈ B̃ implies that

(∆RWu)(vi) = −
∑
j∈B̃

wij

(
D̃jj

Djj(Djj + D̃jj)

)
uj .

for u ∈ Rn arbitrary. In a similar fashion, the fact that W̃n0,n = W̃T
n,n0

implies

(W̃n0,n(D + D̃)−1u)(vi) =
∑
j∈B̃

(W̃n0,n)ijuj

(Djj + D̃jj)
.

Now let R denote the (n+ n0)× |B| matrix with entries

Rij =
−wijD̃jj

Djj(Djj + D̃jj)
(1 ≤ i ≤ n) and Rij =

(W̃n0,n)ijuj

(Djj + D̃jj)
(n+ 1 ≤ i ≤ n+ n0),

so that
‖∆RWu‖`1(V n) + ‖W̃n0,n(D + D̃)−1u‖`1(C) = ‖RuB̃‖`1 .

As the maximal column sums of R are bounded by

max
j∈B̃

2D̃jj

(Djj + D̃jj)
≤ 2,

the estimate ‖RuB̃‖`1 ≤ 2‖u‖`1(B̃) then follows. Now take u ∈ Rn0 arbitrary and recall that the
matrix

Q :=

[
W̃n,n0

D̃−1n0

W̃n0,n0D̃
−1
n0

]
is column stochastic by definition. Thus

‖W̃n,n0
D̃−1n0

u‖`1(Vn) + ‖W̃n0,n0
D̃−1n0

u‖`1(C) = ‖Qu‖`1(Vn∪C) ≤ ‖u‖`1(C)

by definition of the `1-matrix norm. Combining these estimates with lemma 6 and the choices
u = M−1α 1A∩Vn and u = (1− α)1A∩C then shows

‖(1−α)1A∩C−|A|pr0A‖`1(C)+|A∩Vn|prA−|A|pr0A‖`1(Vn) ≤
2α|A ∩ Vn|

1− α
‖prA‖`1(B̃)+α|A∩C|.

which is exactly the claimed bound. �

With this result in place, we may now prove lemmas 4 and 5
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Lemma 8 (First Technical Lemma)

lim
n→∞

∣∣∣∣∣ ∑
vi∈Vn

pr0Vn(vi)−
∑
vi∈Vn

prVn(vi)

∣∣∣∣∣ = 0 (40)

lim
n→∞

∣∣∣∣∣ ∑
vi∈An

pr0An(vi)−
∑
vi∈An

prAn(vi)

∣∣∣∣∣ = 0 (41)

lim
n→∞

∣∣∣∣∣ ∑
vi∈Bn

pr0Bn∪C(vi)−
∑
vi∈Bn

prBn(vi)

∣∣∣∣∣ = 0 (42)

lim
n→∞

∑
vi∈C

pr0Bn∪C(vi) = 0 (43)

proof Apply lemma 7 with the choice A = Vn to find

‖prVn − pr0Vn‖`1(Vn) ≤ C(α)‖prVn‖`1(B̃).

But ‖prVn‖`1(B̃) = |B̃|/2n = n0/2n → 0 since n0 is constant. This proves the first statement.
Applying lemma 7 with A = An yields the second statement in exactly the same way. For the third
statement, use the choice A = Bn ∪ C to find

‖prBn − (1 + n0/n)pr0Bn∪C‖`1(Vn) ≤ C(α)‖prBn‖`1(B̃) + α|C|/n ≤ C(α)(n0/n)→ 0.

By the triangle inequality, ‖prBn − pr0Bn∪C‖`1(Vn) ≤ ‖prBn − (1 + n0/n)pr0Bn∪C‖`1(Vn) +

‖pr0Bn∪C‖`1(Vn)(n0/n)→ 0, which yields the third claim. The fourth and final claim follows from
the choice A = Bn ∪ C, the bound

‖(1− α)1C − (n+ n0)pr0Bn∪C‖`1(C) ≤ C(α)n0

and the triangle inequality as well. �

Lemma 9 (Second Technical Lemma)

lim
n→∞

( ∏
i∈An

2n pr0An(vi)
∏
i∈Bn

2n pr0Bn∪C(vi)

)1/(2n)

= 2x (44)

lim
n→∞

(∏
i∈Vn

2n pr0Vn∪C(vi)

)1/(2n)

= 1 (45)

proof By following the proof of the first technical lemma, we may conclude that the estimates∑
i∈An

|x− npr0An(vi)| ≤ C∑
i∈Bn

|x− (n+ n0)pr0Bn∪C(vi)| ≤ C∑
i∈Vn

|1− (2n+ n0)pr0Vn∪C(vi)| ≤ C

hold, where C > 0 denotes a uniform constant that does not depend upon n. Let ε > 0 be arbitrary
and set

Aεn :=
{
vi ∈ Vn : |x− npr0An(vi)| ≤ ε

}
.

The uniform bound above shows that |(Aεn)c| ≤ C/ε, and so( ∏
i∈An

npr0An(vi)

)1/2n

=

∏
i∈Aεn

npr0An(vi)

1/2n ∏
i∈(Aεn)c

npr0An(vi)

1/2n

:= I× II.
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For the first term we have
(x− ε)

|Anε |
2n ≤ I ≤ (x+ ε)

|Anε |
2n

by the definition of Aεn. For II we know that

(1− α)
|(Aεn)c|

2n ≤ II ≤ (C + x)
|(Anε )c|

2n

by the uniform upper bound and the fact that vi ∈ An implies a lower bound of (1 − α)/n for
pr0An(vi). As |Aεn| ≥ n− C/ε this shows

√
x− ε ≤ lim inf

n→∞

( ∏
i∈An

npr0An(vi)

)1/2n

≤ lim sup
n→∞

( ∏
i∈An

npr0An(vi)

)1/2n

≤
√
x+ ε.

Thus

lim
n→∞

( ∏
i∈An

npr0An(vi)

)1/2n

=
√
x

since ε > 0 was arbitrary. As n0 is fixed, by starting from the second uniform bound a similar
computation shows

lim
n→∞

( ∏
i∈Bn

npr0Bn∪C(vi)

)1/2n

=
√
x,

which combines with the previous computation to yield the first claim. Finally, beginning from the
third uniform bound and applying the same argument yields the second claim. �

8 Proof of Theorem 3

In this section we prove that the energy

e(f) =

〈
f, log

M−1α f

〈f,1〉

〉
is convex on Rn+. We will employ the following notational conventions throughout the proof. For
each 1 ≤ i ≤ n we let ei denote the ith standard basis vector, 0 denote the zero vector and
1 = (1, 1, . . . , 1)T denote the vector of all ones. We reserve Id for the identity matrix. Given any
vector f = (f1, . . . , fn)T ∈ Rn, we use

diag(f) :=


f1 0 0 · · · 0
0 f2 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 fn−1 0
0 · · · 0 0 fn


to denote the corresponding diagonal matrix with the entries of f along the diagonal. For any such
f ∈ Rn we trivially note that

diag(f)1 = f

by definition. Finally, we recall that

Rn+ := {f ∈ Rn : ∀i, fi ≥ 0}
denotes the set of non-negative vectors.

Let Q denote a column-stochastic, invertible matrix with strictly positive entries. That is, QT1 = 1
and Qij > 0 for all pairs (i, j) of indices. Suppose further that Q−1 is an M -matrix — there exists a
matrix B with non-negative entries Bij ≥ 0 and a scalar σ > ρ(B) so that

Q−1 = σId−B,
where ρ(B) denotes the spectral radius. The condition QT1 = 1 then implies BT1 = (σ − 1)1, and
so σ > 1 since B has non-negative entries. We may therefore decompose

Q−1 =
1

1− α
(Id− αP ) for 0 < α :=

σ − 1

σ
< 1,
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with P some column-stochastic matrix with non-negative entries. Given any such column-stochastic
matrix P with non-negative entries, we have a convergent power-series representation

Q = (1− α) (Id− αP )
−1

= (1− α)

∞∑
n=0

αnPn

for the inverse. Thus Qij > 0 for all (i, j) precisely when the graph determined by the non-zero
entries of P is connected. We refer to any column-stochastic matrix P with this property as the
random-walk matrix of a connected graph. Given Q of this form, in what follows we shall also let

Q =

[ | | |
q1 q2 · · · qn
| | |

]
and Q =


— r1 —
— r2 —

...
— rn —

 ,
so that the qi denote the columns of Q while the ri denote its rows. Before proceeding with the proof
of convexity, we first pause to collect a few elementary results regarding matrices Q of this form in
the following lemma.

Lemma 10 Let Q denote an invertible, column-stochastic matrix with positive entries. Then

(i) Q−1 is an M -matrix if and only if there exists 0 < α < 1 so that

Q−1 =
1

1− α
(Id− αP ),

where P is the random-walk matrix of a connected graph.

(ii) If f ∈ Rn+ and f 6= 0 then 〈Qf, ei〉 > 0 for all 1 ≤ i ≤ n.

(iii) For all f ∈ Rn, the conservation of mass property 〈Qf,1〉 = 〈f,1〉 holds.

Given a scalar α ∈ (0, 1) and a random-walk matrix P from a connected graph, we let matrix
Q = (1− α)(Id− αP )−1 denote the corresponding diffused matrix. For any non-zero f ∈ Rn+ we
define the corresponding cluster energy e(f) as

e(f) :=

n∑
i=1

fi log

(
〈Qf, ei〉
〈f,1〉

)
= −〈f,1〉 log 〈f,1〉+

n∑
i=1

fi log〈Qf, ei〉,

and we set e(0) = 0 otherwise. We wish to show that e(f) restricted to Rn+ defines a convex function
over a convex set. We accomplish this by means of the following lemma. We shall eventually reduce
showing positive semi-definiteness of the Hessian of e(f) to a direct appeal to this lemma.

Lemma 11 Let Q = (1 − α)(Id − αP )−1 for P an arbitrary random-walk matrix. Suppose that
y ∈ int(Rn+) has strictly positive entries. Define z ∈ int(Rn+) by zi := y2i for each 1 ≤ i ≤ n and
Dy := diag(y). Then the matrix

M(y) := DyQ
−TD−1y +D−1y Q−1Dy −D−1y diag(Q−1z)D−1y −

yyT

yT y

is positive semi-definite, and
ker(M(y)) = Span(y).

Moreover, the relation

〈v,M(y)v〉 = |v|22 +
α

1− α

n∑
i=1

n∑
j=1

Pij

(
viyj
yi
− vj

)2

holds for v ∈ Span⊥(y).

proof The elementary facts D−1y y = 1, Q−T1 = 1 and Dy1 = y combine to show(
DyQ

−TD−1y −
yyT

‖y‖22

)
y = y − y

(
yT y

yT y

)
= 0.
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In a similar fashion, the elementary facts Dyy = z and diag(Q−1z)1 = Q−1z yield(
D−1y Q−1Dy −D−1y diag(Q−1z)D−1y

)
y = D−1y Q−1z −D−1y diag(Q−1z)1 = 0,

so that y ∈ ker(M(y)) as claimed. Now suppose v ∈ Rn satisfies v ⊥ y, so that

〈v,M(y)v〉 = 2〈D−1y Q−1Dyv, v〉 − 〈D−1y diag(Q−1z)D−1y v, v〉 := 2I− II,

and recall that
Q−1 =

1

1− α
(Id− αP )

for some 0 < α < 1. An entriwise computation shows that the first term I equals

I =
1

1− α
|v|22 −

α

1− α

n∑
i=1

n∑
j=1

Pij
yj
yi
vivj ,

while the second term II must satisfy

II =
1

1− α
|v|22 −

α

1− α

n∑
i=1

(
vi
yi

)2

(Pz)i

=
1

1− α
|v|22 −

α

1− α

n∑
i=1

n∑
j=1

Pij

(
viyj
yi

)2

.

Combining these relations then shows that

〈v,M(y)v〉 =
1

1− α
|v|2 +

α

1− α

n∑
i=1

n∑
j=1

Pij

[(
viyj
yi

)2

− 2
yj
yi
vivj

]

=
1

1− α
|v|2 +

α

1− α

n∑
i=1

n∑
j=1

Pij

[(
viyj
yi
− vj

)2

− v2j

]

=
1

1− α
|v|2 +

α

1− α

n∑
i=1

n∑
j=1

Pij

(
viyj
yi
− vj

)2

− α

1− α

n∑
j=1

v2j ,

where the last equality follows from the column-stochasticity of P after reversing the order of
summation. For any v ⊥ y it therefore follows that

〈v,M(y)v〉 = |v|22 +
α

1− α

n∑
i=1

n∑
j=1

Pij

(
viyj
yi
− vj

)2

> 0

unless v = 0, which simultaneously yields positive semi-definiteness of M(y) and the fact that
ker(M(y)) = Span(y) as claimed. �

With this lemma established, it remains to show that e(f) defines a convex function. To see this,
assume first that f ∈ Rn+ is non-zero. We may then compute the gradient

∇e(f) = −(1 + log〈f,1〉)1 +

n∑
i=1

ei log〈f, ri〉+
fi
〈f, ri〉

ri

as well as the Hessian

Hesse(f) = − 11T

〈f,1〉
+

n∑
i=1

eir
T
i + rie

T
i

〈f, ri〉
− ri

fi
〈f, ri〉2

rTi

of the cluster energy. That 〈f, ri〉 > 0 for all 1 ≤ i ≤ n follows from the assumption that P
corresponds to a connected graph, so in particular all of the required derivatives exist. We may define
a diagonal matrix F̂ with non-zero entries

F̂ii :=
1

〈f, ri〉
and F̂−1 = diag(Qf)
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that is well-defined, non-singular and positive-definite. We may then simplify the Hessian in matrix
form as

Hesse(f) = F̂Q+QT F̂ −QT F̂diag(f)F̂Q− 1

〈f,1〉
11T ,

with the aim in showing that Hesse(f) has non-negative spectrum.

First, define z := Qf and y ∈ int(Rn+) via yi =
√
zi for each 1 ≤ i ≤ n. Then take x ∈ Rn arbitrary

and write x = Q−1F̂−1D−1y v to see

〈x,Hesse(f)x〉 = 〈v,M(y)v〉

for M(y) and D−1y defined in lemma 11 above. Now write

x =

(
x− 〈x,1〉
〈f,1〉

f

)
+
〈x,1〉
〈f,1〉

f := x0 + xf ,

and let v = v0 + vf denote the corresponding decomposition of v := DyF̂Qx after changing
variables. As v0 ⊥ y and vf ∈ Span(y), this yields

〈x,Hesse(f)x〉 = 〈x0,Hesse(f)x0〉

= 〈v0,M(y)v0〉 = |v0|22 +
α

1− α

n∑
i=1

n∑
j=1

Pij

(
v0i yj
yi
− v0j

)2

due to lemma 11. We may then use the fact that v0i = yi(F̂Qx
0)i to re-write the resulting expression

〈x,Hesse(f)x〉 =

n∑
i=1

(Qx0)2i
〈Qf, ei〉

+
α

1− α

n∑
i=1

n∑
j=1

(
(Qx0)i
〈Qf, ei〉

− (Qx0)j
〈Qf, ej〉

)2

Pij〈Qf, ej〉 (46)

in the original variables.

That e(f) defines a convex function on Rn+ now follows easily. Suppose first that f, g ∈ Rn+ and that
both f 6= 0 and g 6= 0 hold. Then for any t ∈ [0, 1] the linear interpolation

`t := (1− t)f + tg ∈ Rn+

is non-zero as well, and so the cluster energy e(f) is twice differentiable along this line. For such
f, g the identity

e(g) = e(f) + 〈∇e(f), g − f〉+

∫ 1

0

〈g − f,Hesse(f + t(g − f))(g − f)〉(1− t) dt (47)

therefore holds. Now define

xt := (g − f)− 〈g − f,1〉
〈`t,1〉

`t =
1

〈`t,1〉
(
〈f,1〉g − 〈g,1〉f

)
,

so that (46) yields 〈g − f,Hesse(f + t(g − f))(g − f)〉 =

n∑
i=1

(Qxt)
2
i

〈Q`t, ei〉
+

α

1− α

n∑
i=1

n∑
j=1

(
(Qxt)i
〈Q`t, ei〉

− (Qxt)j
〈Q`t, ej〉

)2

Pij〈Q`t, ej〉 (48)

for the inner product appearing in the integrand. Thus 〈g − f,Hesse(f + t(g − f))(g − f)〉 > 0
unless xt = 0, which occurs if and only if f and g are collinear. In particular, the strict inequality

e(g) > e(f) + 〈∇e(f), g − f〉 (49)

therefore holds for any pair f, g ∈ Rn+ with f, g not collinear. This provides us will all of the
ingredients necessary to prove
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Corollary 1 (Convexity and Strict Convexity) Suppose f, g ∈ Rn+ are non-zero and linearly
independent. Define

`t := tg + (1− t)f and xt :=
1

〈`t,1〉
(
〈f,1〉g − 〈g,1〉f

)
.

Then the equality

e(g) = e(f) + 〈∇e(f), g − f〉+

n∑
i=1

∫ 1

0

(1− t) (Qxt)
2
i

〈Q`t, ei〉
dt

+
α

1− α

n∑
i=1

n∑
j=1

∫ 1

0

(1− t)
(

(Qxt)i
〈Q`t, ei〉

− (Qxt)j
〈Q`t, ej〉

)2

Pij〈Q`t, ej〉dt

holds, and in particular the strict inequality

θe(g) + (1− θ)e(f) > e(θf + (1− θ)g) (50)

is valid for any 0 < θ < 1 arbitrary. If f, g ∈ Rn+ for f = αg with α ≥ 0 then

θe(g) + (1− θ)e(f) ≥ e(θf + (1− θ)g)

for any 0 ≤ θ ≤ 1, and so e(f) defines a convex function on Rn+.

proof A direct substitution of the equality (48) into (47) proves the first claim. To show (50), note
that if 0 < θ < 1 and f, g are not collinear then g and θg + (1− θ)f are not collinear. Thus the strict
inequality

e(g) > e(θg + (1− θ)f) + (1− θ)〈∇e(θg + (1− θ)f), g − f〉
holds by the first claim. Using f and θg + (1 − θ)f in the first claim also yields the symmetric
inequality

e(f) > e(θg + (1− θ)f) + θ〈∇e(θg + (1− θ)f), f − g〉,
which yields (50) after adding θ times the first inequality to (1 − θ) times the second inequality.
Finally, suppose f, g ∈ Rn+ and f = αg for α ≥ 0 a positive scalar. The one-homogeneity of e(f)
then implies

θe(g) + (1− θ)e(f) = θe(g) + (1− θ)αe(g) = e(θg + (1− θ)αg) = e(θg + (1− θ)f),

which proves the final claim. �
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