
A Proofs

Before providing the proofs of our main theorems, we develop in Subsection A.1 below some
important technical results on transductive Rademacher complexity, required in some of the proofs.

A.1 Results on Transductive Rademacher Complexity

In this subsection, we develop a few important tools and result about Rademacher complexity, that will
come handy in our analysis. We begin by the following theorem, which is a straightforward corollary
of Theorem 1 from [6] (attained by simplifying and upper-bounding some of the parameters).

Theorem 5. Suppose V ⊆ [−B,B]m for some B > 0. Let σ be a permutation over {1, . . . ,m}
chosen uniformly at random, and define v1:s = 1

s

∑s
j=1 vσ(j), vs+1:m = 1

u

∑m
j=s+1 vσ(j). Then for

any δ ∈ (0, 1), with probability at least 1− δ,

sup
v∈V

(v1:s − vs+1:m) ≤ Rs,u(V) + 6B

(
1√
s

+
1√
u

)(
1 + log

(
1

δ

))
.

We note that the theorem in [6] actually bounds vs+1:m−v1:s, but the proof is completely symmetric
to the roles of vs+1:m and v1:s, and hence also implies the formulation above.

We will also need the well-known contraction property, which states that the Rademacher complexity
of a class of vectors V can only increase by a factor of L if we apply on each coordinate a fixed
L-Lipschitz function:

Lemma 2. Let g1, . . . , gm are real-valued, L-Lipschitz functions, and given some V ⊆ Rm, define
g ◦ V = {(g1(v1), . . . , gm(vm)) : (v1, . . . , vm) ∈ V}. Then

Rs,u(g ◦ V) ≤ L · Rs,u(V).

This is a slight generalization of Lemma 5 from [6] (which is stated for g1 = g2 = . . . = gm, but the
proof is exactly the same).

In our analysis, we will actually only need bounds on the expectation of v1:s − vs+1:m, which is
weaker than what Thm. 5 provides. Although such a bound can be developed from scratch, we find
it more convenient to simply get such a bound from Thm. 5. Specifically, combining Thm. 5 and
Lemma 7 from Appendix B, we have the following straightforward corollary:

Corollary 2. Suppose V ⊆ [−B,B]m for some B > 0. Let σ be a permutation over {1, . . . ,m}
chosen uniformly at random, and define v1:t−1 = 1

t−1

∑t−1
j=1 vσ(j), vt:m = 1

m−t+1

∑m
j=t vσ(j).

Then

E
[

sup
v∈V

v1:t−1 − vt:m

]
≤ Rt−1,m−t+1(V) + 12B

(
1√
t− 1

+
1√

m− t+ 1

)
.

Moreover, if supv∈V (v1:t−1 − vt:m) ≥ 0 for any permutation σ, then√√√√E

[(
sup
v∈V

v1:t−1 − vt:m

)2
]
≤
√

2 · Rs,u(V) + 12
√

2B

(
1√
t− 1

+
1√

m− t+ 1

)
.

We now turn to collect a few other structural results, which will be useful when studying the
Rademacher complexity of linear predictors or loss gradients derived from such predictors.

Lemma 3. Given two sets of vectors V ∈ [−BV , BV ]m,S ⊆ [−BS , BS ]m for some BV , BS ≥ 0,
define

U = {(v1s1, . . . , vmsm) : (v1, . . . , vm) ∈ V, (s1, . . . , sm) ∈ S} .
Then

Rs,u(U) ≤ BS · Rs,u(V) +BV · Rs,u(S).

Proof. The proof resembles the proof of the contraction inequality for standard Rademacher com-
plexity (see for instance Lemma 26.9 in [18]).
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By definition ofRs,u, it is enough to prove that

Er1,...,rm

[
sup
v,s

m∑
i=1

rivisi

]
≤ Er1,...,rm

[
sup
v,s

m∑
i=1

ri(BS · vi +BV · si)

]
, (3)

since the right hand side can be upper bounded by BS ·E[supv

∑m
i=1 rivi] +BV ·E[sups

∑m
i=1 risi].

To get this, we will treat the coordinates one-by-one, starting with the first coordinate and showing
that

Er1,...,rm

[
sup
v,s

m∑
i=1

rivisi

]
≤ Er1,...,rm

[
sup
v,s

(
r1(BS · v1 +BV · s1) +

m∑
i=2

rivisi

)]
. (4)

Repeating the same argument for coordinates 2, 3, . . . ,m will yield Eq. (3).

For any values v, v′ and s, s′ in the coordinates of some v ∈ V and s ∈ S respectively, we have

|vs− v′s′| = |vs− v′s+ v′s− v′s′| ≤ |vs− v′s|+ |v′s− v′s′|
≤ |v − v′| · |s|+ |s− s′| · |v| ≤ BS |v − v′|+BV |s− s′|. (5)

Recalling that ri are i.i.d. and take values of +1 and −1 with probability p (and 0 otherwise), we can
write the left hand side of Eq. (4) as

Er1,...,rm

[
sup
v,s

(
r1v1s1 +

m∑
i=2

rivisi

)]

= Er2,...,rm

[
p · sup

v,s

(
v1s1 +

m∑
i=2

rivisi

)
+ p · sup

v,s

(
−v1s1 +

m∑
i=2

rivisi

)

+(1− 2p) sup
v,s

(
m∑
i=2

rivisi

)]

= Er2,...,rm

[
sup
v,s

(
p v1s1 + p

m∑
i=2

rivisi

)
+ sup

v′,s′

(
−p v1s1 + p

m∑
i=2

riv
′
is
′
i

)

+ sup
v′′,s′′

(
(1− 2p)

m∑
i=2

riv
′′
i s
′′
i

)]

= Er2,...,rm

[
sup

v,v′,v′′,s,s′s′′

(
p(v1s1 − v′1s′1) + p

m∑
i=2

rivisi + p

m∑
i=2

riv
′
is
′
i

+(1− 2p)

m∑
i=2

riv
′′
i s
′′
i )

)]
.
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Using Eq. (5) and the fact that we take a supremum over v,v′ and s, s′ from the same sets, this equals

= Er2,...,rm

[
sup

v,v′,v′′,s,s′s′′

(
p (BS |v1 − v′1|+BV |s1 − s′1|) + p

m∑
i=2

rivisi + p

m∑
i=2

riv
′
is
′
i

+(1− 2p)

m∑
i=2

riv
′′
i s
′′
i

)]

= Er2,...,rm

[
sup

v,v′,v′′,s,s′s′′

(
p (BS(v1 − v′1) +BV(s1 − s′1)) + p

m∑
i=2

rivisi + p

m∑
i=2

riv
′
is
′
i

+(1− 2p)

m∑
i=2

riv
′′
i s
′′
i

)]

= Er2,...,rm

[
p sup

v,s

(
(BS · v1 +BV · s1) +

m∑
i=2

rivisi

)
+ p sup

v′,s′

(
p(−BSv′1 −BVs′1) + p

m∑
i=2

riv
′
is
′
i

)

+(1− 2p) sup
v,s′′

(
m∑
i=2

riv
′′
i s
′′
i

)]

= Er1,...,rm

[
sup
v,s

(
r1(BS · v1 +BV · s1) +

m∑
i=2

rivisi

)]
as required.

Lemma 4. For some B > 0 and vectors x1, . . . ,xm with Euclidean norm at most 1, let

VB = {(〈w,x1〉 , . . . , 〈w,xm〉) : ‖w‖ ≤ B}.
Then

Rs,u(VB) ≤
√

2B

(
1√
s

+
1√
u

)
.

Proof. Using the definition of VB and applying Cauchy-Schwartz,

Er1,...,rm

[
sup
v∈V

m∑
i=1

rivi

]
= Er1,...,rm

[
sup

w:‖w‖≤B

〈
w,

m∑
i=1

rixi

〉]
≤ Er1,...,rm

[
B

∥∥∥∥∥
m∑
i=1

rixi

∥∥∥∥∥
]

≤ B

√√√√√Er1,...,rm

∥∥∥∥∥
m∑
i=1

rixi

∥∥∥∥∥
2
 = B

√√√√Er1,...,rm
m∑

i,j=1

rirj 〈xi,xj〉.

Recall that ri are independent and equal +1,−1 with probability p (and 0 otherwise). Therefore, for
i 6= j, E[rirj ] = 0, and if i = j, E[rirj ] = E[r2

i ] = 2p. Using this and the assumption that ‖xi‖ ≤ 1
for all i, the above equals

B

√√√√ m∑
i=1

2p 〈xi,xi〉 ≤ B
√

2pm.

Therefore, Rs,u(VB) ≤
(

1
s + 1

u

)
B
√

2pm. Recalling that p = su
(s+u)2 where s + u = m and

plugging it in, we get the upper bound

B

(
1

s
+

1

u

)√
2

su

(s+ u)2
(s+ u) =

√
2B

(
1

s
+

1

u

)√
su

s+ u

=
√

2B

(
1

s

√
s

u

s+ u
+

1

u

√
u

s

s+ u

)
≤
√

2B

(
1√
s

+
1√
u

)
,

from which the result follows.

Combining Corollary 2, Lemma 2, Lemma 3 and Lemma 4, we have the following:
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Corollary 3. Suppose the functions f1(·), . . . , fm(·) are of the form fi(w) = `i(〈w,xi〉) + r(w),
where ‖xi‖ ≤ 1 and r is some fixed function. Let B > 0 such that the iterates w chosen by the
algorithm are from a setW ⊆ {w : ‖w‖ ≤ B} which contains the origin 0. Finally, assume `i(·) is
L-Lipschitz and µ-smooth over the interval [−B,B]. Then√√√√E

[(
sup
w∈W

〈
∇F1:t−1(w)−∇Ft:m(w) ,

w

‖w‖

〉)2
]

≤ (19L+ 2µB)

(
1√
t− 1

+
1√

m− t+ 1

)
.

Proof. By definition of fi, we have〈
∇fi(w),

w

‖w‖

〉
= `′i(〈w,xi〉)

〈
w

‖w‖
,xi

〉
+

〈
∇r(w),

w

‖w‖

〉
.

Therefore, the expression in the corollary statement can be written as√√√√E

[(
sup
u∈U

u1:t−1 − ut:m
)2
]
,

where

ui = `′i(〈w,xi〉)
〈

w

‖w‖
,xi

〉
and

U =

{(
`′1(〈w,x1〉)

〈
w

‖w‖
,x1

〉
, . . . , `′m(〈w,xm〉)

〈
w

‖w‖
,xm

〉)
: ‖w‖ ∈ W

}
(note that the terms involving r get cancelled out in the expression u1:s − us+1:m, so we may drop
them). Applying Corollary 2 (noting that |ui| ≤ L, and that supu∈U u1:t−1 − ut:m ≥ 0, since
u1:t−1 − ut:m = 0 if we choose w = 0), we have√√√√E

[(
sup
u∈U

u1:t−1 − ut:m
)2
]
≤
√

2 · Rt−1,m−t+1(U) + 12
√

2L

(
1√
t− 1

+
1√

m− t+ 1

)
.

(6)
Now, define

V = {(`′1(〈w,x1〉), . . . , `′m(〈w,xm〉)) : ‖w‖ ≤ B}
and

S = {(〈w,x1〉 , . . . , 〈w,xm〉) : ‖w‖ = 1} ,
and note that U as we defined it satisfies

U ⊆ {(`′1(v1)s1, . . . , `
′
m(vm)sm) : (v1, . . . , vm) ∈ V, (s1, . . . , sm) ∈ S} .

Moreover, by construction, the coordinates of each v ∈ V are bounded in [−L,L], and the coordinates
of each s ∈ S are bounded in [−1,+1]. Applying Lemma 3, we get

Rt−1,m−t+1(U) ≤ Rt−1,m−t+1(V) + L · Rt−1,m−t+1(S). (7)

Using Lemma 4, we have

Rt−1,m−t+1(S) ≤
√

2

(
1√
t− 1

+
1√

m− t+ 1

)
. (8)

Finally, applying Lemma 2 (using the fact that each `′i is µ-Lipschitz) followed by Lemma 4, we have

Rt−1,m−t+1(V) ≤
√

2µB

(
1√
t− 1

+
1√

m− t+ 1

)
. (9)

Combining Eq. (7), Eq. (8) and Eq. (9), plugging into Eq. (6), and slightly simplifying for readability,
yields the desired result.
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A.2 Proof of Lemma 1

The lemma is immediate when t = 1, so we will assume t > 1. Also, we will prove it when the
expectation E is conditioned on σ(1), . . . , σ(t− 1), and the result will follow by taking expectations
over them. With this conditioning, s1, . . . , sm have some fixed distribution, which is independent of
how σ permutes {1, . . . ,m} \ {σ(1), . . . , σ(t− 1)}.
Recall that σ is chosen uniformly at random. Therefore, conditioned on σ(1), . . . , σ(t − 1), the
value of σ(t) is uniformly distributed on {1, . . . ,m} \ {σ(1), . . . , σ(t− 1)}, which is the same set
as σ(t), . . . , σ(m). Therefore, the left hand side in the lemma statement equals

E

[
1

m

m∑
i=1

si −
1

m− t+ 1

m∑
i=t

sσ(i)

]

= E

[
1

m

m∑
i=1

sσ(i) −
1

m− t+ 1

m∑
i=t

sσ(i)

]

= E

[
1

m

t−1∑
i=1

sσ(i) +

(
1

m
− 1

m− t+ 1

) m∑
i=t

sσ(i)

]

= E

[
1

m

t−1∑
i=1

sσ(i) −
t− 1

m(m− t+ 1)

m∑
i=t

sσ(i)

]

=
t− 1

m
· E

[
1

t− 1

t−1∑
i=1

sσ(i) −
1

m− t+ 1

m∑
i=t

sσ(i)

]
as required.

A.3 Proof of Thm. 2

Let V = {(f1(w), . . . , fm(w)) | w ∈ W} and applying Corollary 2, we have

E[F1:t−1(wt)− Ft:m(wt)] ≤ E
[

sup
w∈W

F1:t−1(w)− Ft:m(w)

]
≤ Rt−1:m−t+1(V) + 12B

(
1√
t− 1

+
1√

m− t+ 1

)
.

Plugging this into the bound from Thm. 1, we have

E [F (w̄T )− F (w∗)] ≤ RT
T

+
1

mT

T∑
t=2

(t−1)

(
Rt−1:m−t+1(V) + 12B

(
1√
t− 1

+
1√

m− t+ 1

))
Applying Lemma 6, the right hand side is at most

RT
T

+
1

mT

T∑
t=2

(t− 1)Rt−1:m−t+1(V) +
24B√
m
. (10)

A.4 Proof of Corollary 1

Note that all terms in the bound of Thm. 2, except the regret term, are obtained by considering the
difference F1:t−1(wt)−Ft:m(wt), so any additive terms in the losses which are constant (independent
of i) are cancelled out. Therefore, we may assume without loss of generality that fi(w) = `i(〈w,xi〉)
(without the r(w) term), and that `i is centered so that `i(0) = 0. Applying Lemma 2 and Lemma 4,
we can upper the Rademacher complexity as follows:

Rt−1:m−t+1(V) ≤ L · Rt−1:m−t+1 ({(〈w,x1〉 , . . . , 〈w,xm〉) | w ∈ W})

≤
√

2 ·BL
(

1√
t− 1

+
1√

m− t+ 1

)
.

Plugging this into Thm. 2, applying Lemma 6, and noting that by the assumptions above and in the
corollary statement, supi,w∈W |fi(w)| ≤ supa∈[−B̄,B̄] |`i(a)| ≤ B̄L, the result follows.
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A.5 Proof of Thm. 3

Since the algorithm is invariant to shifting the coordinates or shifting all loss functions by a constant,
we will assume without loss of generality thatW contains the origin 0 (and thereforeW ⊆ {w :
‖w‖ ≤ B}), that the objective function F (·) is minimized at 0, and that F (0) = 0. By definition of
the algorithm and convexity ofW , we have

E[‖wt+1‖2] = E
[∥∥ΠW(wt − ηt∇fσ(t)(wt))

∥∥2
]
≤ E

[∥∥wt − ηt∇fσ(t)(wt)
∥∥2
]

≤ E
[
‖wt‖2

]
− 2ηtE

[〈
∇fσ(t)(wt),wt

〉]
+ η2

tG
2

= E
[
‖wt‖2

]
− 2ηtE [〈∇F (wt),wt〉] + 2ηtE

[〈
∇F (wt)−∇fσ(t)(wt),wt

〉]
+ η2

tG
2.

By definition of strong convexity, since F (·) is λ-strongly convex, minimized at 0, and assumed to
equal 0 there, we have 〈∇F (wt),wt〉 ≥ F (wt) + λ

2 ‖w‖
2. Plugging this in, changing sides and

dividing by 2ηt, we get

E[F (wt)] ≤
(

1

2ηt
− λ

2

)
E[‖wt‖2]− 1

2ηt
·E[‖wt+1‖2]+E

[〈
∇F (wt)−∇fσ(t)(wt),wt

〉]
+
ηt
2
G2.

(11)
We now turn to treat the third term in the right hand side above. Since wt (as a random variable
over the permutation σ of the data) depends only on σ(1), . . . , σ(t− 1), we can use Lemma 1 and
Cauchy-Schwartz, to get

E
[〈
∇F (wt)−∇fσ(t)(wt),wt

〉]
= E

[〈
1

m

m∑
i=1

∇fi(wt)−∇fσ(t)(wt),wt

〉]

=
t− 1

m
· E [(〈∇F1:t−1(wt)−∇Ft:m(wt),wt〉)]

=
t− 1

m
· E
[
‖wt‖ ·

〈
∇F1:t−1(wt)−∇Ft:m(wt),

wt

‖wt‖

〉]
≤ t− 1

m
· E
[
‖wt‖ · sup

w∈W

〈
∇F1:t−1(w)−∇Ft:m(w),

w

‖w‖

〉]

≤ t− 1

m
·
√
E
[
‖wt‖2

]
·

√√√√E

[(
sup
w∈W

〈
∇F1:t−1(w)−∇Ft:m(w),

w

‖w‖

〉)2
]

Applying Corollary 3 (using the convention 0/
√

0 = 0 in the case t = 1 where the expression above
is 0 anyway), this is at most

t− 1

m
·
√
E
[
‖wt‖2

]
· (19L+ 2µB)

(
1√
t− 1

+
1√

m− t+ 1

)
=

√
E
[
‖wt‖2

]
· 19L+ 2µB

m

(√
t− 1 +

t− 1√
m− t+ 1

)
.

Using the fact that for any a, b ≥ 0,
√
ab =

√
λ
2a ·

2
λb ≤

λ
4a+ 1

λb by the arithmetic-geometric mean
inequality, the above is at most

λ

4
· E[‖wt‖2] +

(19L+ 2µb)
2

λm2

(√
t− 1 +

t− 1√
m− t+ 1

)2

.

Since (a+ b)2 ≤ 2(a2 + b2), this is at most

λ

4
· E[‖wt‖2] +

2 (19L+ 2µB)
2

λm2

(
t− 1 +

(t− 1)2

m− t+ 1

)
.

Plugging this back into Eq. (11), we get

E[F (wt)] ≤
(

1

2ηt
− λ

4

)
E[‖wt‖2]− 1

2ηt
·E[‖wt+1‖2]+

2 (19L+ 2µB)
2

λm2

(
t− 1 +

(t− 1)2

m− t+ 1

)
+
ηt
2
G2.
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Averaging both sides over t = 1, . . . , T , and using Jensen’s inequality, we have

E

[
1

T

T∑
t=1

F (wt)

]

≤ 1

2T

T∑
t=1

E[‖wt‖2]

(
1

ηt
− 1

ηt−1
− λ

2

)
+

2 (19L+ 2µB)
2

λm2T

T∑
t=1

(
t− 1 +

(t− 1)2

m− t+ 1

)
+
G2

2T

T∑
t=1

ηt,

where we use the convention that 1/η0 = 0. Since T ≤ m, the second sum in the expression above
equals

T−1∑
t=0

(
t+

t2

m− t

)
=

T−1∑
t=0

t+

T−1∑
t=0

t2

m− t
≤ T (T − 1)

2
+m2

T−1∑
t=0

1

m− t

≤ m2

2
+m2

(
T−2∑
t=0

1

m− t
+ 1

)
≤ 3m2

2
+m2

∫ T−1

t=0

1

m− t
dt

= m2

(
3

2
+ log

(
m

m− T + 1

))
.

Plugging this back in, we get

E

[
1

T

T∑
t=1

F (wt)

]
≤ 1

2T

T∑
t=1

E[‖wt‖2]

(
1

ηt
− 1

ηt−1
− λ

2

)

+
2 (19L+ 2µB)

2
(

3
2 + log

(
m

m−T+1

))
λT

+
G2

T

T∑
t=1

ηt.

Now, choosing ηt = 2/λt, and using the fact that
∑T
t=1

1
t ≤ log(T ) + 1, we get that

E[F (w̄T )] ≤
2 (19L+ 2µB)

2
(

3
2 + log

(
m

m−T+1

))
λT

+
2G2(log(T ) + 1)

λT
.

The result follows by recalling that we assumed F (w∗) = F (0) = 0, and the observation that
T (m− T + 1) ≥ m for any T ∈ {1, 2, . . . ,m}, hence log(m/(m− T + 1)) ≤ log(T ).

A.6 Proof of Thm. 4

The proof is based on propositions 1 and 2 presented below, which analyze the expectation of the
update as well as its expected squared norm. The key technical challenge, required to get linear
convergence, is to upper bound these quantities directly in terms of the suboptimality of the iterates
wt, w̃s. To get Proposition 1, we state and prove a key lemma (Lemma 5 below), which bounds the
without-replacement concentration behavior of certain normalized stochastic matrices. The proof of
Thm. 4 itself is then a relatively straightforward calculation, relying on these results.
Lemma 5. Let x1, . . . ,xm be vectors in Rd of norm at most 1. Define X̄ = 1

m

∑m
i=1 xix

>
i , and

Mi = (X̄ + γ̂I)−1/2xix
>
i (X̄ + γ̂I)−1/2

for some γ ≥ 0, so that X̄ + γ̂I has minimal eigenvalue γ ∈ (0, 1). Finally, let σ be a permutation
on {1, . . . ,m} drawn uniformly at random. Then for any α ≥ 2, the probability

Pr

(
∃s ∈ {1, . . . ,m} :

∥∥∥∥∥1

s

s∑
i=1

Mσ(i) −
1

m− s

m∑
i=s+1

Mσ(i)

∥∥∥∥∥
>

α
√
γ

(
1√
s

+
1√
m− s

)
+
α

γ

(
1

s
+

1

m− s

))
is at most 4dm exp (−α/2).
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Proof. The proof relies on a without-replacement version of Bernstein’s inequality for matrices
(Theorem 1 in [7]), which implies that for d× d Hermitican matrices M̂i which satisfy

1

m

m∑
i=1

M̂i = 0 , max
i

∥∥∥M̂i

∥∥∥ ≤ c , ∥∥∥∥∥ 1

m

m∑
i=1

M̂2
i

∥∥∥∥∥ ≤ v,
for some v, c > 0, it holds that

Pr

(∥∥∥∥∥1

s

s∑
i=1

M̂σ(i)

∥∥∥∥∥ > z

)
≤

{
2d exp

(
− sz

2

4v

)
z ≤ 2v/c

2d exp
(
− sz2c

)
z > 2v/c

(12)

In particular, we will apply this on the matrices

M̂i = Mi −
1

m

m∑
j=1

Mj = (X̄ + γI)−1/2
(
xix
>
i − X̄

)
(X̄ + γI)−1/2.

Clearly, 1
m

∑m
i=1 M̂i = 0. We only need to find appropriate values for v, c.

First, by definition of M̂i, we have∥∥∥M̂i

∥∥∥ ≤ ∥∥∥(X̄ + γI)−1/2
∥∥∥∥∥xixi − X̄∥∥∥∥∥(X̄ + γI)−1/2

∥∥∥ .
Since both X̄ and xix

>
i are positive semidefinite and have spectral norm at most 1, the above is at

most γ−1/2 · 1 · γ−1/2 = γ−1. Therefore, we can take c = 1/γ.

We now turn to compute an appropriate value for v. For convenience, let E denote a uniform
distribution over the index i = 1, . . . ,m, and note that E[M̂i] = 0. Therefore, we have∥∥∥∥∥ 1

m

m∑
i=1

M̂2
i

∥∥∥∥∥ =
∥∥∥E[M̂i

2
]
∥∥∥ =

∥∥E[(Mi − E[Mi])
2]
∥∥

=
∥∥E[M2

i ]− E2[Mi]
∥∥ ≤ max{

∥∥E[M2
i ]
∥∥ ,∥∥E2[Mi]

∥∥}, (13)

where in the last step we used the fact that Mi is positive semidefinite. Let us first upper bound the
second term in the max, namely∥∥E2[Mi]

∥∥ = ‖E[Mi] · E[Mi]‖ ≤ ‖E[Mi]‖2 =
∥∥∥(X̄ + γI)−1/2X̄(X̄ + γI)−1/2

∥∥∥2

.

Since the expression above is invariant to rotating the positive semidefinite matrix X̄ , we can
assume without loss of generality that X̄ = diag(s1, . . . , sd), in which case the above reduces to(

maxi
si

si+γ

)2

≤ 1. Turning to the first term in the max in Eq. (13), we have

∥∥E[M2
i ]
∥∥ =

∥∥∥∥∥ 1

m

m∑
i=1

(X̄ + γI)−1/2xix
>
i (X̄ + γI)−1xix

>
i (X̄ + γI)−1/2

∥∥∥∥∥
=

∥∥∥∥∥ 1

m

m∑
i=1

(
x>i (X̄ + γI)−1xi

)
(X̄ + γI)−1/2xix

>
i (X̄ + γI)−1/2

∥∥∥∥∥
(1)

≤

∥∥∥∥∥ 1

m

m∑
i=1

∥∥(X̄ + γI)−1
∥∥ (X̄ + γI)−1/2xix

>
i (X̄ + γI)−1/2

∥∥∥∥∥
=
∥∥(X̄ + γI)−1

∥∥ ∥∥∥(X̄ + γI)−1/2X̄(X̄ + γI)−1/2
∥∥∥ (14)

where in (1) we used the facts that ‖xi‖ ≤ 1 and each term (X̄ + γI)−1/2xix
>
i (X̄ + γI)−1/2 is

positive semidefinite. As before, the expression above is invariant to rotating the positive semidefinite
matrix X̄ , so we can assume without loss of generality that X̄ = diag(s1, . . . , sd), in which case the
above reduces to (

max
i

1

si + γ

)(
max
i

si
si + γ

)
≤ 1

γ
· 1 =

1

γ
.
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Plugging these observations back into Eq. (13), we get that∥∥∥∥∥ 1

m

m∑
i=1

M̂2
i

∥∥∥∥∥ ≤ max

{
1,

1

γ

}
=

1

γ
.

Therefore, Eq. (12) applies with v = c = 1/γ„ so we get that

Pr

(∥∥∥∥∥1

s

s∑
i=1

M̂σ(i)

∥∥∥∥∥ > z

)
≤

{
2d exp

(
−γsz

2

4

)
z ≤ 2

2d exp
(
−γsz2

)
z > 2

.

Substituting z = α
(

1√
γs + 1

γs

)
, we get that Pr

(∥∥∥ 1
s

∑s
i=1 M̂σ(i)

∥∥∥ > α
(

1√
γs + 1

γs

))
can be upper

bounded by

2d exp

(
−1

4
γsα2

(
1
√
γs

+
1

γs

)2
)
≤ 2d exp

(
−α

2

4

)
in the first case, and

2d exp

(
−1

2
γsα

(
1
√
γs

+
1

γs

))
≤ 2d exp

(
−α

2

)
in the second case. Assuming α ≥ 2, both expressions can be upper bounded by 2d exp (−α/2), so
we get that

Pr

(∥∥∥∥∥1

s

s∑
i=1

M̂σ(i)

∥∥∥∥∥ > α

(
1
√
γs

+
1

γs

))
≤ 2d exp

(
−α

2

)
for any α ≥ 2. Recalling the definition of M̂i, we get

Pr

(∥∥∥∥∥1

s

s∑
i=1

Mσ(i) −
1

m

m∑
i=1

Mi

∥∥∥∥∥ > α

(
1
√
γs

+
1

γs

))
≤ 2d exp

(
−α

2

)
. (15)

Since the permutation is random, the exact same line of argument also works if we consider the last
m− s matrices rather than the first s matrices, that is

Pr

(∥∥∥∥∥ 1

m− s

m∑
i=s+1

Mσ(i) −
1

m

m∑
i=1

Mi

∥∥∥∥∥ > α

(
1√

γ(m− s)
+

1

γ(m− s)

))
≤ 2d exp

(
−α

2

)
.

(16)

Now, notice that for any matrices A,B,C and scalars a, b, it holds that

Pr(‖A−B‖ > a+ b) ≤ Pr(‖A− C‖ > a) + Pr(‖B − C‖ > b)

(as the event ‖A−B‖ > a+ b implies ‖A− C‖+ ‖B − C‖ > a+ b). Using this observation and
Eq. (15), Eq. (16), we have

Pr

(∥∥∥∥∥1

s

s∑
i=1

Mσ(i) −
1

m− s

m∑
i=s+1

Mσ(i)

∥∥∥∥∥ >
α
√
γ

(
1√
s

+
1√
m− s

)
+
α

γ

(
1

s
+

1

m− s

))

≤ Pr

(∥∥∥∥∥1

s

s∑
i=1

Mσ(i) −
1

m

m∑
i=1

Mi

∥∥∥∥∥ > α

(
1
√
γs

+
1

γs

))

+ Pr

(∥∥∥∥∥ 1

m− s

m∑
i=s+1

Mσ(i) −
1

m

m∑
i=1

Mi

∥∥∥∥∥ > α

(
1√

γ(m− s)
+

1

γ(m− s)

))
≤ 4d exp

(
−α

2

)
.

The statement in the lemma now follows from a union bound argument over all possible s =
1, 2, . . . ,m.
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Proposition 1. Suppose each fi(·) is of the form in Eq. (2), where xi,w are in Rd, and F (·) is
λ-strongly convex with λ ∈ [1/m, 1]. Define

vi(t, s) = ∇fi(wt)−∇fi(w̃s) +∇F (w̃s).

Then for any t ≤ m/2 and any ε ∈ (0, 1),

E

[〈
vσ(t)(t, s),wt −w∗

〉
− 1

m

m∑
i=1

〈vi(t, s),wt −w∗〉

]

≤ ε

2
+

18√
λm

log

(
64dmB2

λε

)
· E [F (wt) + F (w̃s)− 2F (w∗)] ,

where d is the dimension.

Proof. Define

ui(t, s) = 〈vi(t, s),wt −w∗〉 = 〈∇fi(wt)−∇fi(w̃s) +∇F (w̃s) , wt −w∗〉 ,

in which case the expectation in the proposition statement equals

E

[
uσ(t)(t, s)−

1

m

m∑
i=1

ui(t, s)

]
.

Notice that ui(t, s) for all i is independent of σ(t), . . . , σ(m) conditioned on σ(1), . . . , σ(t − 1)
(which determine wt and w̃s). Therefore, we can apply Lemma 1, and get that the above equals

t− 1

m
· E [ut:m(t, s)− u1:t−1(t, s)] . (17)

Recalling the definition of ui(t, s), and noting that the fixed 〈∇F (w̃s),wt −w∗〉 terms get cancelled
out in the difference above, we get that Eq. (17) equals

t− 1

m
· E [ǔt:m(t, s)− ǔ1:t−1(t, s)] . (18)

where

ǔi(t, s) = 〈∇fi(wt)−∇fi(w̃s) , wt −w∗〉
= 〈wt − w̃s,xi〉 · 〈xi, ,wt −w∗〉+ λ̂ 〈wt − w̃s,wt −w∗〉 .

Again, the fixed λ̂ 〈wt − w̃s,wt −w∗〉 terms get cancelled out in Eq. (18), so we can rewrite Eq. (18)
as

t− 1

m
· E [ŭt:m(t, s)− ŭ1:t−1(t, s)] (19)

where

ŭi(t, s) = 〈wt − w̃s,xi〉 · 〈xi, ,wt −w∗〉
= 〈wt −w∗,xi〉 · 〈xi,wt −w∗〉+ 〈w∗ − w̃s,xi〉 · 〈xi,wt −w∗〉
= (wt −w∗)>xix

>
i (wt −w∗) + (w∗ − w̃s)

>xix
>
i (wt −w∗).

Therefore, we can rewrite Eq. (19) as

t− 1

m
· E

[
(wt −w∗)>

(
1

m− t+ 1

m∑
i=t

xσ(i)x
>
σ(i) −

1

t− 1

t−1∑
i=1

xσ(i)x
>
σ(i)

)
(wt −w∗)

]

+
t− 1

m
· E

[
(w∗ − w̃s)

>

(
1

m− t+ 1

m∑
i=t

xσ(i)x
>
σ(i) −

1

t− 1

t−1∑
i=1

xσ(i)x
>
σ(i)

)
(wt −w∗)

]
(20)
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To continue, note that for any symmetric square matrix M , positive semidefinite matrix A, and
vectors w1,w2, we have

|w>1 Mw2| =
(
w>1 Aw1 + w>2 Aw2

) ∣∣∣∣ w>1 Mw2

w>1 Aw1 + w>2 Aw2

∣∣∣∣
≤
(
w>1 Aw1 + w>2 Aw2

)
sup

w1,w2

∣∣∣∣ w>1 Mw2

w>1 Aw1 + w>2 Aw2

∣∣∣∣
(1)

≤
(
w>1 Aw1 + w>2 Aw2

)
sup

w1,w2

∣∣∣∣∣w>1 A−1/2MA−1/2w2

‖w1‖2 + ‖w2‖2

∣∣∣∣∣
(2)

≤
(
w>1 Aw1 + w>2 Aw2

)
sup

w1,w2

∣∣∣∣w>1 A−1/2MA−1/2w2

2 ‖w1‖ ‖w2‖

∣∣∣∣
(3)

≤ 1

2

(
w>1 Aw1 + w>2 Aw2

) ∥∥∥A−1/2MA−1/2
∥∥∥ ,

where (1) is by substituting A−1/2w1, A
−1/2w2 in lieu of w1,w2 in the supremum, (2) is by

the identity a2 + b2 ≥ 2ab, and (3) is by the fact that for any square matrix X , |w>1 Xw2| ≤
‖w1‖ ‖X‖ ‖w2‖. Applying this inequality with

M =
1

m− t+ 1

m∑
i=t

xσ(i)x
>
σ(i) −

1

t− 1

t−1∑
i=1

xσ(i)x
>
σ(i) , A =

1

m

m∑
i=1

xix
>
i +

λ̂

2
I,

w1 being either w∗ − w̃s or wt −w∗, and w2 = wt −w∗, we can (somewhat loosely) upper bound
Eq. (20) by

3(t− 1)

2m
· E
[(

(wt −w∗)>A(wt −w∗) + (w̃s −w∗)>A(w̃s −w∗)
) ∥∥∥A−1/2MA−1/2

∥∥∥] .
Recalling that the objective function F (·) is actually of the form F (w) = w>Aw + b>w + c for
the positive definite matrix A as above, and some vector b and scalar c, it is easily verified that
w∗ = − 1

2A
−1b, and moreover, that

(w −w∗)>A(w −w∗) = F (w)− F (w∗)

for any w. Therefore, we can rewrite the above as

3(t− 1)

2m
· E
[
(F (wt) + F (w̃s)− 2F (w∗))

∥∥∥A−1/2MA−1/2
∥∥∥]

=
3(t− 1)

2m
· E

[
(F (wt) + F (w̃s)− 2F (w∗))

∥∥∥∥∥A−1/2

(∑m
i=t xσ(i)x

>
σ(i)

m− t+ 1
−
∑t−1
i=1 xσ(i)x

>
σ(i)

t− 1

)
A−1/2

∥∥∥∥∥
]
.

(21)

We now wish to use Lemma 5, which upper bounds the norm in the expression above with high
probability. However, since the norm appears inside an expectation and is multiplied by another term,
we need to proceed a bit more carefully. To that end, let N denote the norm in the expression above,
and let D denote the expression F (wt) + F (w̃s)− 2F (w∗). We collect the following observations:

• The Hessian of the objective function F (·) is 1
m

∑m
i=1 xix

>
i +λ̂I , whose minimal eigenvalue

is at least λ (since F (·) is assumed to be λ-strongly convex). Therefore, the minimal
eigenvalue of A as defined above is at least λ/2. Applying Lemma 5, Pr(N > α · q(t)) ≤
2dm exp(−α/2) for any α ≥ 2, where

q(t) =

√
2

λ

(
1√
t− 1

+
1√

m− t+ 1

)
+

2

λ

(
1

t− 1
+

1

m− t+ 1

)
.

for any t > 1, and q(1) = 0.

• By assumption, ‖wt‖, ‖w̃s‖ and ‖w∗‖ are all at most B. Moreover, since the objective
function F (·) is 1 + λ̂ ≤ 2 smooth, F (wt) − F (w∗) ≤ ‖wt −w∗‖2 ≤ q4B2 and
F (w̃s)− F (w∗) ≤ ‖w̃s −w∗‖2 ≤ 4B2. As a result, D as defined above is in [0, 8B2].
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• Since each xix
>
i has spectral norm at most 1, N is at most

∥∥A−1/2
∥∥2 ≤ 2

λ .

Combining these observations, we have the following:

E[DN ] = Pr(N > αq(t)) · E[DN |N > αq(t)] + Pr(N ≤ αq(t)) · E[DN |N ≤ αq(t)]

≤ 2dm exp
(
−α

2

) 16B2

λ
+ αq(t) · Pr(N ≤ αq(t)) · E[D|N ≤ αq(t)]

≤ 32dmB2

λ
exp

(
−α

2

)
+ αq(t) · E[D]

for any α ≥ 2. In particular, picking α = 2 log(64dmB2/λε) (where recall that ε ∈ (0, 1) is an
arbitrary parameter), we get

E[DN ] ≤ ε

2
+ 2 log

(
64dmB2

λε

)
q(t) · E[D].

Plugging in the definition of D, we get the following upper bound on Eq. (21):

3(t− 1)

2m

(
ε

2
+ 2 log

(
64dmB2

λε

)
q(t) · E [F (wt) + F (w̃s)− 2F (w∗)]

)
. (22)

Recalling the definition of q(t) and the assumption t ≤ m/2 (and using the convention 0/
√

0 = 0),
we have

3(t− 1)

2m
· q(t) =

3(t− 1)

2m

(√
2

λ

(
1√
t− 1

+
1√

m− t+ 1

)
+

3

λ

(
1

t− 1
+

1

m− t+ 1

))

=
3√
2λ

(√
t− 1

m
+

t− 1

m
√
m− t+ 1

)
+

3

λ

(
1

m
+

t− 1

m(m− t+ 1)

)
≤ 3√

2λ

(√
m/2

m
+

m/2

m
√
m/2

)
+

3

λ

(
1

m
+

m/2

m(m/2)

)
=

3√
2λ

(
1√
2m

+
1√
2m

)
+

3

λ

(
1

m
+

1

m

)
=

3√
λm

+
6

λm
=

3√
λm

(
1 +

2√
λm

)
,

which by the assumption λ ≥ 1/m (hence λm ≥ 1), is at most 9/
√
λm. Substituting this back into

Eq. (22) and loosely upper bounding, we get the upper bound

ε

2
+

18√
λm

log

(
64dmB2

λε

)
· E [F (wt) + F (w̃s)− 2F (w∗)] ,

as required.

Proposition 2. Let
vi(t, s) = ∇fi(wt)−∇fi(w̃s) +∇F (w̃s).

and suppose each fi(·) is µ-smooth. Then for any t ≤ m/2,

E[
∥∥vσ(t)(t, s)

∥∥2
] ≤ 6µ(F (wt) + F (w̃s)− 2F (w∗))

Proof. Since ∇F (w∗) = 0, we can rewrite vσ(t)(t, s) as

gσ(t)(wt)− gσ(t)(w̃s) + (∇F (w̃s)−∇F (w∗)) ,

where
gσ(t)(w) = ∇fσ(t)(w)−∇fσ(t)(w

∗).
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Using the fact that (a+ b+ c)2 ≤ 3(a2 + b2 + c2) for any a, b, c, we have

1

3
E
[∥∥vσ(t)(t, s)

∥∥2
]

(23)

≤ E
[∥∥gσ(t)(wt)

∥∥2
]

+ E
[∥∥gσ(t)(w̃s)

∥∥2
]

+ E
[
‖∇F (w̃s)−∇F (w∗)‖2

]
= E

[
1

m

m∑
i=1

‖gi(wt)‖2
]

+ E

[
1

m

m∑
i=1

‖gi(w̃s)‖2
]

+ E
[
‖∇F (w̃s)−∇F (w∗)‖2

]
+ E

[∥∥gσ(t)(wt)
∥∥2 − 1

m

m∑
i=1

‖gi(wt)‖2
]

+ E

[∥∥gσ(t)(w̃s)
∥∥2 − 1

m

m∑
i=1

‖gi(w̃s)‖2
]

(24)

We now rely on a simple technical result proven as part of the standard SVRG analysis (see equation
(8) in [11]), which states that if P (w) = 1

n

∑n
i=1 ψi(w), where each ψi is convex and µ-smooth,

and P is minimized at w∗, then for all w.

1

n

n∑
i=1

‖∇ψi(w)−∇ψi(w∗)‖2 ≤ 2µ (P (w)− P (w∗)) (25)

Applying this inequality on each of the first 3 terms in Eq. (24) (i.e. taking either ψi(·) = fi(·) and
n = m, or ψ(·) = F (·) and n = 1), we get the upper bound

2µ(F (wt)− F (w∗)) + 2µ(F (w̃s)− F (w∗)) + 2µ(F (w̃s)− F (w∗))

+ E

[∥∥gσ(t)(wt)
∥∥2 − 1

m

m∑
i=1

‖gi(wt)‖2
]

+ E

[∥∥gσ(t)(w̃s)
∥∥2 − 1

m

m∑
i=1

‖gi(w̃s)‖2
]

= 2µ (F (wt)− F (w∗)) + 4µ (F (w̃s)− F (w∗))

+ E

[∥∥gσ(t)(wt)
∥∥2 − 1

m

m∑
i=1

‖gi(wt)‖2
]

+ E

[∥∥gσ(t)(w̃s)
∥∥2 − 1

m

m∑
i=1

‖gi(w̃s)‖2
]
.

Loosely upper bounding this and applying Lemma 1, we get the upper bound

4µ (F (wt) + F (w̃s)− 2F (w∗)) +
t− 1

m
· E

[∑m
i=t

∥∥gσ(i)(wt)
∥∥

m− t+ 1
−
∑t−1
i=1

∥∥gσ(i)(wt)
∥∥2

t− 1

]

+
t− 1

m
· E

[∑m
i=t

∥∥gσ(i)(w̃s)
∥∥

m− t+ 1
−
∑t−1
i=1

∥∥gσ(i)(w̃s)
∥∥2

t− 1

]

≤ 4µ (F (wt) + F (w̃s)− 2F (w∗)) +
t− 1

m
· E

[∑m
i=t

∥∥gσ(i)(wt)
∥∥2

m− t+ 1
+

∑m
i=t

∥∥gσ(t)(w̃s)
∥∥2

m− t+ 1

]

≤ 4µ (F (wt) + F (w̃s)− 2F (w∗)) +
t− 1

m
· E

[∑m
i=1

∥∥gσ(i)(wt)
∥∥2

m− t+ 1
+

∑m
i=1

∥∥gσ(i)(w̃s)
∥∥2

m− t+ 1

]

= 4µ (F (wt) + F (w̃s)− 2F (w∗)) +
t− 1

m− t+ 1
· E

[∑m
i=1 ‖gi(wt)‖2

m
+

∑m
i=1 ‖gi(w̃s)‖2

m

]
.

Since we assume t ≤ m/2, we have t−1
m−t+1 ≤

m/2
m/2 = 1. Plugging this in, and applying Eq. (25) on

the 1
m

∑m
i=1

∥∥gσ(i)(wt)
∥∥2

and 1
m

∑m
i=1

∥∥gσ(i)(w̃s)
∥∥2

terms, this is at most

4µ (F (wt) + F (w̃s)− 2F (w∗)) + 1 · (2µ(F (wt)− F (w∗)) + 2µ(F (w̃s)− F (w∗)))

= 6µ(F (wt) + F (w̃s)− 2F (w∗))

as required.

Proof of Thm. 4. Consider some specific epoch s and iteration t. We have

wt+1 = wt − vσ(t)(t, s),
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where
vi(t, s) = ∇fi(wt)−∇fi(w̃s) +∇F (w̃s).

Therefore,

E[‖wt+1 −w∗‖2] = E[
∥∥wt − ηvσ(t)(t, s)

∥∥2
]

= E[‖wt −w∗‖2]− 2η · E[
〈
vσ(t)(t, s),wt −w∗

〉
] + η2E[

∥∥vσ(t)(t, s)
∥∥2

].
(26)

Applying Proposition 1 and Proposition 2 (assuming that t ≤ m/2, which we will verify later, and
noting that λ ≥ 1/m by the assumptions on η, T and m, and that each fi(·) is 1 + λ̂ ≤ 2-smooth),
Eq. (26) is at most

E[‖wt −w∗‖2]− 2η · E

[
1

m

m∑
i=1

〈vi(t, s),wt −w∗〉

]
+ 12η2(F (wt) + F (w̃s)− 2F (w∗))

+ 2η

(
ε

2
+

18√
λm

log

(
64dmB2

λε

)
· E [F (wt) + F (w̃s)− 2F (w∗)]

)
= E[‖wt −w∗‖2]− 2η · E [〈∇F (wt),wt −w∗〉]

+ ηε+ 2η

(
6η +

18√
λm

log

(
64dmB2

λε

))
· E [F (wt) + F (w̃s)− 2F (w∗)] .

Since F (·) is convex, 〈∇F (wt),wt −w∗〉 ≥ F (wt)−F (w∗), so we can upper bound the above by

E[‖wt −w∗‖2] + ηε+ 2η

(
6η +

18√
λm

log

(
64dmB2

λε

)
− 1

)
· E [F (wt)− F (w∗)]

+ 2η

(
6η +

18√
λm

log

(
64dmB2

λε

))
· E [F (w̃s)− F (w∗)] .

Recalling that this is an upper bound on E[‖wt+1 −w∗‖2] and changing sides, we get

2η

(
1− 6η − 18√

λm
log

(
64dmB2

λε

))
· E [F (wt)− F (w∗)]

≤ E[‖wt −w∗‖2]− E[‖wt+1 −w∗‖2] + ηε

+ 12η

(
η +

3√
λm

log

(
64dmB2

λε

))
· E [F (w̃s)− F (w∗)] .

Summing over all t = (s− 1)T + 1, . . . , sT in the epoch (recalling that the first one corresponds to
w̃s) and dividing by ηT , we get

2

(
1− 6η − 18√

λm
log

(
64dmB2

λε

))
· 1

T

sT∑
t=(s−1)T+1

E [F (wt)− F (w∗)]

≤ 1

ηT
· E[‖w̃s −w∗‖2] + ε

+ 12

(
η +

3√
λm

log

(
64dmB2

λε

))
· E [F (w̃s)− F (w∗)] .

Since F (·) is λ-strongly convex, we have ‖w̃s −w∗‖2 ≤ 2
λ (F (w̃s)−F (w∗)). Plugging this in and

simplifying a bit leads to

E

 1

T

sT∑
t=(s−1)T+1

F (wt)− F (w∗)


≤

(
2

ηλT + 12
(
η + 3√

λm
log
(

64dmB2

λε

)))
· E [F (w̃s)− F (w∗)] + ε

2
(

1− 6η − 18√
λm

log
(

64dmB2

λε

)) .
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The left hand side equals or upper bounds E[F (w̃s+1)] − F (w∗) (recall that we choose w̃s+1

uniformly at random from all iterates produced in the epoch, or we take the average, in which case
E[F (w̃s+1)− F (w∗)] is at most the left hand side by Jensen’s inequality). As to the right hand side,
if we assume

η =
1

c
, T ≥ 9

ηλ
, m ≥ c log2(64dmB2/λε)

λ
(27)

for a sufficiently large numerical constant c, we get that it is at most 1
4 · E[F (w̃s)− F (w∗)] + 2

3ε.
Therefore, we showed that

E [F (w̃s+1)− F (w∗)] ≤ 1

4
· E[F (w̃s)− F (w∗)] +

2

3
ε.

Unwinding this recursion, we get that after s epochs,

E [F (w̃s+1)− F (w∗)] ≤ 4−s · E[F (w̃1)− F (w∗)] +
2

3
ε

s−1∑
i=0

4−i

= 4−s · E[F (w̃1)− F (w∗)] +
2

3
ε · 1− 4−s

1− 4−1

< 4−s · E[F (w̃1)− F (w∗)] +
8

9
ε.

Since we assume that we start at the origin (w̃1 = 0), we have F (w̃1 − F (w∗)) ≤ F (0) =
1
m

∑m
i=1 y

2
i ≤ 1, so we get

E [F (w̃s+1)− F (w∗)] ≤ 4−s +
8

9
ε.

This is at most ε assuming s ≥ log4(9/ε), so it is sufficient to have dlog4(9/ε)e epochs to ensure
suboptimality at most ε in expectation.

Finally, note that we had dlog4(9/ε)e epochs, in each of which we performed T stochastic itera-
tions. Therefore, the overall number of samples used is at most dlog4(9/ε)eT . Thus, to ensure the
application of Propositions 1 and 2 is valid, we need to ensure this is at most m/2, or that

m ≥ 2dlog4(9/ε)e · T.
Combining this with Eq. (27), it is sufficient to require

η =
1

c
, T ≥ 9

ηλ
, m ≥ c log2

(
64dmB2

λε

)
T

for any sufficiently large c.

B Additional Technical Lemmas

In this appendix, we collect a couple of purely technical lemmas used in certain parts of the paper.
Lemma 6. If T,m are positive integers, T ≤ m, then

1

mT

T∑
t=2

(t− 1)

(√
1

t− 1
+

√
1

m− t+ 1

)
≤ 2√

m
.

Proof.

1

mT

T∑
t=2

(t− 1)

(√
1

t− 1
+

√
1

m− t+ 1

)

=
1

mT

T−1∑
t=1

t

(√
1

t
+

√
1

m− t

)

=
1

mT

(
T−1∑
t=1

√
t+

T−1∑
t=1

t√
m− t

)
.
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Since
√
t and t/

√
m− t are both increasing in t, we can upper bound the sums by integrals as

follows:

≤ 1

mT

(∫ T

t=0

√
t dt+

∫ T

t=0

t√
m− t

dt

)

=
1

mT

(
2

3
· T 3/2 +

(
−2

3

√
m− t · (2m+ t)

) ∣∣∣T
t=0

)
=

1

mT

(
2

3
· T 3/2 +

2

3

(
2m
√
m−

√
m− T · (2m+ T )

))
=

2

3

(√
T

m
+ 2

(√
m

T
−
√
m− T ·

(
1

T
+

1

2m

)))

=
2

3

(√
T

m
+

2

T

(√
m−

√
m− T ·

(
1 +

T

2m

)))

≤ 2

3

(√
T

m
+

2

T

(√
m−

√
m− T

))

=
2

3

(√
T

m
+

2

T

(
T

√
m+

√
m− T

))

≤ 2

3

(√
T

m
+

2√
m

)
.

Since T ≤ m, the above is at most 2
3

(
1√
m

+ 2√
m

)
= 2√

m
as required.

Lemma 7. Let X be a random variable, which satisfies for any δ ∈ (0, 1)

Pr (X > a+ b log(1/δ)) ≤ δ,

where a, b > 0. Then
E[X] ≤ a+ b.

Furthermore, if X is non-negative, then√
E[X2] ≤

√
2 · (a+ b).

Proof. The condition in the lemma implies that for any z ≥ a,

Pr(X > z) ≤ exp

(
−z − a

b

)
.

Therefore,

E[X] ≤ E[max{0, X}] =

∫ ∞
z=0

Pr(max{0, X} ≥ z) dz ≤ a+

∫ ∞
z=a

Pr(max{0, X} ≥ z) dz

= a+

∫ ∞
z=a

Pr(X ≥ z) dz ≤ a+

∫ ∞
z=a

exp

(
−z − a

b

)
dz = a+

∫ ∞
z=0

exp
(
−z
b

)
= a+ b.

Similarly, if X is non-negative,

E[X2] =

∫ ∞
z=0

Pr(X2 ≥ z) dz ≤ a2 +

∫ ∞
z=a2

Pr(X2 ≥ z) dz = a2 +

∫ ∞
z=a2

Pr(X ≥
√
z) dz

≤ a2 +

∫ ∞
z=a2

exp

(
−
√
z − a
b

)
dz = a2 + 2b(b+ a) ≤ 2(a+ b)2,

and the result follows by taking the square root.
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C Uniform Upper Bound on F (wt)− F (w∗) for SVRG

Below, we provide a crude bound on the parameterB in Thm. 4, which upper bounds F (wt)−F (w∗)
with probability 1. Note that B only appears inside log factors in the theorem, so it is enough that
log(B) is reasonably small.
Lemma 8. Suppose we run SVRG (algorithm 1) with some parameter T and step size η ∈ (0, 1) for
S epochs, where each fi(·) is a regularized squared loss (as in Eq. (2), with ‖xi‖ , |yi| ≤ 1 for all i),
and F (·) is λ-strongly convex with λ ∈ (0, 1). Then for every iterate wt produced by the algorithm,
it holds with probability 1 that

log(F (wt)− F (w∗)) ≤ 2S · log(5T ) + log

(
4

λ

)
.

Noting that Thm. 4 requires only S = O(log(1/ε)) epochs with T = Θ(1/λ) stochastic iterations
per epoch, we get that

log(F (wt)− F (w∗)) = O
(

log

(
1

ε

)
log(T ) + log

(
1

λ

))
with probability 1.

Proof. Based on the SVRG update step, we have

‖wt+1‖ ≤
∥∥wt − η∇fσ(t)(wt)

∥∥+ η
∥∥∇fσ(t)(w̃s)

∥∥+ η ‖∇F (w̃s)‖ . (28)

Since we are considering the regularized squared loss, with ‖xi‖ ≤ 1, |yi| ≤ 1 and 0 ≤ λ̂ ≤ λ ≤ 1,
the first term on the right hand side is∥∥∥wt − η

(
xσ(t)x

>
σ(t)wt − yσ(t)xσ(t) + λ̂wt

)∥∥∥ ≤ ∥∥∥((1− ηλ̂)I − η · xσ(t)x
>
σ(t)

)
wt

∥∥∥+ η
∥∥yσ(t)xσ(t)

∥∥
≤

∥∥∥((1− ηλ̂)I − η · xσ(t)x
>
σ(t)

)∥∥∥ ‖wt‖+ η ≤ ‖wt‖+ 1,

As to the second two terms on the right hand side of Eq. (28), we have for any i by similar calculations
that

‖∇fi(w)‖ =
∥∥∥(xix>i + λ̂I

)
w − yixi

∥∥∥ ≤ (
1 + λ̂

)
‖w‖+ 1 ≤ 2 ‖w‖+ 1

as well as
‖∇F (w)‖ ≤ 2 ‖w‖+ 1.

Substituting these back into Eq. (28) and loosely upper bounding, we get

‖wt+1‖ ≤ ‖wt‖+ 4 (‖w̃s‖+ 1) .

Recalling that each epoch is composed of T such iterations, starting from w̃s, and where w̃s+1 is the
average or a random draw from these T iterations, we get that

‖w̃s+1‖ ≤ ‖w̃s‖+ 4T (‖w̃s‖+ 1) ≤ 5T (‖w̃s‖+ 1) ,

and moreover, the right hand side upper-bounds the norm of any iterate wt during that epoch.
Unrolling this inequality, and noting that ‖w̃1‖ = 0, we get

‖w̃S+1‖ ≤ (5T )S · 1 = (5T )S ,

and (5T )S upper bounds the norm of any iterate wt during the algorithm’s run.

Turning to consider w∗ = arg minw F (w), we must have ‖w∗‖2 ≤ 1/λ (to see why, note that any w

with squared norm larger than 1/λ, F (w) ≥ F (w∗) + λ
2 ‖w‖

2
> 1

2 , yet F (0) = 1
2m

∑m
i=1 y

2
i ≤ 1

2 ,
so w cannot be an optimal solution). Moreover, F (·) is 2-smooth, so for any iterate wt,

F (wt)− F (w∗) ≤ ‖wt −w∗‖2 ≤ (‖wt‖+ ‖w∗‖)2
=

(
(5T )S +

√
1

λ

)2

.

Since (5T )S and
√

1/λ are both at least 1, this can be upper bounded by
(

2(5T )S√
λ

)2

= 4
λ · (5T )2S .

Taking a logarithm, the result follows.
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D Pseudocode of Distributed Without-Replacement SVRG

Algorithm 2 Distributed Without-Replacement SVRG
Parameters: η, T
Assume: {f1(·), . . . , fm(·)} randomly split to machines 1, 2, . . . , n (possibly different number at
different machines)
Each machine j splits its data arbitrarily to bj batches Bj1, . . . , B

j
bi

of size T
j := 1 , k := 1 , t := 1
All machines initialize w̃1 at 0
for s = 1, 2, . . . , do

Perform communication round to compute ñ := ∇F (w̃s) = 1
m

∑m
i=1∇fi(w̃s)

Machine j performs w1 := w̃s

for Each f in Bjk do
Machine j performs wt+1 := wt − η (∇fwt)−∇f(w̃s) + ñ)
t := t+ 1

end for
Machine j computes w̃s+1 as average of w1, . . . ,wT , or one of them drawn uniformly at
random.
Perform communication round to distribute w̃s+1 to all machines
k := k + 1
If k > bj , let k := 1, j := j + 1

end for
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