Teaching by Demonstration Supplementary Materials

Mark K Ho, Michael L. Littman, James MacGlashan, Fiery Cushman, Joseph L. Austerweil

September 2016

Appendix 1: An Example with 2 Goals

Suppose we have a 3x2 gridworld with two possible terminal goals (X and Y) and a starting position as shown in Figure 1i. We assume no step costs and $\gamma = .99$. We restrict our analysis to trajectories of length 2 that terminate at a goal state. Thus there are 4 trajectories considered.

Figure 1: (i) Gridworld with 2 possible goal states (labeled X and Y) and a single starting state. (ii) All trajectories of length 2 that terminate at a goal state.

Proof

The purpose of this proof is to show that certain trajectories have higher probability of being chosen by a demonstrator who is "showing" as opposed to "doing" a task, even when all trajectories enter a goal. The prior probability over goals is uniform.

The following inequalities for a goal $g \in G = \{X, Y\}$ given a trajectory $j \in J = \{x_{in}, x_{out}, y_{in}, y_{out}\}$ will hold when a softmax policy or ϵ -greedy policy is used to calculate the standard planning distribution:

$$P_{\text{Doing}}(x_{out} \mid X) \ge P_{\text{Doing}}(x_{in} \mid X) > 0 \tag{1}$$

$$P_{\text{Doing}}(x_{in} \mid Y) > P_{\text{Doing}}(x_{out} \mid Y) > 0.$$
(2)

An observer watching a standard planner uses Bayes rule to infer the goal being pursued:

$$P_{\text{Observing}}(G = g \mid J = j) = \frac{P_{\text{Doing}}(J = j \mid G = g)}{\sum_{g'} P_{\text{Doing}}(J = j \mid G = g')}.$$
 (3)

The inequalities in (1) and (2) entail the following inequality¹:

$$\frac{P_{\text{Doing}}(x_{out} \mid X)}{P_{\text{Doing}}(x_{out} \mid X) + P_{\text{Doing}}(x_{out} \mid Y)} > \frac{P_{\text{Doing}}(x_{in} \mid X)}{P_{\text{Doing}}(x_{in} \mid X) + P_{\text{Doing}}(x_{in} \mid Y)}.$$
 (4)

$$P_{\text{Observing}}(X \mid x_{out}) > P_{\text{Observing}}(X \mid x_{in}).$$
(5)

That is, observing x_{out} provides better evidence that X is the goal than observing x_{in} . Since an agent that is showing an observer will choose as follows:

$$P_{\text{Showing}}(J=j \mid G=g) = \frac{P_{\text{Observing}}(G=g \mid J=j)^{\alpha}}{\sum_{j'} P_{\text{Observing}}(G=g \mid J=j')^{\alpha}},$$
(6)

then,

$$\frac{P_{\text{Observing}}(X \mid x_{out})^{\alpha}}{\sum_{j'} P_{\text{Observing}}(X \mid j')^{\alpha}} > \frac{P_{\text{Observing}}(X \mid x_{in})^{\alpha}}{\sum_{j'} P_{\text{Observing}}(X \mid j')^{\alpha}}$$
(7)

 $P_{\text{Showing}}(x_{out} \mid X) > P_{\text{Showing}}(x_{in} \mid X)$ (8)

Intuitively, the different probabilities of x_{out} and x_{in} when Y is the goal allows a showing agent to "break the symmetry" between x_{out} and x_{in} when X is the goal. Analogous calculations can show that $P_{\text{Showing}}(y_{out} \mid Y) > P_{\text{Showing}}(y_{in} \mid Y)$.

¹For a, b, c, d > 0 if $a \ge b$ and c > d, then:

$$ac > bd$$
$$ab + ac > bd + ab$$
$$a(b + c) > b(a + d)$$
$$\frac{a}{a + d} > \frac{b}{b + c}$$

Table 1: Experiment 2 Maximum Median Likelihood Model Parameters									
		Doing Condition							
		000	OOX	OXO	OXX	xoo	XOX	XXO	XXX
Standard Planning Model	λ	0.02	0.02	0.02	0.02	0.02	0.04	0.02	0.02
	l_{max}	7	7	9	9	9	7	9	7
Pedagogical	α	2	1	1	1	1	20	1	1
Model	p_{min}	10^{-6}	10^{-10}	10^{-6}	10^{-7}	10^{-6}	10^{-5}	10^{-7}	10^{-10}
	λ	0.05	0.20	0.10	0.20	0.10	0.20	0.05	0.20
		Showing Condition							
		000	OOX	OXO	OXX	XOO	xox	XXO	XXX
Standard Planning Model	λ	0.08	0.10	0.02	0.02	0.30	0.09	0.02	0.02
	l_{max}	7	9	9	9	11	9	9	7
Pedagogical	α	1	10	20	1	1	5	1	1
Model	p_{min}	10^{-10}	10^{-7}	10^{-7}	10^{-7}	10^{-10}	10^{-5}	10^{-7}	10^{-10}
	λ	0.20	0.05	0.05	0.20	0.20	0.05	0.05	0.20

Appendix 2: Experiment 2 Model Fits

Note: The codes for the reward functions refer to which tiles were safe (o) and which were dangerous (x) with the ordering $\langle \text{orange}, \text{purple}, \text{cyan} \rangle$.