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Abstract

In this paper, we study the stochastic combinatorial multi-armed bandit (CMAB)
framework that allows a general nonlinear reward function, whose expected value
may not depend only on the means of the input random variables but possibly
on the entire distributions of these variables. Our framework enables a much
larger class of reward functions such as the max() function and nonlinear utility
functions. Existing techniques relying on accurate estimations of the means of
random variables, such as the upper confidence bound (UCB) technique, do not
work directly on these functions. We propose a new algorithm called stochastically
dominant confidence bound (SDCB), which estimates the distributions of under-
lying random variables and their stochastically dominant confidence bounds. We
prove that SDCB can achieve O(log T ) distribution-dependent regret and Õ(

√
T )

distribution-independent regret, where T is the time horizon. We apply our results
to the K-MAX problem and expected utility maximization problems. In particular,
for K-MAX, we provide the first polynomial-time approximation scheme (PTAS)
for its offline problem, and give the first Õ(

√
T ) bound on the (1−ε)-approximation

regret of its online problem, for any ε > 0.

1 Introduction

Stochastic multi-armed bandit (MAB) is a classical online learning problem typically specified as a
player against m machines or arms. Each arm, when pulled, generates a random reward following an
unknown distribution. The task of the player is to select one arm to pull in each round based on the
historical rewards she collected, and the goal is to collect cumulative reward over multiple rounds as
much as possible. In this paper, unless otherwise specified, we use MAB to refer to stochastic MAB.

MAB problem demonstrates the key tradeoff between exploration and exploitation: whether the
player should stick to the choice that performs the best so far, or should try some less explored
alternatives that may provide better rewards. The performance measure of an MAB strategy is its
cumulative regret, which is defined as the difference between the cumulative reward obtained by
always playing the arm with the largest expected reward and the cumulative reward achieved by the
learning strategy. MAB and its variants have been extensively studied in the literature, with classical
results such as tight Θ(log T ) distribution-dependent and Θ(

√
T ) distribution-independent upper and

lower bounds on the regret in T rounds [19, 2, 1].

An important extension to the classical MAB problem is combinatorial multi-armed bandit (CMAB).
In CMAB, the player selects not just one arm in each round, but a subset of arms or a combinatorial
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object in general, referred to as a super arm, which collectively provides a random reward to the
player. The reward depends on the outcomes from the selected arms. The player may observe partial
feedbacks from the selected arms to help her in decision making. CMAB has wide applications
in online advertising, online recommendation, wireless routing, dynamic channel allocations, etc.,
because in all these settings the action unit is a combinatorial object (e.g. a set of advertisements, a
set of recommended items, a route in a wireless network, and an allocation between channels and
users), and the reward depends on unknown stochastic behaviors (e.g. users’ click through behaviors,
wireless transmission quality, etc.). Therefore CMAB has attracted a lot of attention in online learning
research in recent years [12, 8, 22, 15, 7, 16, 18, 17, 23, 9].

Most of these studies focus on linear reward functions, for which the expected reward for playing a
super arm is a linear combination of the expected outcomes from the constituent base arms. Even for
studies that do generalize to non-linear reward functions, they typically still assume that the expected
reward for choosing a super arm is a function of the expected outcomes from the constituent base
arms in this super arm [8, 17]. However, many natural reward functions do not satisfy this property.
For example, for the function max(), which takes a group of variables and outputs the maximum one
among them, its expectation depends on the full distributions of the input random variables, not just
their means. Function max() and its variants underly many applications. As an illustrative example,
we consider the following scenario in auctions: the auctioneer is repeatedly selling an item to m
bidders; in each round the auctioneer selects K bidders to bid; each of the K bidders independently
draws her bid from her private valuation distribution and submits the bid; the auctioneer uses the
first-price auction to determine the winner and collects the largest bid as the payment.1 The goal of
the auctioneer is to gain as high cumulative payments as possible. We refer to this problem as the
K-MAX bandit problem, which cannot be effectively solved in the existing CMAB framework.

Beyond the K-MAX problem, many expected utility maximization (EUM) problems are studied
in stochastic optimization literature [27, 20, 21, 4]. The problem can be formulated as maximizing
E[u(

∑
i∈S Xi)] among all feasible sets S, where Xi’s are independent random variables and u(·) is

a utility function. For example, Xi could be the random delay of edge ei in a routing graph, S is a
routing path in the graph, and the objective is maximizing the utility obtained from any routing path,
and typically the shorter the delay, the larger the utility. The utility function u(·) is typically nonlinear
to model risk-averse or risk-prone behaviors of users (e.g. a concave utility function is often used to
model risk-averse behaviors). The non-linear utility function makes the objective function much more
complicated: in particular, it is no longer a function of the means of the underlying random variables
Xi’s. When the distributions of Xi’s are unknown, we can turn EUM into an online learning problem
where the distributions of Xi’s need to be learned over time from online feedbacks, and we want to
maximize the cumulative reward in the learning process. Again, this is not covered by the existing
CMAB framework since only learning the means of Xi’s is not enough.

In this paper, we generalize the existing CMAB framework with semi-bandit feedbacks to handle
general reward functions, where the expected reward for playing a super arm may depend more
than just the means of the base arms, and the outcome distribution of a base arm can be arbitrary.
This generalization is non-trivial, because almost all previous works on CMAB rely on estimating
the expected outcomes from base arms, while in our case, we need an estimation method and an
analytical tool to deal with the whole distribution, not just its mean. To this end, we turn the problem
into estimating the cumulative distribution function (CDF) of each arm’s outcome distribution. We
use stochastically dominant confidence bound (SDCB) to obtain a distribution that stochastically
dominates the true distribution with high probability, and hence we also name our algorithm SDCB.
We are able to show O(log T ) distribution-dependent and Õ(

√
T ) distribution-independent regret

bounds in T rounds. Furthermore, we propose a more efficient algorithm called Lazy-SDCB, which
first executes a discretization step and then applies SDCB on the discretized problem. We show that
Lazy-SDCB also achieves Õ(

√
T ) distribution-independent regret bound. Our regret bounds are

tight with respect to their dependencies on T (up to a logarithmic factor for distribution-independent
bounds). To make our scheme work, we make a few reasonable assumptions, including boundedness,
monotonicity and Lipschitz-continuity2 of the reward function, and independence among base arms.
We apply our algorithms to the K-MAX and EUM problems, and provide efficient solutions with
concrete regret bounds. Along the way, we also provide the first polynomial time approximation

1We understand that the first-price auction is not truthful, but this example is only for illustrative purpose for
the max() function.

2The Lipschitz-continuity assumption is only made for Lazy-SDCB. See Section 4.
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scheme (PTAS) for the offline K-MAX problem, which is formulated as maximizing E[maxi∈S Xi]
subject to a cardinality constraint |S| ≤ K, where Xi’s are independent nonnegative random
variables.

To summarize, our contributions include: (a) generalizing the CMAB framework to allow a general
reward function whose expectation may depend on the entire distributions of the input random
variables; (b) proposing the SDCB algorithm to achieve efficient learning in this framework with
near-optimal regret bounds, even for arbitrary outcome distributions; (c) giving the first PTAS for the
offline K-MAX problem. Our general framework treats any offline stochastic optimization algorithm
as an oracle, and effectively integrates it into the online learning framework.

Related Work. As already mentioned, most relevant to our work are studies on CMAB frameworks,
among which [12, 16, 18, 9] focus on linear reward functions while [8, 17] look into non-linear
reward functions. In particular, Chen et al. [8] look at general non-linear reward functions and Kveton
et al. [17] consider specific non-linear reward functions in a conjunctive or disjunctive form, but
both papers require that the expected reward of playing a super arm is determined by the expected
outcomes from base arms.

The only work in combinatorial bandits we are aware of that does not require the above assumption on
the expected reward is [15], which is based on a general Thompson sampling framework. However,
they assume that the joint distribution of base arm outcomes is from a known parametric family within
known likelihood function and only the parameters are unknown. They also assume the parameter
space to be finite. In contrast, our general case is non-parametric, where we allow arbitrary bounded
distributions. Although in our known finite support case the distribution can be parametrized by
probabilities on all supported points, our parameter space is continuous. Moreover, it is unclear how
to efficiently compute posteriors in their algorithm, and their regret bounds depend on complicated
problem-dependent coefficients which may be very large for many combinatorial problems. They
also provide a result on the K-MAX problem, but they only consider Bernoulli outcomes from base
arms, much simpler than our case where general distributions are allowed.

There are extensive studies on the classical MAB problem, for which we refer to a survey by Bubeck
and Cesa-Bianchi [5]. There are also some studies on adversarial combinatorial bandits, e.g. [26, 6].
Although it bears conceptual similarities with stochastic CMAB, the techniques used are different.

Expected utility maximization (EUM) encompasses a large class of stochastic optimization problems
and has been well studied (e.g. [27, 20, 21, 4]). To the best of our knowledge, we are the first to study
the online learning version of these problems, and we provide a general solution to systematically
address all these problems as long as there is an available offline (approximation) algorithm. The
K-MAX problem may be traced back to [13], where Goel et al. provide a constant approximation
algorithm to a generalized version in which the objective is to choose a subset S of cost at most K
and maximize the expectation of a certain knapsack profit.

2 Setup and Notation

Problem Formulation. We model a combinatorial multi-armed bandit (CMAB) problem as a tuple
(E,F , D,R), where E = [m] = {1, 2, . . . ,m} is a set of m (base) arms, F ⊆ 2E is a set of subsets
of E, D is a probability distribution over [0, 1]m, and R is a reward function defined on [0, 1]m ×F .
The arms produce stochastic outcomes X = (X1, X2, . . . , Xm) drawn from distribution D, where
the i-th entry Xi is the outcome from the i-th arm. Each feasible subset of arms S ∈ F is called a
super arm. Under a realization of outcomes x = (x1, . . . , xm), the player receives a reward R(x, S)
when she chooses the super arm S to play. Without loss of generality, we assume the reward value to
be nonnegative. Let K = maxS∈F |S| be the maximum size of any super arm.

Let X(1), X(2), . . . be an i.i.d. sequence of random vectors drawn from D, where X(t) =

(X
(t)
1 , . . . , X

(t)
m ) is the outcome vector generated in the t-th round. In the t-th round, the player

chooses a super arm St ∈ F to play, and then the outcomes from all arms in St, i.e., {X(t)
i | i ∈ St},

are revealed to the player. According to the definition of the reward function, the reward value in the
t-th round is R(X(t), St). The expected reward for choosing a super arm S in any round is denoted
by rD(S) = EX∼D[R(X,S)].
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We also assume that for a fixed super arm S ∈ F , the reward R(x, S) only depends on the revealed
outcomes xS = (xi)i∈S . Therefore, we can alternatively express R(x, S) as RS(xS), where RS is a
function defined on [0, 1]S .3

A learning algorithm A for the CMAB problem selects which super arm to play in each round
based on the revealed outcomes in all previous rounds. Let SAt be the super arm selected by A
in the t-th round.4 The goal is to maximize the expected cumulative reward in T rounds, which
is E

[∑T
t=1R(X(t), SAt )

]
=
∑T
t=1 E

[
rD(SAt )

]
. Note that when the underlying distribution D is

known, the optimal algorithmA∗ chooses the optimal super arm S∗ = argmaxS∈F{rD(S)} in every
round. The quality of an algorithm A is measured by its regret in T rounds, which is the difference
between the expected cumulative reward of the optimal algorithm A∗ and that of A:

RegAD(T ) = T · rD(S∗)−
T∑
t=1

E
[
rD(SAt )

]
.

For some CMAB problem instances, the optimal super arm S∗ may be computationally hard to find
even when the distribution D is known, but efficient approximation algorithms may exist, i.e., an
α-approximate (0 < α ≤ 1) solution S′ ∈ F which satisfies rD(S′) ≥ α ·maxS∈F{rD(S)} can be
efficiently found given D as input. We will provide the exact formulation of our requirement on such
an α-approximation computation oracle shortly. In such cases, it is not fair to compare a CMAB
algorithm A with the optimal algorithm A∗ which always chooses the optimal super arm S∗. Instead,
we define the α-approximation regret of an algorithm A as

RegAD,α(T ) = T · α · rD(S∗)−
T∑
t=1

E
[
rD(SAt )

]
.

As mentioned, almost all previous work on CMAB requires that the expected reward rD(S) of
a super arm S depends only on the expectation vector µ = (µ1, . . . , µm) of outcomes, where
µi = EX∼D[Xi]. This is a strong restriction that cannot be satisfied by a general nonlinear function
RS and a general distribution D. The main motivation of this work is to remove this restriction.

Assumptions. Throughout this paper, we make several assumptions on the outcome distribution D
and the reward function R.
Assumption 1 (Independent outcomes from arms). The outcomes from all m arms are mutually
independent, i.e., for X ∼ D, X1, X2, . . . , Xm are mutually independent. We write D as D =
D1 ×D2 × · · · ×Dm, where Di is the distribution of Xi.

We remark that the above independence assumption is also made for past studies on the offline EUM
and K-MAX problems [27, 20, 21, 4, 13], so it is not an extra assumption for the online learning case.
Assumption 2 (Bounded reward value). There exists M > 0 such that for any x ∈ [0, 1]m and any
S ∈ F , we have 0 ≤ R(x, S) ≤M .
Assumption 3 (Monotone reward function). If two vectors x, x′ ∈ [0, 1]m satisfy xi ≤ x′i (∀i ∈ [m]),
then for any S ∈ F , we have R(x, S) ≤ R(x′, S).

Computation Oracle for Discrete Distributions with Finite Supports. We require that there
exists an α-approximation computation oracle (0 < α ≤ 1) for maximizing rD(S), when each Di

(i ∈ [m]) has a finite support. In this case, Di can be fully described by a finite set of numbers
(i.e., its support {vi,1, vi,2, . . . , vi,si} and the values of its cumulative distribution function (CDF)
Fi on the supported points: Fi(vi,j) = PrXi∼Di

[Xi ≤ vi,j ] (j ∈ [si])). The oracle takes such a
representation of D as input, and can output a super arm S′ = Oracle(D) ∈ F such that rD(S′) ≥
α ·maxS∈F{rD(S)}.

3 SDCB Algorithm

3[0, 1]S is isomorphic to [0, 1]|S|; the coordinates in [0, 1]S are indexed by elements in S.
4Note that SAt may be random due to the random outcomes in previous rounds and the possible randomness

used by A.
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Algorithm 1 SDCB (Stochastically dominant confidence bound)
1: Throughout the algorithm, for each arm i ∈ [m], maintain: (i) a counter Ti which stores the

number of times arm i has been played so far, and (ii) the empirical distribution D̂i of the
observed outcomes from arm i so far, which is represented by its CDF F̂i

2: // Initialization
3: for i = 1 to m do
4: // Action in the i-th round
5: Play a super arm Si that contains arm i

6: Update Tj and F̂j for each j ∈ Si
7: end for

8: for t = m+ 1,m+ 2, . . . do
9: // Action in the t-th round

10: For each i ∈ [m], let Di be a distribution whose CDF Fi is

Fi(x) =

{
max{F̂i(x)−

√
3 ln t
2Ti

, 0}, 0 ≤ x < 1

1, x = 1

11: Play the super arm St ← Oracle(D), where D = D1 ×D2 × · · · ×Dm

12: Update Tj and F̂j for each j ∈ St
13: end for

We present our algorithm stochastically dominant confidence bound (SDCB) in Algorithm 1. Through-
out the algorithm, we store, in a variable Ti, the number of times the outcomes from arm i are observed
so far. We also maintain the empirical distribution D̂i of the observed outcomes from arm i so far,
which can be represented by its CDF F̂i: for x ∈ [0, 1], the value of F̂i(x) is just the fraction of
the observed outcomes from arm i that are no larger than x. Note that F̂i is always a step function
which has “jumps” at the points that are observed outcomes from arm i. Therefore it suffices to store
these discrete points as well as the values of F̂i at these points in order to store the whole function
F̂i. Similarly, the later computation of stochastically dominant CDF Fi (line 10) only requires
computation at these points, and the input to the offline oracle only needs to provide these points and
corresponding CDF values (line 11).

The algorithm starts withm initialization rounds in which each arm is played at least once5 (lines 2-7).
In the t-th round (t > m), the algorithm consists of three steps. First, it calculates for each i ∈ [m] a
distribution Di whose CDF Fi is obtained by lowering the CDF F̂i (line 10). The second step is to
call the α-approximation oracle with the newly constructed distribution D = D1×· · ·×Dm as input
(line 11), and thus the super arm St output by the oracle satisfies rD(St) ≥ α ·maxS∈F{rD(S)}.
Finally, the algorithm chooses the super arm St to play, observes the outcomes from all arms in St,
and updates Tj’s and F̂j’s accordingly for each j ∈ St.
The idea behind our algorithm is the optimism in the face of uncertainty principle, which is the key
principle behind UCB-type algorithms. Our algorithm ensures that with high probability we have
Fi(x) ≤ Fi(x) simultaneously for all i ∈ [m] and all x ∈ [0, 1], where Fi is the CDF of the outcome
distribution Di. This means that each Di has first-order stochastic dominance over Di.6 Then from
the monotonicity property of R(x, S) (Assumption 3) we know that rD(S) ≥ rD(S) holds for all
S ∈ F with high probability. Therefore D provides an “optimistic” estimation on the expected
reward from each super arm.

Regret Bounds. We prove O(log T ) distribution-dependent and O(
√
T log T ) distribution-

independent upper bounds on the regret of SDCB (Algorithm 1).

5Without loss of generality, we assume that each arm i ∈ [m] is contained in at least one super arm.
6We remark that while Fi(x) is a numerical lower confidence bound on Fi(x) for all x ∈ [0, 1], at the

distribution level, Di serves as a “stochastically dominant (upper) confidence bound” on Di.
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We call a super arm S bad if rD(S) < α · rD(S∗). For each super arm S, we define

∆S = max{α · rD(S∗)− rD(S), 0}.

Let FB = {S ∈ F | ∆S > 0}, which is the set of all bad super arms. Let EB ⊆ [m] be the set of
arms that are contained in at least one bad super arm. For each i ∈ EB, we define

∆i,min = min{∆S | S ∈ FB, i ∈ S}.

Recall that M is an upper bound on the reward value (Assumption 2) and K = maxS∈F |S|.
Theorem 1. A distribution-dependent upper bound on the α-approximation regret of SDCB (Algo-
rithm 1) in T rounds is

M2K
∑
i∈EB

2136

∆i,min
lnT +

(
π2

3
+ 1

)
αMm,

and a distribution-independent upper bound is

93M
√
mKT lnT +

(
π2

3
+ 1

)
αMm.

The proof of Theorem 1 is given in Appendix A.1. The main idea is to reduce our analysis on
general reward functions satisfying Assumptions 1-3 to the one in [18] that deals with the summation
reward function R(x, S) =

∑
i∈S xi. Our analysis relies on the Dvoretzky-Kiefer-Wolfowitz

inequality [10, 24], which gives a uniform concentration bound on the empirical CDF of a distribution.

Applying Our Algorithm to the Previous CMAB Framework. Although our focus is on general
reward functions, we note that when SDCB is applied to the previous CMAB framework where the
expected reward depends only on the means of the random variables, it can achieve the same regret
bounds as the previous combinatorial upper confidence bound (CUCB) algorithm in [8, 18].

Let µi = EX∼D[Xi] be arm i’s mean outcome. In each round CUCB calculates (for each arm i) an
upper confidence bound µ̄i on µi, with the essential property that µi ≤ µ̄i ≤ µi + Λi holds with high
probability, for some Λi > 0. In SDCB, we use Di as a stochastically dominant confidence bound
of Di. We can show that µi ≤ EYi∼Di [Yi] ≤ µi + Λi holds with high probability, with the same
interval length Λi as in CUCB. (The proof is given in Appendix A.2.) Hence, the analysis in [8, 18]
can be applied to SDCB, resulting in the same regret bounds.We further remark that in this case we
do not need the three assumptions stated in Section 2 (in particular the independence assumption on
Xi’s): the summation reward case just works as in [18] and the nonlinear reward case relies on the
properties of monotonicity and bounded smoothness used in [8].

4 Improved SDCB Algorithm by Discretization

In Section 3, we have shown that our algorithm SDCB achieves near-optimal regret bounds. However,
that algorithm might suffer from large running time and memory usage. Note that, in the t-th round,
an arm i might have been observed t− 1 times already, and it is possible that all the observed values
from arm i are different (e.g., when arm i’s outcome distribution Di is continuous). In such case,
it takes Θ(t) space to store the empirical CDF F̂i of the observed outcomes from arm i, and both
calculating the stochastically dominant CDF Fi and updating F̂i take Θ(t) time. Therefore, the
worst-case space usage of SDCB in T rounds is Θ(T ), and the worst-case running time is Θ(T 2)
(ignoring the dependence on m and K); here we do not count the time and space used by the offline
computation oracle.

In this section, we propose an improved algorithm Lazy-SDCB which reduces the worst-case memory
usage and running time to O(

√
T ) and O(T 3/2), respectively, while preserving the O(

√
T log T )

distribution-independent regret bound. To this end, we need an additional assumption on the reward
function:
Assumption 4 (Lipschitz-continuous reward function). There exists C > 0 such that for any S ∈ F
and any x, x′ ∈ [0, 1]m, we have |R(x, S)−R(x′, S)| ≤ C‖xS − x′S‖1, where ‖xS − x′S‖1 =∑
i∈S |xi − x′i|.
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Algorithm 2 Lazy-SDCB with known time horizon
Input: time horizon T

1: s← d
√
T e

2: Ij ←
{

[0, 1
s ], j = 1

( j−1
s , js ], j = 2, . . . , s

3: Invoke SDCB (Algorithm 1) for T rounds, with the following change: whenever observing an
outcome x (from any arm), find j ∈ [s] such that x ∈ Ij , and regard this outcome as j

s

Algorithm 3 Lazy-SDCB without knowing the time horizon
1: q ← dlog2me
2: In rounds 1, 2, . . . , 2q , invoke Algorithm 2 with input T = 2q

3: for k = q, q + 1, q + 2, . . . do
4: In rounds 2k + 1, 2k + 2, . . . , 2k+1, invoke Algorithm 2 with input T = 2k

5: end for

We first describe the algorithm when the time horizon T is known in advance. The algorithm is
summarized in Algorithm 2. We perform a discretization on the distribution D = D1 × · · · ×Dm to
obtain a discrete distribution D̃ = D̃1 × · · · × D̃m such that (i) for X̃ ∼ D̃, X̃1, . . . , X̃m are also
mutually independent, and (ii) every D̃i is supported on a set of equally-spaced values { 1

s ,
2
s , . . . , 1},

where s is set to be d
√
T e. Specifically, we partition [0, 1] into s intervals: I1 = [0, 1

s ], I2 =

( 1
s ,

2
s ], . . . , Is−1 = ( s−2

s , s−1
s ], Is = ( s−1

s , 1], and define D̃i as

Pr
X̃i∼D̃i

[X̃i = j/s] = Pr
Xi∼Di

[Xi ∈ Ij ] , j = 1, . . . , s.

For the CMAB problem ([m],F , D,R), our algorithm “pretends” that the outcomes are drawn from
D̃ instead of D, by replacing any outcome x ∈ Ij by j

s (∀j ∈ [s]), and then applies SDCB to the
problem ([m],F , D̃, R). Since each D̃i has a known support { 1

s ,
2
s , . . . , 1}, the algorithm only needs

to maintain the number of occurrences of each support value in order to obtain the empirical CDF of
all the observed outcomes from arm i. Therefore, all the operations in a round can be done using
O(s) = O(

√
T ) time and space, and the total time and space used by Lazy-SDCB are O(T 3/2) and

O(
√
T ), respectively.

The discretization parameter s in Algorithm 2 depends on the time horizon T , which is why Algo-
rithm 2 has to know T in advance. We can use the doubling trick to avoid the dependency on T . We
present such an algorithm (without knowing T ) in Algorithm 3. It is easy to see that Algorithm 3 has
the same asymptotic time and space usages as Algorithm 2.

Regret Bounds. We show that both Algorithm 2 and Algorithm 3 achieve O(
√
T log T )

distribution-independent regret bounds. The full proofs are given in Appendix B. Recall that C is the
coefficient in the Lipschitz condition in Assumption 4.

Theorem 2. Suppose the time horizon T is known in advance. Then the α-approximation regret of
Algorithm 2 in T rounds is at most

93M
√
mKT lnT + 2CK

√
T +

(
π2

3
+ 1

)
αMm.

Proof Sketch. The regret consists of two parts: (i) the regret for the discretized CMAB problem
([m],F , D̃, R), and (ii) the error due to discretization. We directly apply Theorem 1 for the first
part. For the second part, a key step is to show |rD(S)− rD̃(S)| ≤ CK/s for all S ∈ F (see
Appendix B.1).

Theorem 3. For any time horizon T ≥ 2, the α-approximation regret of Algorithm 3 in T rounds is
at most

318M
√
mKT lnT + 7CK

√
T + 10αMm lnT.
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5 Applications

We describe the K-MAX problem and the class of expected utility maximization problems as
applications of our general CMAB framework.

The K-MAX Problem. In this problem, the player is allowed to select at most K arms from the
set of m arms in each round, and the reward is the maximum one among the outcomes from the
selected arms. In other words, the set of feasible super arms is F =

{
S ⊆ [m]

∣∣ |S| ≤ K}, and
the reward function is R(x, S) = maxi∈S xi. It is easy to verify that this reward function satisfies
Assumptions 2, 3 and 4 with M = C = 1.

Now we consider the corresponding offline K-MAX problem of selecting at most K arms from
m independent arms, with the largest expected reward. It can be implied by a result in [14] that
finding the exact optimal solution is NP-hard, so we resort to approximation algorithms. We can
show, using submodularity, that a simple greedy algorithm can achieve a (1− 1/e)-approximation.
Furthermore, we give the first PTAS for this problem. Our PTAS can be generalized to constraints
other than the cardinality constraint |S| ≤ K, including s-t simple paths, matchings, knapsacks, etc.
The algorithms and corresponding proofs are given in Appendix C.

Theorem 4. There exists a PTAS for the offline K-MAX problem. In other words, for any constant
ε > 0, there is a polynomial-time (1− ε)-approximation algorithm for the offline K-MAX problem.

We thus can apply our SDCB algorithm to the K-MAX bandit problem and obtain O(log T )

distribution-dependent and Õ(
√
T ) distribution-independent regret bounds according to Theorem 1,

or can apply Lazy-SDCB to get Õ(
√
T ) distribution-independent bound according to Theorem 2 or 3.

Streeter and Golovin [26] study an online submodular maximization problem in the oblivious
adversary model. In particular, their result can cover the stochastic K-MAX bandit problem as a
special case, and an O(K

√
mT logm) upper bound on the (1− 1/e)-regret can be shown. While

the techniques in [26] can only give a bound on the (1− 1/e)-approximation regret for K-MAX, we
can obtain the first Õ(

√
T ) bound on the (1− ε)-approximation regret for any constant ε > 0, using

our PTAS as the offline oracle. Even when we use the simple greedy algorithm as the oracle, our
experiments show that SDCB performs significantly better than the algorithm in [26] (see Appendix D).

Expected Utility Maximization. Our framework can also be applied to reward functions of the
form R(x, S) = u(

∑
i∈S xi), where u(·) is an increasing utility function. The corresponding offline

problem is to maximize the expected utility E[u(
∑
i∈S xi)] subject to a feasibility constraint S ∈ F .

Note that if u is nonlinear, the expected utility may not be a function of the means of the arms in
S. Following the celebrated von Neumann-Morgenstern expected utility theorem, nonlinear utility
functions have been extensively used to capture risk-averse or risk-prone behaviors in economics (see
e.g., [11]), while linear utility functions correspond to risk-neutrality.

Li and Deshpande [20] obtain a PTAS for the expected utility maximization (EUM) problem for
several classes of utility functions (including for example increasing concave functions which
typically indicate risk-averseness), and a large class of feasibility constraints (including cardinality
constraint, s-t simple paths, matchings, and knapsacks). Similar results for other utility functions and
feasibility constraints can be found in [27, 21, 4]. In the online problem, we can apply our algorithms,
using their PTASs as the offline oracle. Again, we can obtain the first tight regret bounds on the
(1− ε)-approximation regret for any ε > 0, for the class of online EUM problems.
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Appendix

A Missing Proofs from Section 3

A.1 Proof of Theorem 1

We present the proof of Theorem 1 in four steps. In Section A.1.1, we review the L1 distance
between two distributions and present a property of it. In Section A.1.2, we review the Dvoretzky-
Kiefer-Wolfowitz (DKW) inequality, which is a strong concentration result for empirical CDFs. In
Section A.1.3, we prove some key technical lemmas. Then we complete the proof of Theorem 1 in
Section A.1.4.

A.1.1 The L1 Distance between Two Probability Distributions

For simplicity, we only consider discrete distributions with finite supports – this will be enough for
our purpose.

Let P be a probability distribution. For any x, let P (x) = PrX∼P [X = x]. We write P = P1×P2×
· · · × Pn if the (multivariate) random variable X ∼ P can be written as X = (X1, X2, . . . , Xn),
where X1, . . . , Xn are mutually independent and Xi ∼ Pi (∀i ∈ [n]).

For two distributions P and Q, their L1 distance is defined as

L1(P,Q) =
∑
x

|P (x)−Q(x)|,

where the summation is taken over x ∈ supp(P ) ∪ supp(Q).

The L1 distance has the following property. It is a folklore result and we provide a proof for
completeness.
Lemma 1. Let P = P1×P2×· · ·×Pn andQ = Q1×Q2×· · ·×Qn be two probability distributions.
Then we have

L1(P,Q) ≤
n∑
i=1

L1(Pi, Qi). (1)

Proof. We prove (1) by induction on n.

When n = 2, we have

L1(P,Q) =
∑
x

∑
y

|P (x, y)−Q(x, y)|

=
∑
x

∑
y

|P1(x)P2(y)−Q1(x)Q2(y)|

≤
∑
x

∑
y

(|P1(x)P2(y)− P1(x)Q2(y)|+ |P1(x)Q2(y)−Q1(x)Q2(y)|)

=
∑
x

P1(x)
∑
y

|P2(y)−Q2(y)|+
∑
y

Q2(y)
∑
x

|P1(x)−Q1(x)|

= 1 · L1(P2, Q2) + 1 · L1(P1, Q1)

=

2∑
i=1

L1(Pi, Qi).

Here the summation is taken over x ∈ supp(P1) ∪ supp(Q1) and y ∈ supp(P2) ∪ supp(Q2).

Suppose (1) is proved for n = k − 1 (k ≥ 3). When n = k, using the results for n = k − 1 and
n = 2, we get

L1(P,Q) ≤
k−2∑
i=1

L1(Pi, Qi) + L1(Pk−1 × Pk, Qk−1 ×Qk)
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≤
k−2∑
i=1

L1(Pi, Qi) + L1(Pk−1, Qk−1) + L1(Pk, Qk)

=

k∑
i=1

L1(Pi, Qi).

This completes the proof.

A.1.2 The DKW Inequality

Consider a distribution D with CDF F (x). Let F̂n(x) be the empirical CDF of n i.i.d. samples
X1, . . . , Xn drawn from D, i.e., F̂n(x) = 1

n

∑n
i=1 1{Xi ≤ x} (x ∈ R).7 Then we have:

Lemma 2 (Dvoretzky-Kiefer-Wolfowitz inequality [10, 24]). For any ε > 0 and any n ∈ Z+, we
have

Pr

[
sup
x∈R

∣∣∣F̂n(x)− F (x)
∣∣∣ ≥ ε] ≤ 2e−2nε2 .

Note that for any fixed x ∈ R, from the Chernoff bound we have Pr
[∣∣∣F̂n(x)− F (x)

∣∣∣ ≥ ε] ≤
2e−2nε2 . The DKW inequality states a stronger guarantee that the Chernoff concentration holds
simultaneously for all x ∈ R.

A.1.3 Technical Lemmas

The following lemma describes some properties of the expected reward rP (S) = EX∼P [R(X,S)].

Lemma 3. Let P = P1 × · · · × Pm and P ′ = P ′1 × · · · × P ′m be two probability distributions over
[0, 1]m. Let Fi and F ′i be the CDFs of Pi and P ′i , respectively (i = 1, . . . ,m). Suppose each Pi
(i ∈ [m]) is a discrete distribution with finite support.

(i) If for any i ∈ [m], x ∈ [0, 1] we have F ′i (x) ≤ Fi(x), then for any super arm S ∈ F , we have

rP ′(S) ≥ rP (S).

(ii) If for any i ∈ [m], x ∈ [0, 1] we have Fi(x) − F ′i (x) ≤ Λi (Λi > 0), then for any super arm
S ∈ F , we have

rP ′(S)− rP (S) ≤ 2M
∑
i∈S

Λi.

Proof. It is easy to see why (i) is true. If we have F ′i (x) ≤ Fi(x) for all i ∈ [m] and x ∈ [0, 1], then
for all i, P ′i has first-order stochastic dominance over Pi. When we change the distribution from Pi
into P ′i , we are moving some probability mass from smaller values to larger values. Recall that the
reward function R(x, S) has a monotonicity property (Assumption 3): if x and x′ are two vectors in
[0, 1]m such that xi ≤ x′i for all i ∈ [m], then R(x, S) ≤ R(x′, S) for all S ∈ F . Therefore we have
rP (S) ≤ rP ′(S) for all S ∈ F .

Now we prove (ii). Without loss of generality, we assume S = {1, 2, . . . , n} (n ≤ m). Let
P ′′ = P ′′1 × · · · × P ′′m be a distribution over [0, 1]m such that the CDF of P ′′i is the following:

F ′′i (x) =

{
max{Fi(x)− Λi, 0}, 0 ≤ x < 1,

1, x = 1.
(2)

It is easy to see that F ′′i (x) ≤ F ′i (x) for all i ∈ [m] and x ∈ [0, 1]. Thus from the result in (i) we
have

rP ′(S) ≤ rP ′′(S). (3)

7We use 1{·} to denote the indicator function, i.e., 1{H} = 1 if an eventH happens, and 1{H} = 0 if it
does not happen.
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Let supp(Pi) = {vi,1, vi,2, . . . , vi,si} where 0 ≤ vi,1 < · · · < vi,si ≤ 1. Define PS = P1 × P2 ×
· · · × Pn, and define P ′S and P ′′S similarly. Recall that the reward function R(x, S) can be written as
RS(xS) = RS(x1, . . . , xn). Then we have

rP ′′(S)− rP (S)

=
∑

x1,...,xn

RS(x1, . . . , xn)P ′′S (x1, . . . , xn)−
∑

x1,...,xn

RS(x1, . . . , xn)PS(x1, . . . , xn)

=
∑

x1,...,xn

RS(x1, . . . , xn) · (P ′′S (x1, . . . , xn)− PS(x1, . . . , xn))

≤
∑

x1,...,xn

M · |P ′′S (x1, . . . , xn)− PS(x1, . . . , xn)|

=M · L1(P ′′S , PS),

where the summation is taken over xi ∈ {vi,1, . . . , vi,si} (∀i ∈ S). Then using Lemma 1 we obtain

rP ′′(S)− rP (S) ≤M ·
∑
i∈S

L1(P ′′i , Pi). (4)

Now we give an upper bound on L1(P ′′i , Pi) for each i. Let Fi,j = Fi(vi,j), F ′′i,j = F ′′i (vi,j), and
Fi,0 = F ′′i,0 = 0. We have

L1(P ′′i , Pi) =

si∑
j=1

|P ′′i (vi,j)− Pi(vi,j)|

=

si∑
j=1

∣∣(F ′′i,j − F ′′i,j−1)− (Fi,j − Fi,j−1)
∣∣

=

si∑
j=1

∣∣(Fi,j − F ′′i,j)− (Fi,j−1 − F ′′i,j−1)
∣∣ .

(5)

In fact, for all 1 ≤ j < si, we have Fi,j − F ′′i,j ≥ Fi,j−1 − F ′′i,j−1. To see this, consider two cases:

• If Fi,j < Λi, then we have Fi,j−1 ≤ Fi,j < Λi. By definition (2) we have F ′′i,j = F ′′i,j−1 =
0. Thus Fi,j − F ′′i,j = Fi,j ≥ Fi,j−1 = Fi,j−1 − F ′′i,j−1.

• If Fi,j ≥ Λi, then by definition (2) we have Fi,j − F ′′i,j = Λi ≥ Fi,j−1 − F ′′i,j−1.

Therefore (5) becomes

L1(P ′′i , Pi) =

si−1∑
j=1

(
(Fi,j − F ′′i,j)− (Fi,j−1 − F ′′i,j−1)

)
+
∣∣(1− 1)− (Fi,si−1 − F ′′i,si−1)

∣∣
= Fi,si−1 − F ′′i,si−1 +

∣∣Fi,si−1 − F ′′i,si−1

∣∣
= 2

(
Fi,si−1 − F ′′i,si−1

)
≤ 2Λi,

(6)

where the last inequality is due to (2).

We complete the proof of the lemma by combining (3), (4) and (6):

rP ′(S)− rP (S) ≤ rP ′′(S)− rP (S) ≤M ·
∑
i∈S

L1(P ′′i , Pi) ≤ 2M
∑
i∈S

Λi.

The following lemma is similar to Lemma 1 in [18]. We will use some additional notation:

• For t ≥ m + 1 and i ∈ [m], let Ti,t be the value of counter Ti right after the t-th round
of SDCB. In other words, Ti,t is the number of observed outcomes from arm i in the first t
rounds.
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• Let St be the super arm selected by SDCB in the t-th round.
Lemma 4. Define an event in each round t (m+ 1 ≤ t ≤ T ):

Ht =

{
0 < ∆St ≤ 4M ·

∑
i∈St

√
3 ln t

2Ti,t−1

}
. (7)

Then the α-approximation regret of SDCB in T rounds is at most

E

[
T∑

t=m+1

1{Ht}∆St

]
+

(
π2

3
+ 1

)
αMm.

Proof. Let Fi be the CDF of Di. Let F̂i,l be the empirical CDF of the first l observations from arm i.
For m+ 1 ≤ t ≤ T , define an event

Et =

{
there exists i ∈ [m] such that sup

x∈[0,1]

∣∣∣F̂i,Ti,t−1
(x)− Fi(x)

∣∣∣ ≥√ 3 ln t

2Ti,t−1

}
,

which means that the empirical CDF F̂i is not close enough to the true CDF Fi at the beginning of
the t-th round.

Recall that we have S∗ = argmaxS∈F{rD(S)} and ∆S = max{α · rD(S∗)− rD(S), 0} (S ∈ F).
We bound the α-approximation regret of SDCB as

RegSDCBD,α(T ) =

T∑
t=1

E [α · rD(S∗)− rD(St)] ≤
T∑
t=1

E [∆St
]

= E

[
m∑
t=1

∆St

]
+ E

[
T∑

t=m+1

1{Et}∆St

]
+ E

[
T∑

t=m+1

1{¬Et}∆St

]
,

(8)

where ¬Et is the complement of event Et.
We separately bound each term in (8).

(a) the first term

The first term in (8) can be trivially bounded as

E

[
m∑
t=1

∆St

]
≤

m∑
t=1

α · rD(S∗) ≤ m · αM. (9)

(b) the second term

By the DKW inequality we know that for any i ∈ [m], l ≥ 1, t ≥ m+ 1 we have

Pr

[
sup
x∈[0,1]

∣∣∣F̂i,l(x)− Fi(x)
∣∣∣ ≥√3 ln t

2l

]
≤ 2e−2l· 3 ln t

2l = 2e−3 ln t = 2t−3.

Therefore

E

[
T∑

t=m+1

1{Et}

]
≤

T∑
t=m+1

m∑
i=1

t−1∑
l=1

Pr

[∣∣∣F̂i,j,l − Fi,j∣∣∣ ≥√3 ln t

2l

]

≤
T∑

t=m+1

m∑
i=1

t−1∑
l=1

2t−3

≤ 2m

T∑
t=m+1

t−2

≤ π2

3
m,

13



and then the second term in (8) can be bounded as

E

[
T∑

t=m+1

1{Et}∆St

]
≤ π2

3
m · (α · rD(S∗)) ≤ π2

3
αMm. (10)

(c) the third term

We fix t > m and first assume ¬Et happens. Let ci =
√

3 ln t
2Ti,t−1

for each i ∈ [m]. Since ¬Et happens,
we have ∣∣∣F̂i,Ti,t−1

(x)− Fi(x)
∣∣∣ < ci ∀i ∈ [m], x ∈ [0, 1]. (11)

Recall that in round t of SDCB (Algorithm 1), the input to the oracle is D = D1 × · · · ×Dm, where
the CDF Fi of Di is

Fi(x) =

{
max{F̂i,Ti,t−1

(x)− ci, 0}, 0 ≤ x < 1,

1, x = 1.
(12)

From (11) and (12) we know that Fi(x) ≤ Fi(x) ≤ Fi(x) + 2ci for all i ∈ [m], x ∈ [0, 1]. Thus,
from Lemma 3 (i) we have

rD(S) ≤ rD(S) ∀S ∈ F , (13)
and from Lemma 3 (ii) we have

rD(S) ≤ rD(S) + 2M
∑
i∈S

2ci ∀S ∈ F . (14)

Also, from the fact that the algorithm chooses St in the t-th round, we have

rD(St) ≥ α ·max
S∈F
{rD(S)} ≥ α · rD(S∗). (15)

From (13), (14) and (15) we have

α · rD(S∗) ≤ α · rD(S∗) ≤ rD(St) ≤ rD(St) + 2M
∑
i∈St

2ci,

which implies
∆St
≤ 4M

∑
i∈St

ci.

Therefore, when ¬Et happens, we always have ∆St
≤ 4M

∑
i∈St

ci. In other words,

¬Et =⇒

{
∆St
≤ 4M

∑
i∈St

√
3 ln t

2Ti,t−1

}
.

This implies

{¬Et,∆St
> 0} =⇒

{
0 < ∆St

≤ 4M
∑
i∈St

√
3 ln t

2Ti,t−1

}
= Ht.

Hence, the third term in (8) can be bounded as

E

[
T∑

t=m+1

1{¬Et}∆St

]
= E

[
T∑

t=m+1

1{¬Et,∆St > 0}∆St

]
≤ E

[
T∑

t=m+1

1{Ht}∆St

]
. (16)

Finally, by combining (8), (9), (10) and (16) we have

RegSDCBD,α(T ) ≤ E

[
T∑

t=m+1

1{Ht}∆St

]
+

(
π2

3
+ 1

)
αMm,

completing the proof of the lemma.
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A.1.4 Finishing the Proof of Theorem 1

Lemma 4 is very similar to Lemma 1 in [18]. We now apply the counting argument in [18] to finish
the proof of Theorem 1.

From Lemma 4 we know that it remains to bound E
[∑T

t=m+1 1{Ht}∆St

]
, where Ht is defined

in (7).

Define two decreasing sequences of positive constants

1 = β0 >β1 > β2 > . . .

α1 > α2 > . . .

such that limk→∞ αk = limk→∞ βk = 0. We choose {αk} and {βk} as in Theorem 4 of [18], which
satisfy

√
6

∞∑
k=1

βk−1 − βk√
αk

≤ 1 (17)

and
∞∑
k=1

αk
βk

< 267. (18)

For t ∈ {m+ 1, . . . , T} and k ∈ Z+, let

mk,t =

{
αk

(
2MK
∆St

)2

lnT ∆St
> 0,

+∞ ∆St = 0,

and
Ak,t = {i ∈ St | Ti,t−1 ≤ mk,t}.

Then we define an event
Gk,t = {|Ak,t| ≥ βkK},

which means “in the t-th round, at least βkK arms in St had been observed at most mk,t times.”

Lemma 5. In the t-th round (m+ 1 ≤ t ≤ T ), if eventHt happens, then there exists k ∈ Z+ such
that event Gk,t happens.

Proof. Assume thatHt happens and that none of G1,t,G2,t, . . . happens. Then |Ak,t| < βkK for all
k ∈ Z+.

Let A0,t = St and Āk,t = St \Ak,t for k ∈ Z+∪{0}. It is easy to see Āk−1,t ⊆ Āk,t for all k ∈ Z+.
Note that limk→∞mk,t = 0. Thus there exists N ∈ Z+ such that Āk,t = St for all k ≥ N , and
then we have St =

⋃∞
k=1

(
Āk,t \ Āk−1,t

)
. Finally, note that for all i ∈ Āk,t, we have Ti,t−1 > mk,t.

Therefore∑
i∈St

1√
Ti,t−1

=

∞∑
k=1

∑
i∈Āk,t\Āk−1,t

1√
Ti,t−1

≤
∞∑
k=1

∑
i∈Āk,t\Āk−1,t

1
√
mk,t

=

∞∑
k=1

∣∣Āk,t \ Āk−1,t

∣∣
√
mk,t

=

∞∑
k=1

|Ak−1,t \Ak,t|√
mk,t

=

∞∑
k=1

|Ak−1,t| − |Ak,t|√
mk,t

=
|St|√
m1,t

+

∞∑
k=1

|Ak,t|
(

1
√
mk+1,t

− 1
√
mk,t

)

<
K
√
m1,t

+

∞∑
k=1

βkK

(
1

√
mk+1,t

− 1
√
mk,t

)

=

∞∑
k=1

(βk−1 − βk)K
√
mk,t

.
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Note that we assumeHt happens. Then we have

∆St
≤ 4M ·

∑
i∈St

√
3 ln t

2Ti,t−1
≤ 2M

√
6 lnT ·

∑
i∈St

1√
Ti,t−1

< 2M
√

6 lnT ·
∞∑
k=1

(βk−1 − βk)K
√
mk,t

=
√

6

∞∑
k=1

βk−1 − βk√
αk

·∆St
≤ ∆St

,

where the last inequality is due to (17). We reach a contradiction here. The proof of the lemma is
completed.

By Lemma 5 we have
T∑

t=m+1

1{Ht}∆St ≤
∞∑
k=1

T∑
t=m+1

1{Gk,t,∆St > 0}∆St .

For i ∈ [m], k ∈ Z+, t ∈ {m+ 1, . . . , T}, define an event

Gi,k,t = Gk,t ∧ {i ∈ St, Ti,t−1 ≤ mk,t}.
Then by the definitions of Gk,t and Gi,k,t we have

1{Gk,t,∆St > 0} ≤ 1

βkK

∑
i∈EB

1{Gi,k,t,∆St > 0}.

Therefore
T∑

t=m+1

1{Ht}∆St
≤
∑
i∈EB

∞∑
k=1

T∑
t=m+1

1{Gi,k,t,∆St
> 0} ∆St

βkK
.

For each arm i ∈ EB, suppose i is contained in Ni bad super arms SB
i,1, S

B
i,2, . . . , S

B
i,Ni

. Let
∆i,l = ∆SB

i,l
(l ∈ [Ni]). Without loss of generality, we assume ∆i,1 ≥ ∆i,2 ≥ . . . ≥ ∆i,Ni

. Note

that ∆i,Ni
= ∆i,min. For convenience, we also define ∆i,0 = +∞, i.e., αk

(
2MK
∆i,0

)2

= 0. Then we
have

T∑
t=m+1

1{Ht}∆St

≤
∑
i∈EB

∞∑
k=1

T∑
t=m+1

Ni∑
l=1

1{Gi,k,t, St = SB
i,l}

∆St

βkK

≤
∑
i∈EB

∞∑
k=1

T∑
t=m+1

Ni∑
l=1

1{Ti,t−1 ≤ mk,t, St = SB
i,l}

∆i,l

βkK

=
∑
i∈EB

∞∑
k=1

T∑
t=m+1

Ni∑
l=1

1

{
Ti,t−1 ≤ αk

(
2MK

∆i,l

)2

lnT, St = SB
i,l

}
∆i,l

βkK

=
∑
i∈EB

∞∑
k=1

T∑
t=m+1

Ni∑
l=1

l∑
j=1

1

{
αk

(
2MK

∆i,j−1

)2

lnT < Ti,t−1 ≤ αk
(

2MK

∆i,j

)2

lnT, St = SB
i,l

}
∆i,l

βkK

≤
∑
i∈EB

∞∑
k=1

T∑
t=m+1

Ni∑
l=1

l∑
j=1

1

{
αk

(
2MK

∆i,j−1

)2

lnT < Ti,t−1 ≤ αk
(

2MK

∆i,j

)2

lnT, St = SB
i,l

}
∆i,j

βkK

≤
∑
i∈EB

∞∑
k=1

T∑
t=m+1

Ni∑
l=1

Ni∑
j=1

1

{
αk

(
2MK

∆i,j−1

)2

lnT < Ti,t−1 ≤ αk
(

2MK

∆i,j

)2

lnT, St = SB
i,l

}
∆i,j

βkK

≤
∑
i∈EB

∞∑
k=1

T∑
t=m+1

Ni∑
j=1

1

{
αk

(
2MK

∆i,j−1

)2

lnT < Ti,t−1 ≤ αk
(

2MK

∆i,j

)2

lnT

}
∆i,j

βkK
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≤
∑
i∈EB

∞∑
k=1

Ni∑
j=1

(
αk

(
2MK

∆i,j

)2

lnT − αk
(

2MK

∆i,j−1

)2

lnT

)
∆i,j

βkK

=4M2K

( ∞∑
k=1

αk
βk

)
lnT ·

∑
i∈EB

Ni∑
j=1

(
1

∆2
i,j

− 1

∆2
i,j−1

)
∆i,j

≤1068M2K lnT ·
∑
i∈EB

Ni∑
j=1

(
1

∆2
i,j

− 1

∆2
i,j−1

)
∆i,j ,

where the last inequality is due to (18).

Finally, for each i ∈ EB we have

Ni∑
j=1

(
1

∆2
i,j

− 1

∆2
i,j−1

)
∆i,j =

1

∆i,Ni

+

Ni−1∑
j=1

1

∆2
i,j

(∆i,j −∆i,j+1)

≤ 1

∆i,Ni

+

∫ ∆i,1

∆i,Ni

1

x2
dx

=
2

∆i,Ni

− 1

∆i,1

<
2

∆i,min
.

It follows that
T∑

t=m+1

1{Ht}∆St
≤ 1068M2K lnT ·

∑
i∈EB

2

∆i,min
= M2K

∑
i∈EB

2136

∆i,min
lnT. (19)

Combining (19) with Lemma 4, the distribution-dependent regret bound in Theorem 1 is proved.

To prove the distribution-independent bound, we decompose
∑T
t=m+1 1{Ht}∆St into two parts:

T∑
t=m+1

1{Ht}∆St
=

T∑
t=m+1

1{Ht,∆St
≤ ε}∆St

+

T∑
t=m+1

1{Ht,∆St
> ε}∆St

≤ εT +

T∑
t=m+1

1{Ht,∆St > ε}∆St ,

(20)

where ε > 0 is a constant to be determined. The second term can be bounded in the same way as in
the proof of the distribution-dependent regret bound, except that we only consider the case ∆St

> ε.
Thus we can replace (19) by

T∑
t=m+1

1{Ht,∆St > ε}∆St ≤M2K
∑

i∈EB,∆i,min>ε

2136

∆i,min
lnT ≤M2Km

2136

ε
lnT. (21)

It follows that
T∑

t=m+1

1{Ht}∆St
≤ εT +M2Km

2136

ε
lnT.

Finally, letting ε =
√

2136M2Km lnT
T , we get

T∑
t=m+1

1{Ht}∆St
≤ 2
√

2136M2KmT lnT < 93M
√
mKT lnT .

Combining this with Lemma 4, we conclude the proof of the distribution-independent regret bound
in Theorem 1.
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Algorithm 4 CUCB [8, 18]
1: For each arm i, maintain: (i) µ̂i, the average of all observed outcomes from arm i so far, and (ii)
Ti, the number of observed outcomes from arm i so far.

2: // Initialization
3: for i = 1 to m do
4: // Action in the i-th round
5: Play a super arm Si that contains arm i, and update µ̂i and Ti.
6: end for

7: for t = m+ 1,m+ 2, . . . do
8: // Action in the t-th round
9: µ̄i ← min{µ̂i +

√
3 ln t
2Ti

, 1} ∀i ∈ [m]

10: Play the super arm St ← Oracle(µ̄), where µ̄ = (µ̄1, . . . , µ̄m).
11: Update µ̂i and Ti for all i ∈ St.
12: end for

A.2 Analysis of Our Algorithm in the Previous CMAB Framework

We now give an analysis of SDCB in the previous CMAB framework, following our discussion in
Section 3. We consider the case in which the expected reward only depends on the means of the
random variables. Namely, rD(S) only depends on µi’s (i ∈ S), where µi is arm i’s mean outcome.
In this case, we can rewrite rD(S) as rµ(S), where µ = (µ1, . . . , µm) is the vector of means. Note
that the offline computation oracle only needs a mean vector as input.

We no longer need the three assumptions (Assumptions 1-3) given in Section 2. In particular, we do
not require independence among outcome distributions of all arms (Assumption 1). Although we
cannot write D as D = D1 × · · · ×Dm, we still let Di be the outcome distribution of arm i. In this
case, Di is the marginal distribution of D in the i-th component.

We summarize the CUCB algorithm [8, 18] in Algorithm 4. It maintains the empirical mean µ̂i of the
outcomes from each arm i, and stores the number of observed outcomes from arm i in a variable Ti.
In each round, it calculates an upper confidence bound (UCB) µ̄i of µi, Then it uses the UCB vector
µ̄ as the input to the oracle, and plays the super arm output by the oracle. In the t-th round (t > m),
each UCB µ̄i has the key property that

µi ≤ µ̄i ≤ µi + 2

√
3 ln t

2Ti,t−1
(22)

holds with high probability. (Recall that Ti,t−1 is the value of Ti after t− 1 rounds.) To see this, note

that we have |µi − µ̂i| ≤
√

3 ln t
2Ti,t−1

with high probability (by Chernoff bound), and then (22) follows
from the definition of µ̄i in line 9 of Algorithm 4.

We prove that the same property as (22) also holds for SDCB. Consider a fixed t > m, and let
D = D1 × · · · ×Dm be the input to the oracle in the t-th round of SDCB. Let νi = EYi∼Di [Yi]. We
can think that SDCB uses the mean vector ν = (ν1, . . . , νm) as the input to the oracle used by CUCB.
We now show that for each i, we have

µi ≤ νi ≤ µi + 2

√
3 ln t

2Ti,t−1
(23)

with high probability.

To show (23), we first prove the following lemma.

Lemma 6. Let P and P ′ be two distributions over [0, 1] with CDFs F and F ′, respectively. Consider
two random variables Y ∼ P and Y ′ ∼ P ′.

(i) If for all x ∈ [0, 1] we have F ′(x) ≤ F (x), then we have E[Y ] ≤ E[Y ′].

(ii) If for all x ∈ [0, 1] we have F (x)− F ′(x) ≤ Λ (Λ > 0), then we have E[Y ′] ≤ E[Y ] + Λ.
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Proof. We have

E[Y ] =

∫ 1

0

x dF (x) = (xF (x))
∣∣1
0
−
∫ 1

0

F (x) dx = 1−
∫ 1

0

F (x) dx.

Similarly, we have

E[Y ′] = 1−
∫ 1

0

F ′(x) dx.

Then the lemma holds trivially.

Now we prove (23). According to the DKW inequality, with high probability we have

Fi(x)− 2

√
3 ln t

2Ti,t−1
≤ Fi(x) ≤ Fi(x) (24)

for all i ∈ [m] and x ∈ [0, 1], where Fi is the CDF of Di used in round t of SDCB, and Fi is
the CDF of Di. Suppose (24) holds for all i, x, then for any i, the two distributions Di and Di

satisfy the two conditions in Lemma 6, with Λ = 2
√

3 ln t
2Ti,t−1

; then from Lemma 6 we know that

µi ≤ νi ≤ µi + 2
√

3 ln t
2Ti,t−1

. Hence we have shown that (23) holds with high probability.

The fact that (23) holds with high probability means that the mean of Di is also a UCB of µi with the
same confidence as in CUCB. With this property, the analysis in [8, 18] can also be applied to SDCB,
resulting in exactly the same regret bounds.

B Missing Proofs from Section 4

B.1 Analysis of the Discretization Error

The following lemma gives an upper bound on the error due to discretization. Refer to Section 4 for
the definition of the discretized distribution D̃.

Lemma 7. For any S ∈ F , we have

|rD(S)− rD̃(S)| ≤ CK

s
.

To prove Lemma 7, we show a slightly more general lemma which gives an upper bound on the
discretization error of the expectation of a Lipschitz continuous function.

Lemma 8. Let g(x) be a Lipschitz continuous function on [0, 1]n such that for any x, x′ ∈ [0, 1]n,
we have |g(x)− g(x′)| ≤ C‖x− x′‖1, where ‖x− x′‖1 =

∑n
i=1 |xi − x′i|. Let P = P1 × · · · ×Pn

be a probability distribution over [0, 1]n. Define another distribution P̃ = P̃1× · · · × P̃n over [0, 1]n

as follows: each P̃i (i ∈ [n]) takes values in { 1
s ,

2
s , . . . , 1}, and

Pr
X̃i∼P̃i

[X̃i = j/s] = Pr
Xi∼Pi

[Xi ∈ Ij ] , j ∈ [s],

where I1 = [0, 1
s ], I2 = ( 1

s ,
2
s ], . . . , Is−1 = ( s−2

s , s−1
s ], Is = ( s−1

s , 1]. Then∣∣∣EX∼P [g(X)]− EX̃∼P̃ [g(X̃)]
∣∣∣ ≤ C · n

s
. (25)

Proof. Throughout the proof, we consider X = (X1, . . . , Xn) ∼ P and X̃ = (X̃1, . . . , X̃n) ∼ P̃ .

Let vj = j
s (j = 0, 1, . . . , s) and

pi,j = Pr[X̃i = vj ] = Pr[Xi ∈ Ij ] i ∈ [n], j ∈ [s].

We prove (25) by induction on n.
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(1) When n = 1, we have

E[g(X1)] =
∑

j∈[s],p1,j>0

p1,j · E
[
g(X1)

∣∣X1 ∈ Ij
]
. (26)

Since g is continuous, for each j ∈ [s] such that p1,j > 0, there exists ξj ∈ [vj−1, vj ] such that

E [g(X1)|X1 ∈ Ij ] = g(ξj)

From the Lipschitz continuity of g we have

|g(vj)− g(ξj)| ≤ C|vj − ξj | ≤ C|vj − vj−1| =
C

s
.

Hence

∣∣∣E[g(X1)]− E[g(X̃1)]
∣∣∣ =

∣∣∣∣∣∣
∑

j∈[s],p1,j>0

p1,j · E[g(X1)|X1 ∈ Ij ]−
∑

j∈[s],p1,j>0

p1,j · g(vj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j∈[s],p1,j>0

p1,j · g(ξj)−
∑

j∈[s],p1,j>0

p1,j · g(vj)

∣∣∣∣∣∣
≤

∑
j∈[s],p1,j>0

p1,j · |g(ξj)− g(vj)|

≤
∑

j∈[s],p1,j>0

p1,j ·
C

s

=
C

s
.

This proves (25) for n = 1.

(ii) Suppose (25) is correct for n = 1, 2, . . . , k − 1. Now we prove it for n = k (k ≥ 2).

We define two functions on [0, 1]k−1:

h(x1, . . . , xk−1) = EXk
[g(x1, . . . , xk−1, Xk)]

and

h̃(x1, . . . , xk−1) = EX̃k
[g(x1, . . . , xk−1, X̃k)].

For any fixed x1, . . . , xk−1 ∈ [0, 1], the function g(x1, . . . , xk−1, x) on x ∈ [0, 1] is Lipschitz
continuous. Therefore from the result for n = 1 we have

∣∣∣h(x1, . . . , xk−1)− h̃(x1, . . . , xk−1)
∣∣∣ ≤ C

s
∀x1, . . . , xk−1 ∈ [0, 1].
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Then we have∣∣∣E[g(X)]− E[g(X̃)]
∣∣∣

=
∣∣∣EX1,...,Xk−1

[E[g(X)|X1, . . . , Xk−1]]− E[g(X̃)]
∣∣∣

=
∣∣∣EX1,...,Xk−1

[h(X1, . . . , Xk−1)]− E[g(X̃)]
∣∣∣

≤
∣∣∣EX1,...,Xk−1

[h(X1, . . . , Xk−1)]− EX1,...,Xk−1
[h̃(X1, . . . , Xk−1)]

∣∣∣
+
∣∣∣EX1,...,Xk−1

[h̃(X1, . . . , Xk−1)]− E[g(X̃)]
∣∣∣

≤EX1,...,Xk−1

[∣∣∣h(X1, . . . , Xk−1)− h̃(X1, . . . , Xk−1)
∣∣∣]

+
∣∣∣EX1,...,Xk−1,X̃k

[g(X1, . . . , Xk−1, X̃k)]− E[g(X̃)]
∣∣∣

≤EX1,...,Xk−1

[
C

s

]
+
∣∣∣EX̃k

[
E[g(X1, . . . , Xk−1, X̃k)|X̃k]− E[g(X̃1, . . . , X̃k−1, X̃k)|X̃k]

]∣∣∣
≤ C

s
+ EX̃k

[∣∣∣E[g(X1, . . . , Xk−1, X̃k)|X̃k]− E[g(X̃1, . . . , X̃k−1, X̃k)|X̃k]
∣∣∣]

=
C

s
+

∑
j∈[s],pk,j>0

pk,j ·
∣∣∣E[g(X1, . . . , Xk−1, vj)]− E[g(X̃1, . . . , X̃k−1, vj)]

∣∣∣ .
(27)

For any j ∈ [s], the function g(x1, . . . , xk−1, vj) on (x1, . . . , xk−1) ∈ [0, 1]k−1 is Lipschitz contin-
uous. Then from the induction hypothesis at n = k − 1, we have∣∣∣E[g(X1, . . . , Xk−1, vj)]− E[g(X̃1, . . . , X̃k−1, vj)]

∣∣∣ ≤ C(k − 1)

s
∀j ∈ [s]. (28)

From (27) and (28) we have∣∣∣E[g(X)]− E[g(X̃)]
∣∣∣ ≤ C

s
+

∑
j∈[s],pk,j>0

pk,j ·
C(k − 1)

s

=
C

s
+
C(k − 1)

s

=
Ck

s
.

This concludes the proof for n = k.

Now we prove Lemma 7.

Proof of Lemma 7. We have

rD(S) = EX∼D[R(X,S)] = EX∼D[RS(XS)] = EXS∼DS
[RS(XS)],

where XS = (Xi)i∈S and DS = (Di)i∈S . Similarly, we have

rD̃(S) = EX̃S∼D̃S
[RS(X̃S)].

According to Assumption 4, the function RS defined on [0, 1]S is Lipschitz continuous. Then from
Lemma 8 we have

|rD(S)− rD̃(S)| =
∣∣∣EXS∼DS

[RS(XS)]− EX̃S∼D̃S
[RS(X̃S)]

∣∣∣ ≤ C · |S|
s
≤ C ·K

s
.

This completes the proof.
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B.2 Proof of Theorem 2

Proof of Theorem 2. Let S∗ = argmaxS∈F{rD(S)} and S̃∗ = argmaxS∈F{rD̃(S)} be the optimal
super arms in problems ([m],F , D,R) and ([m],F , D̃, R), respectively. Suppose Algorithm 2 selects
super arm St in the t-th round (1 ≤ t ≤ T ). Then its α-approximation regret is bounded as

RegAlg. 2
D,α (T )

=T · α · rD(S∗)−
T∑
t=1

E [rD(St)]

=T · α
(
rD(S∗)− rD̃(S̃∗)

)
+

T∑
t=1

E [rD̃(St)− rD(St)] +

(
T · α · rD̃(S̃∗)−

T∑
t=1

E [rD̃(St)]

)

≤T · α (rD(S∗)− rD̃(S∗)) +

T∑
t=1

E [rD̃(St)− rD(St)] + RegAlg. 1
D̃,α

(T ).

where the inequality is due to rD̃(S̃∗) ≥ rD̃(S∗).

Then from Lemma 7 and the distribution-independent bound in Theorem 1 we have

RegAlg. 2
D,α (T ) ≤ T · α · CK

s
+ T · CK

s
+ 93M

√
mKT lnT +

(
π2

3
+ 1

)
αMm

≤ 2 · CKT
s

+ 93M
√
mKT lnT +

(
π2

3
+ 1

)
αMm

≤ 93M
√
mKT lnT + 2CK

√
T +

(
π2

3
+ 1

)
αMm.

(29)

Here in the last two inequalities we have used α ≤ 1 and s = d
√
T e ≥

√
T . The proof is completed.

B.3 Proof of Theorem 3

Proof of Theorem 3. Let n = dlog2 T e. Then we have 2n−1 < T ≤ 2n.

If n ≤ q = dlog2me, then T ≤ 2m and the regret in T rounds is at most 2m ·αM . The regret bound
holds trivially.

Now we assume n ≥ q + 1. Using Theorem 2, we have

RegAlg. 3
D,α (T )

≤RegAlg. 3
D,α (2n)

=RegAlg. 2
D,α (2q) +

n−1∑
k=q

RegAlg. 2
D,α (2k)

≤RegAlg. 2
D,α (2m) +

n−1∑
k=q

RegAlg. 2
D,α (2k)

≤ 2m · αM +

n−1∑
k=q

(
93M

√
mK · 2k ln 2k + 2CK

√
2k +

(
π2

3
+ 1

)
αMm

)

≤ 2αMm+
(

93M
√
mK ln 2n−1 + 2CK

)
·
n−1∑
k=1

√
2k + (n− 1) ·

(
π2

3
+ 1

)
αMm

≤
(

93M
√
mK ln 2n−1 + 2CK

)
·
√

2n√
2− 1

+

(
π2

3
+ 3

)
(n− 1) · αMm
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Algorithm 5 Greedy-K-MAX
1: S ← ∅
2: for i = 1 to K do
3: k ← argmaxj∈[m]\S rD(S ∪ {j})
4: S ← S ∪ {k}
5: end for

Output: S

≤
(

93M
√
mK lnT + 2CK

)
·
√

2T√
2− 1

+

(
π2

3
+ 3

)
log2 T · αMm

≤ 318M
√
mKT lnT + 7CK

√
T + 10αMm lnT.

C The Offline K-MAX Problem

In this section, we consider the offline K-MAX problem. Recall that we have m independent random
variables {Xi}i∈[m]. Xi follows the discrete distribution Di with support {vi,1, . . . , vi,si} ⊂ [0, 1],
and D = D1 × · · · ×Dm is the joint distribution of X = (X1, . . . , Xm). Let pi,j = Pr[Xi = vi,j ].
Define rD(S) = EX∼D[maxi∈S Xi] and OPT = maxS:|S|=K rD(S). Our goal is to find (in
polynomial time) a subset S ⊆ [m] of cardinality K such that rD(S) ≥ α ·OPT (for certain constant
α).

First, we show that rD(S) can be calculated in polynomial time given any S ⊆ [m]. Let
S = {i1, i2, . . . , in}. Note that for X ∼ D, maxi∈S Xi can only take values in the set
V (S) =

⋃
i∈S supp(Di). For any v ∈ V (S), we have

Pr
X∼D

[
max
i∈S

Xi = v

]
= Pr

X∼D
[Xi1 = v,Xi2 ≤ v, . . . , Xin ≤ v]

+ Pr
X∼D

[Xi1 < v,Xi2 = v,Xi3 ≤ v, . . . ,Xin ≤ v]

+ · · ·
+ Pr
X∼D

[Xi1 < v, . . . ,Xin−1 < v,Xin = v].

(30)

Since Xi1 , . . . , Xin are mutually independent, each probability appearing in (30) can be calculated
in polynomial time. Hence for any v ∈ V (S), PrX∼D [maxi∈S Xi = v] can be calculated in
polynomial time using (30). Then rD(S) can be calculated by

rD(S) =
∑

v∈V (S)

v · Pr
X∼D

[
max
i∈S

Xi = v

]
in polynomial time.

C.1 (1− 1/e)-Approximation

We now show that a simple greedy algorithm (Algorithm 5) can find a (1−1/e)-approximate solution,
by proving the submodularity of rD(S). In fact, this is implied by a slightly more general result [13,
Lemma 3.2]. We provide a simple and direct proof for completeness.

Lemma 9. Algorithm 5 can output a subset S such that rD(S) ≥ (1− 1/e) · OPT.

Proof. For any x ∈ [0, 1]m, let fx(S) = maxi∈S xi be a set function defined on 2[m]. (Define
fx(∅) = 0.) We can verify that fx(S) is monotone and submodular:

• Monotonicity. For any A ⊆ B ⊆ [m], we have fx(A) = maxi∈A xi ≤ maxi∈B xi =
fx(B).
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• Submodularity. For any A ⊆ B ⊆ [m] and any k ∈ [m] \B, there are three cases (note that
maxi∈A xi ≤ maxi∈B xi):

(i) If xk ≤ maxi∈A xi, then fx(A ∪ {k})− fx(A) = 0 = fx(B ∪ {k})− fx(B).
(ii) If maxi∈A xi < xk ≤ maxi∈B xi, then fx(A ∪ {k})− fx(A) = xk −maxi∈A xi >

0 = fx(B ∪ {k})− fx(B).
(iii) If xk > maxi∈B xi, then fx(A ∪ {k}) − fx(A) = xk − maxi∈A xi ≥ xk −

maxi∈B xi = fx(B ∪ {k})− fx(B).

Therefore, we always have fx(A ∪ {k})− fx(A) ≥ fx(B ∪ {i})− fx(B). The function
fx(S) is submodular.

For any S ⊆ [m] we have

rD(S) =

s1∑
j1=1

s2∑
j2=1

· · ·
sm∑
jm=1

f(v1,j1 ,...,vm,jm )(S)

m∏
i=1

pi,ji .

Since each set function f(v1,j1 ,...,vm,jm )(S) is monotone and submodular, rD(S) is a convex combi-
nation of monotone submodular functions on 2[m]. Therefore, rD(S) is also a monotone submodular
function. According to the classical result on submodular maximization [25], the greedy algorithm
can find a (1− 1/e)-approximate solution to maxS⊆[m],|S|≤K{rD(S)}.

C.2 PTAS

Now we provide a PTAS for the K-MAX problem. In other words, we give an algorithm which,
given any fixed constant 0 < ε < 1/2, can find a solution S of cardinality |K| such that rD(S) ≥
(1− ε) · OPT in polynomial time.

We first provide an overview of our approach, and then spell out the details later.

1. (Discretization) We first transform each Xi to another discrete distribution X̃i, such that all
X̃i’s are supported on a set of size O(1/ε2).

2. (Computing signatures) For each Xi, we can compute from X̃i a signature Sig(Xi) which
is a vector of size O(1/ε2). For a set S, we define its signature Sig(S) to be

∑
i∈S Sig(Xi).

We show that if two sets S1 and S2 have the same signature, their objective values are close
(Lemma 12).

3. (Enumerating signatures) We enumerate all possible signatures (there are polynomial number
of them when treating ε as a constant) and try to find the one which is the signature of a set
of size K, and the objective value is maximized.

C.2.1 Discretization

We first describe the discretization step. We say that a random variable X follows the Bernoulli
distribution B(v, q) if X takes value v with probability q and value 0 with probability 1− q. For any
discrete distribution, we can rewrite it as the maximum of a set of Bernoulli distributions.
Definition 1. Let X be a discrete random variable with support {v1, v2, . . . , vs}(v1 < v2 < · · · <
vs) and Pr[X = vj ] = pj . We define a set of independent Bernoulli random variables {Zj}j∈[s] as

Zj ∼ B

(
vj ,

pj∑
j′≤j pj′

)
.

We call {Zj} the Bernoulli decomposition of Xi.
Lemma 10. For a discrete distribution X and its Bernoulli decomposition {Zj}, maxj{Zj} has the
same distribution with X .

Proof. We can easily see the following:

Pr[max
j
{Zj} = vi] = Pr[Zi = vi]

∏
i′>i

Pr[Zi′ = 0]
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Algorithm 6 Discretization
1: We first run Greedy-K-MAX to obtain a solution SG and let W = rD(SG).
2: for i = 1 to m do
3: Compute the Bernoulli decomposition {Zi,j}j of Xi.
4: for all Zi,j do
5: Create another Bernoulli variable Z̃i,j as follows:
6: if vi,j >W/ε then
7: Let Z̃i,j ∼ B

(
W
ε ,E[Zi,j ]

ε
W

)
(Case 1)

8: else
9: Let Z̃i,j = bZi,j

εW cεW (Case 2)
10: end if
11: end for
12: Let X̃i = maxj{Z̃ij}
13: end for

=
pi∑
i′≤i pi′

∏
h>i

(
1− ph∑

h′≤h ph′

)

=
pi∑
i′≤i pi′

∏
h>i

∑
h′≤h−1 ph′∑
h′≤h ph′

= pi.

Hence, Pr[maxj{Zj} = vi] = Pr[X = vi] for all i ∈ [s].

Now, we describe how to construct the discretization X̃i of Xi for all i ∈ [m]. The pseudocode can
be found in Algorithm 6. We first run Greedy-K-MAX to obtain a solution SG. Let W = rD(SG).
By Lemma 9, we know that W ≥ (1− 1/e)OPT. Then we compute the Bernoulli decomposition
{Zi,j}j of Xi. For each Zi,j , we create another Bernoulli variable Z̃i,j as follows: Recall that vi,j
is the nonzero possible value of Zij . We distinguish two cases. Case 1: If vi,j >W/ε, then we let
Z̃i,j ∼ B

(
W
ε ,E[Zi,j ]

ε
W

)
. It is easy to see that E[Z̃ij ] = E[Zij ]. Case 2: If vi,j ≤ W/ε, then we

let Z̃i,j = bZi,j

εW cεW. We note that more than one Z̃ij’s may have the same support, and all Z̃ij’s
are supported on DS = {0, εW, 2εW, . . . ,W/ε}. Finally, we let X̃i = maxj{Z̃ij}, which is the
discretization of Xi. Since X̃i is the maximum of a set of Bernoulli distributions, it is also a discrete
distribution supported on DS. We can easily compute Pr[X̃i = v] for any v ∈ DS.

Now, we show that the discretization only incurs a small loss in the objective value. The key is to
show that we do not lose much in the transformation from Zi,j’s to Z̃i,j’s. We prove a slightly more
general lemma as follows.
Lemma 11. Consider any set of Bernoulli variables {Zi ∼ B(ai, pi)}1≤i≤n. Assume that
E[maxi∈[n] Zi] < cW, where c is a constant such that cε < 1/2. For each Zi, we create a
Bernoulli variable Z̃i in the same way as Algorithm 6. Then the following holds:

E[maxZi] ≥ E[max Z̃i] ≥ E[maxZi]− (2c+ 1)εW.

Proof. Assume a1 is the largest among all ai’s.

If a1 <W/ε, all Z̃i are created in Case 2. In this case, it is obvious to have that

E[maxZi] ≥ E[max Z̃i] ≥ E[maxZi]− εW.

If a1 ≥ W/ε, the proof is slightly more complicated. Let L = {i | ai ≥ W/ε}. We prove by
induction on n (i.e., the number of the variables) the following more general claim:

E[maxZi] ≥ E[max Z̃i] ≥ E[maxZi]− εW − c
∑
i∈L

εaipi. (31)

Consider the base case n = 1. The lemma holds immediately in Case 1 as E[Z1] = E[Z̃1].
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Assuming the lemma is true for n = k, we show it also holds for n = k + 1. Recall we have
Z̃1 ∼ B(W

ε , εE[Z1]/W). Thus

E[max
i≥1

Zi]− E[max
i≥1

Z̃i] =a1p1 + (1− p1)E[max
i≥2

Zi]− a1p1 − (1− εE[Z1]/W)E[max
i≥2

Z̃i]

≥(1− p1)E[max
i≥2

Z̃i]− (1− εE[Z1]/W)E[max
i≥2

Z̃i]

=(εa1p1/W − p1)E[max
i≥2

Z̃i] ≥ 0,

where the first inequality follows from the induction hypothesis and the last from a1 ≥ W/ε. The
other direction can be seen as follows:

E[max
i≥1

Z̃i]− E[max
i≥1

Zi] =a1p1 + (1− εE[Z1]/W)E[max
i≥2

Z̃i]− (a1p1 + (1− p1)E[max
i≥2

Zi])

≥(1− εE[Z1]/W)E[max
i≥2

Zi]− (1− p1)E[max
i≥2

Zi]− εW − c
∑

i∈L\{1}

εaipi

≥(−εE[Z1]/W)E[max
i≥2

Zi]− εW − c
∑

i∈L\{1}

εaipi

≥− εW − c
∑
i∈L

εaipi,

where the last inequality holds since E[maxi≥2 Zi] ≤ cW. This finishes the proof of (31).

Now, we show that
∑
i∈L aipi ≤ 2W. This can be seen as follows. First, we can see from Markov

inequality that
Pr[maxZi >W/ε] ≤ cε.

Equivalently, we have
∏
i∈L(1− pi) ≥ 1− cε. Then, we can see that

W ≥
∑
i∈L

ai
∏
j<i

(1− pj)pi ≥ (1− cε)
∑
i∈L

aipi ≥
1

2

∑
i∈L

aipi.

Plugging this into (31), we prove the lemma.

Corollary 1. For any set S ⊆ [m], suppose E[maxi∈S Xi] < cW, where c is a constant such that
cε < 1/2. Then the following holds:

E[max
i∈S

Xi] ≥ E[max
i∈S

X̃i] ≥ E[max
i∈S

Xi]− (2c+ 1)εW.

C.2.2 Signatures

For each Xi, we have created its discretization X̃i = maxj{Z̃ij}. Since X̃i is a discrete distribution,
we can define its Bernoulli decomposition {Yij}j∈[h] where h = |DS|. Suppose Yij ∼ B(jεW, qij).
Now, we define the signature of Xi to be the vector Sig(Xi) = (Sig(Xi)1, . . . ,Sig(Xi)h) where

Sig(Xi)j = min

(⌊
− ln (1− qij)

ε4/m

⌋
,

⌊
ln(1/ε4)

ε4/m

⌋)
· ε

4

m
j ∈ [h].

For any set S, define its signature to be

Sig(S) =
∑
i∈S

Sig(Xi).

Define the set SG of signature vectors to be all nonnegative h-dimensional vectors, where each
coordinate is an integer multiple of ε4/m and at most m ln(1/ε4). Clearly, the size of SG is
O
((
mε−4 log(h/ε2)

)h−1
)

= Õ(mO(1/ε2)), which is polynomial for any fixed constant ε > 0

(recall h = |DS| = O(1/ε2)).

Now, we prove the following crucial lemma.
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Lemma 12. Consider two sets S1 and S2. If Sig(S1) = Sig(S2), the following holds:∣∣∣∣E[max
i∈S1

X̃i]− E[max
i∈S2

X̃i]

∣∣∣∣ ≤ O(ε)W.

Proof. Suppose {Yij}j∈[h] is the Bernoulli decomposition of X̃i. For any set S, we define Yk(S) =
maxi∈S Yik (it is the max of a set of Bernoulli distributions). It is not hard to see that Yk(S) has a
Bernoulli distribution B(kεW, pk(S)) with pk(S) = 1 −

∏
i∈S(1 − qik). As Sig(S1) = Sig(S2),

we have that
|pk(S1)− pk(S2)| = |

∏
i∈S1

(1− qik)−
∏
i∈S2

(1− qik)|

=

∣∣∣∣∣exp

(∑
i∈S1

ln(1− qik)

)
− exp

(∑
i∈S2

ln(1− qik)

)∣∣∣∣∣
≤ 2ε4 ∀k ∈ [h].

Noticing maxi∈S X̃i = maxk Yk(S), we have that∣∣∣∣E[max
i∈S1

X̃i]− E[max
i∈S2

X̃i]

∣∣∣∣ =

∣∣∣∣E[max
k

Yk(S1)]− E[max
k

Yk(S2)]

∣∣∣∣
≤W

ε

(∑
k

|pk(S1)− pk(S2)|

)
≤4hε3W = O(ε)W

where the first inequality follows from Lemma 1.

For any signature vector sg, we associate to it a set of random variables {Bk ∼ B(kεW, 1 −
e−sgk)}hk=1.8 Define the value of sg to be Val(sg) = E[maxk∈[h]Bk].

Corollary 2. For any feasible set S with Sig(S) = sg, |E[maxi∈S X̃i] − Val(sg)| ≤ O(ε)W.
Moreover, combining with Corollary 1, we have that |E[maxi∈S Xi]− Val(sg)| ≤ O(ε)W.

C.2.3 Enumerating Signatures

Our algorithm enumerates all signature vectors sg in SG. For each sg, we check if we can find a set S
of size K such that Sig(S) = sg. This can be done by a standard dynamic program in Õ(mO(1/ε2))
time as follows: We use Boolean variable R[i][j][sg′] to represent whether signature vector sg′ ∈ SG
can be dominated by i variables in set {X1, . . . , Xj}. The dynamic programming recursion is

R[i][j][sg′] = R[i][j − 1][sg′] ∧R[i− 1][j − 1][sg′ − Sig(Xj)].

If the answer is yes (i.e., we can find such S), we say sg is a feasible signature vector and S is a
candidate set. Finally, we pick the candidate set with maximum rD(S) and output the set. The
pseudocode can be found in Algorithm 7.

Now, we are ready to prove Theorem 4 by showing Algorithm 7 is a PTAS for the K-MAX problem.

Proof of Theorem 4. Suppose S∗ is the optimal solution and sg∗ is the signature of S∗. By Corol-
lary 2, we have that |OPT− Val(sg∗)| ≤ O(ε)W.

When Algorithm 7 is enumerating sg∗, it can find a set S such that Sig(S) = sg∗ (there exists at least
one such set since S∗ is one). Therefore, we can see that
|E[max

i∈S
Xi]− E[max

i∈S∗
Xi]| ≤ |Val(sg∗)−max

i∈S
Xi|+ |Val(sg∗)− E[max

i∈S∗
Xi]| ≤ O(ε)W.

Let U be the output of Algorithm 7. Since W ≥ (1 − 1/e)OPT, we have rD(U) ≥ rD(S) =
E[maxi∈S Xi] ≥ (1−O(ε))OPT.

The running time of the algorithm is polynomial for a fixed constant ε > 0, since the number of
signature vectors is polynomial and the dynamic program in each iteration also runs in polynomial
time. Hence, we have a PTAS for the K-MAX problem.

8 It is not hard to see the signature of maxk∈[h] Bk is exactly sg.
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Algorithm 7 PTAS-K-MAX
1: U ← ∅
2: for all signature vector sg ∈ SG do
3: Find a set S such that |S| = K and Sig(S) = sg
4: if rD(S) > rD(U) then
5: U ← S
6: end if
7: end for

Output: U

Algorithm 8 Online Submodular Maximization [26]
1: Let A1,A2, . . . ,AK be K instances of Exp3
2: for t = 1, 2, . . . do
3: // Action in the t-th round
4: for i = 1 to K do
5: Use Ai to select an arm at,i ∈ [m]
6: end for
7: Play the super arm St ←

⋃K
i=1{at,i}

8: for i = 1 to K do
9: Feed back ft(

⋃i
j=1{at,j})− ft(

⋃i−1
j=1{at,j}) as the payoff Ai receives for choosing at,i

10: end for
11: end for

Remark. In fact, Theorem 4 can be generalized in the following way: instead of the cardinality
constraint |S| ≤ K, we can have more general combinatorial constraint on the feasible set S. As
long as we can execute line 3 in Algorithm 7 in polynomial time, the analysis wound be the same.
Using the same trick as in [20], we can extend the dynamic program to a more general class of
combinatorial constraints where there is a pseudo-polynomial time for the exact version9 of the
deterministic version of the corresponding problem. The class of constraints includes s-t simple
paths, knapsacks, spanning trees, matchings, etc.

D Empirical Comparison between the SDCB Algorithm and Online
Submodular Maximization on the K-MAX Problem

We perform experiments to compare the SDCB algorithm with the online submodular maximization
algorithm in [26], on the K-MAX problem.

Online Submodular Maximization. First we briefly describe the online submodular maximization
problem considered in [26] and the algorithm therein. At the beginning, an oblivious adversary
sets a sequence of submodular functions f1, f2, . . . , fT on 2[m], where ft will be used to determine
the reward in the t-th round. In the t-th round, if the player selects a feasible super arm St, the
reward will be ft(St). This model covers the K-MAX problem as an instance: suppose X(t) =

(X
(t)
1 , . . . , X

(t)
m ) ∼ D is the outcome vector sampled in the t-th round, then the function ft(S) =

maxi∈S X
(t)
i is submodular and will determine the reward in the t-th round. We summarize the

algorithm in Algorithm 8. It uses K copies of the Exp3 algorithm (see [3] for an introduction). For
the K-MAX problem, Algorithm 8 achieves an O(K

√
mT logm) upper bound on the (1 − 1/e)-

approximation regret.

Setup. We set m = 9 and K = 3, i.e., there are 9 arms in total and it is allowed to select at
most 3 arms in each round. We compare the performance of SDCB/Lazy-SDCB and the online

9 In the exact version of a problem, we ask for a feasible set S such that total weight of S is exactly a given
target value B. For example, in the exact spanning tree problem where each edge has an integer weight, we
would like to find a spanning tree of weight exactly B.
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submodular maximization algorithm on four different distributions. Here we use the greedy algorithm
Greedy-K-MAX (Algorithm 5) as the offline oracle.

Let Xi ∼ Di (i = 1, . . . , 9). We consider the following distributions. For all of them, the optimal
super arm is S∗ = {1, 2, 3}.

• Distribution 1: All Di’s have the same support {0, 0.2, 0.4, 0.6, 0.8, 1}.
For i ∈ {1, 2, 3}, Pr[Xi = 0] = Pr[Xi = 0.2] = Pr[Xi = 0.4] = Pr[Xi = 0.6] =
Pr[Xi = 0.8] = 0.1 and Pr[Xi = 1] = 0.5.
For i ∈ {4, 5, 6, . . . , 9}, Pr[Xi = 0] = 0.5 and Pr[Xi = 0.2] = Pr[Xi = 0.4] = Pr[Xi =
0.6] = Pr[Xi = 0.8] = Pr[Xi = 1] = 0.1.

• Distribution 2: All Di’s have the same support {0, 0.2, 0.4, 0.6, 0.8, 1}.
For i ∈ {1, 2, 3}, Pr[Xi = 0] = Pr[Xi = 0.2] = Pr[Xi = 0.4] = Pr[Xi = 0.6] =
Pr[Xi = 0.8] = 0.1 and Pr[Xi = 1] = 0.5.
For i ∈ {4, 5, 6, . . . , 9}, Pr[Xi = 0] = Pr[Xi = 0.2] = Pr[Xi = 0.4] = Pr[Xi = 0.6] =
Pr[Xi = 0.8] = 0.12 and Pr[Xi = 1] = 0.4.
• Distribution 3: All Di’s have the same support {0, 0.2, 0.4, 0.6, 0.8, 1}.

For i ∈ {1, 2, 3}, Pr[Xi = 0] = Pr[Xi = 0.2] = Pr[Xi = 0.4] = Pr[Xi = 0.6] =
Pr[Xi = 0.8] = 0.1 and Pr[Xi = 1] = 0.5.
For i ∈ {4, 5, 6}, Pr[Xi = 0] = Pr[Xi = 0.2] = Pr[Xi = 0.4] = Pr[Xi = 0.6] =
Pr[Xi = 0.8] = 0.12 and Pr[Xi = 1] = 0.4.
For i ∈ {7, 8, 9}, Pr[Xi = 0] = Pr[Xi = 0.2] = Pr[Xi = 0.4] = Pr[Xi = 0.6] =
Pr[Xi = 0.8] = 0.16 and Pr[Xi = 1] = 0.2.
• Distribution 4: All Di’s are continuous distributions on [0, 1].

For i ∈ {1, 2, 3}, Di is the uniform distribution on [0, 1].
For i ∈ {4, 5, 6, . . . , 9}, the probability density function (PDF) of Xi is

f(x) =

{
1.2 x ∈ [0, 0.5],

0.8 x ∈ (0.5, 1].

These distributions represent several different scenarios. Distribution 1 is relatively “easy” because
the suboptimal arms 4-9’s distribution is far away from arms 1-3’s distribution, whereas distribution
2 is “hard” since the distribution of arms 4-9 is close to the distribution of arms 1-3. In distribution 3,
the distribution of arms 4-6 is close to the distribution of arms 1-3’s, while arms 7-9’s distribution
is further away. Distribution 4 is an example of a group of continuous distributions for which
Lazy-SDCB is more efficient than SDCB.

We use SDCB for distributions 1-3, and Lazy-SDCB (with known time horizon) for distribution 4.
Figure 1 shows the regrets of both SDCB and the online submodular maximization algorithm. We plot
the 1-approximation regrets instead of the (1− 1/e)-approximation regrets, since the greedy oracle
usually performs much better than its (1− 1/e)-approximation guarantee. We can see from Figure 1
that our algorithms achieve much lower regrets in all examples.
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Figure 1: Regrets of SDCB/Lazy-SDCB and Algorithm 8 on the K-MAX problem, for distributions
1-4. The regrets are averaged over 20 independent runs.
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