
Appendix

Details of the E-M algorithm

Let f(·) denote probability density functions in general. We aim to obtain the set of parameters
θ = {{At}Tt=1,Q0,Q, {σ2

i }
p
i=0} that maximizes the objective function log f({y(r)

t }
T,q
t=0,r=1;θ) +

log f(θ), where f(θ) denotes the prior on θ. In our case log f({y(r)
t }

T,q
t=0,r=1, {u

(r)
t }

T,q
t=0,r=1;θ)

is much easier to compute than log f({y(r)
t }

T,q
t=0,r=1;θ), and the E-M algorithm (1) utilizes this

property. Below, we briefly introduce how it works. Let θ̃ denote an estimate of θ. For a more
succinct notation, let u† def

= {u(r)
t }

T,q
t=0,r=1 and y† def

= {y(r)
t }

T,q
t=0,r=1. Let f̃(u†) = f(u†|y†; θ̃) be

the posterior distribution of u† conditioned on observations y†, based on the current estimate θ̃.

log f(y†;θ) + log f(θ)

=

∫
f̃(u†) log f(y†;θ)du† + log f(θ) = Ef̃ (log f(y

†;θ)) + log f(θ)

=Ef̃ (log
f(y†,u†;θ)

f(u†|y†;θ)
) + log f(θ)

=Ef̃ (log f(y
†,u†;θ)) + log f(θ)− Ef̃ (log f(u

†|y†;θ))

This also holds for θ = θ̃.

log f(y†; θ̃) + log f(θ̃) = Ef̃ (log f(y
†,u†; θ̃)) + log f(θ̃)− Ef̃ (log f̃(u

†))

Now consider the difference

(log f(y†;θ) + log f(θ))− (log f(y†; θ̃) + log f(θ̃)) (1)

=Ef̃ (log f(y
†,u†;θ)) + log f(θ) (2)

−Ef̃ (log f(y
†,u†; θ̃))− log f(θ̃) (3)

+Ef̃ (log
f̃(u†)

f(u†|y†;θ)
) (4)

In each iteration, given θ̃, we select the new θ that maximize the term (2). Because term (3) is fixed
given θ̃, and term (4) is the non-negative Kullback-Leibler distance between f̃(u†) and f(u†|y†;θ),
we are essentially maximizing a lower bound of the difference term (1). Therefore, when it converges,
term (4) goes to zero, and we reach a local maximum of the objective function.

In each iteration, there are two steps: an E-step to compute f̃ or the expression for term (2) given the
current θ̃, and an M-step to maximize the term (2) and update θ.

If we only have a prior on {At}Tt=1, (i.e., f(θ) = f({At}Tt=1) ∝ exp(−(λ0
∑T
t=1 ‖At‖2F +

λ1
∑T
t=2 ‖At −At−1‖2F))), then term (3) has the following form up to some constant

Ef̃ (log f(y
†,u†;θ)) + log f(θ) (5)

=− 1

2
(q log det(Q0) + Ef̃ (

q∑
r=1

u
(r)
0

′
Q−10 u

(r)
0) (6)

− 1

2
(qT log det(Q) + Ef̃ (

T∑
t=1

q∑
r=1

(u
(r)
t −Atu

(r)
t−1)

′Q−1(u
(r)
t −Atu

(r)
t−1)) + log f({At}Tt=1)

(7)

− 1

2
(q(T + 1) log det(R) + Ef̃ (

T∑
t=0

q∑
r=1

(y
(r)
t −Cu

(r)
t)′R−1(y

(r)
t −Cu

(r)
t)). (8)

where ′ denotes the transpose of a column vector or a matrix, and det(·) denotes the determinant of a
square matrix. To evaluate (6), (7), and (8), we need to compute the posterior mean and covariance of

1

ut, as well as the cross covariance of ut and ut−1 at each t for each trial (r = 1, 2, · · · , q) given θ̃:

u
(r)
t|T

def
= E(u(r)

t |{y(r)
τ }Tτ=0),

P
(r)
t|T

def
= cov(u(r)

t |{y(r)
τ }Tτ=0),

P
(r)
(t,t−1)|T

def
= cov(u(r)

t ,u
(r)
t−1|{y(r)

τ }Tτ=0)

To compute these values, we use the forward and backward steps in the Kalman smoothing algorithm
(1). For simplicity, we drop the superscript (r) and the ·̃ symbol on θ̃. We define the following terms

ut|s
def
= E(ut|y0,y1, · · · ,ys),

P t|s
def
= cov(ut|y0.y1, · · · ,ys),

P (t,t−1)|s
def
= cov(ut,ut−1|y0,y1, · · · ,ys).

In the forward step, we set u0|0 = Q0C
′(CQ0C

′ +R)−1y0 and P 0|0 = Q0 −Q0C
′(CQ0C

′ +

R)−1CQ0. For t = 1, 2, · · · , T , we have

ut|(t−1) = Atu(t−1)|(t−1)

P t|(t−1) = AtP (t−1)|(t−1)A
′
t +Q

Kt
def
= P t|(t−1)C

′(CP t|(t−1)C
′ +R)−1

ut|t = ut|(t−1) +Kt(yt −Cut|(t−1))
P t|t = P t|(t−1) −KtCP t|(t−1)

In the backward step, for t = T, T − 1, · · · , 1

Ht−1
def
= P (t−1)|(t−1)A

′
tP
−1
t|(t−1)

u(t−1)|T = u(t−1)|(t−1) +Ht−1(ut|T −Atu(t−1)|(t−1))

P (t−1)|T = P (t−1)|(t−1) +Ht−1(P t|T − P t|(t−1))H
′
t−1

and with P (T,T−1)|T = (I −KTC)ATP (T−1)|(T−1), for t = T − 1, T − 2, · · · , 2, we have

P (t−1,t−2)|T = P (t−1)|(t−1)H
′
t−2 +Ht−1(P (t,t−1)|T −AtP (t−1)|(t−1))H

′
t−2.

If we denote the terms (6), (7), and (8) with L1, L2 and L3 respectively, then using the posterior
statistics above, we have

L1 = q log det(Q0) + Ef̃ (
q∑
r=1

(u
(r)
0

′
Q−10 u

(r)
0)) = q log det(Q0) + tr(Q−10 B0)

L2 = qT log det(Q) + Ef̃ (
T∑
t=1

q∑
r=1

(u
(r)
t −Atu

(r)
t−1)

′Q−1(u
(r)
t −Atu

(r)
t−1))]− log f({At}Tt=1)

= qT log det(Q) + tr(Q−1
T∑
t=1

(B1t −AtB
′
2t −B2tA

′
t +AtB3tA

′
t)) + λ0

T∑
t=1

‖At‖2F + λ1

T∑
t=2

‖At −At−1‖2F

L3 = q(T + 1) log det(R) + Ef̃ (
T∑
t=0

q∑
r=1

(yt(r)−Cu
(r)
t)′R−1(yt(r)−Cu

(r)
t)′)

= q(T + 1) log det(R) + tr(R−1B4)

2

where

B0 =

q∑
r=1

(P
(r)
0|T + u

(r)
0|T (u

(r)
0|T)

′)

B1t =

q∑
r=1

(P
(r)
t|T + u

(r)
t|T (u

(r)
t|T)
′)

B2t =

q∑
r=1

(P
(r)
(t,t−1)|T + u

(r)
t|T (u

(r)
(t−1)|T)

′)

B3t =

q∑
r=1

(P
(r)
(t−1)|T + u

(r)
(t−1)|T (u

(r)
(t−1)|T)

′)

B4 =

q∑
r=1

T∑
t=0

[(y
(r)
t −Cu

(r)
t|T)(y

(r)
t −Cu

(r)
t|T)
′ +CP

(r)
t|TC

′)]

In the M-step, we optimize for the three terms separately. When an analytical solu-
tion is difficult to compute, we use gradient descent with back-tracking line search (2)
(e.g., minimizing g = L2 and g = L3, where x = {At}Tt=1 or x = {σi}pi=0.

Data: function g, initial value x0, β ∈ (0, 1)
Result: x that minimizes g(x)
initialization: x← x0;
while the difference of x in two consecutive iterations is not small enough do

τ ← 1;
compute the gradient∇g(x);
while g(x− τ∇g(x)) > g(x)− τ/2‖∇g(x)‖22 do

τ ← βτ ;
end
x← x− τ∇g(x);

end
Algorithm 1: Backtracking with line-search

Solving for dynamic connectivity parameters when state-variables are observed

Given {u(r)
t }

T,q
t=0,r=1, we solve forQ0,Q and {At}Tt=1 by maximizing the log-likelihood plus the

logarithm of the prior, which is equivalent to minimizing

− log f({u(r)
t }

T,q
t=0,r=1)− log f({At}Tt=1)

∝q log det(Q0) + tr(Q−10

q∑
r=1

u
(r)
0 u

(r)
0

′
)

+qT log det(Q) + tr(Q−1
T∑
t=1

q∑
r=1

(u
(r)
t −Atu

(r)
t−1)(u

(r)
t −Atu

(r)
t−1)

′)

+λ0

T∑
t=1

‖At‖2F + λ1

T∑
t=2

‖At −At−1‖2F

where the optimization procedure is similar to that in the M-step. Q0 has an analytical solution
Q0 ← (1/q)

∑q
r=1 u

(r)
0 (u

(r)
0)′, and {At}Tt=1 andQ can be updated in alternations. Given {At}Tt=1,

Q has an analytical solution Q ← 1/(qT)
∑T
t=1

∑q
r=1(u

(r)
t − Atu

(r)
t−1))(u

(r)
t − Atu

(r)
t−1)

′, and
givenQ, {At}Tt=1 can be solved by gradient descent with backtracking line search, where the gradient
is

2Q−1(−
q∑
r=1

u
(r)
t (u

(r)
t−1)

′ +At

q∑
r=1

u
(r)
t−1(u

(r)
t−1)

′) + 2Dt

3

and

Dt =

{
λ1(2At −At+1 −At−1) + λ0At for t = 2, · · · , T − 1;
λ1(A1 −A2) + λ0A1 for t = 1;
λ1(AT −AT−1) + λ0AT for t = T ;

Computing the spatio-temporal covariance of the ROI mean activity and evaluating the
marginal log-likelihood of sensor data

According to the auto-regressive model, given {At}Tt=1,Q0,Q, we have

ut = Atut−1 + εt = (

1∏
τ=t

Aτ)u0 + εt +

t−1∑
j=1

(

t−j+1∏
τ=t

Aτ)εt−j

and the marginal covariance of ut for t = 1, · · · , T is

cov(ut) = (

1∏
τ=t

Aτ)Q0(

1∏
τ=t

Aτ)
′ +Q+

t−1∑
i=1

(

t−j+1∏
τ=t

Aτ)Q(

t−j+1∏
τ=t

Aτ)
′

where the in the product
∏t−j+1
τ=t , τ decreases from t to t−j+1. To compute the marginal covariance,

it is convenient to first compute matrices Ãj,k =
∏j
τ=kAτ , j ≤ k, and then we have

cov(ut) = Ã1,tQ0Ã
′
1,t +Q+

t−1∑
j=1

Ã(t−j+1),tQÃ
′
(t−j+1),t.

Let Up×(T+1) = [u0,u1, · · · ,uT] (where ut is of size p× 1); let vec(U) be the concatenation of
the columns of U . Let the p(T + 1)× p(T + 1) matrix Σ denote the covariance matrix of (vec(U)).
This covariance can be computed as

Σ[tp+ 1 : (t+ 1)p, (t+ h)p+ 1 : (t+ h+ 1)p]

=cov(ut,ut+h)
=cov(ut,At+hAt+h−1 · · ·At+1ut)

=cov(ut)(
t+1∏

τ=t+h

Aτ)
′

=cov(ut)Ã
′
t+1,t+h

where by Σ[tp+ 1 : (t+ 1)p, (t+ h)p+ 1 : (t+ h+ 1)p], we mean the sub-matrix composed of
the consecutive rows from tp + 1 to (t + 1)p and the consecutive columns from (t + h)p + 1 to
(t+ h+ 1)p (indices are 1-based). If needed, we can also compute the marginal correlation between
the mean of i1th ROI at time t1 and the mean of i2th ROI at time t2:

correlation(ut1 [i1],ut2 [i2]) =
Σ[t1p+ i1, t2p+ i2]√

Σ[t1p+ i1, t1p+ i1]Σ[t2p+ i2, t2p+ i2])
(9)

Next, we discuss how to evaluate the objective function that contains the marginal likelihood of the
observed multi-trial sensor data and a prior term for the parameters (i.e., log f({y(r)

t }
T,q
t=0,r=1) +

log f(θ)). Since log f(θ) is easy to compute, we mainly focus on evaluating− log f({y(r)
t }

T,q
t=0,r=1).

Let the n× (T + 1) matrix Y = (y0,y1, · · · ,yT) denote the sensor time series in an arbitrary trial.
Let vec(Y) be a vector obtained by concatenating the columns in Y .

Let C̃ be an nT × pT block-diagonal matrix, where C̃[tn+1 : (t+1)n, tp+1 : (t+1)p] = C, for
t = 0, 1, · · · , T ; C̃[tn+1 : (t+1)n, tp+1 : (t+1)p] denotes the intersection of the sub-rows (rows
tn+1 to (t+1)n) and the sub-columns (columns tp+1 to (t+1)p). Similarly, let R̃ be an nT ×nT
block diagonal matrix, where R̃[tn + 1 : (t + 1)n, tn + 1 : (t + 1)n] = R, for t = 0, 1, · · · , T .
Then we have

cov(vec(Y)) = C̃ΣC̃
′
+ R̃

4

and

− log f({y(r)
t }

T,q
t=0,r=1) ∝ q log det(cov(vec(Y))) +

q∑
r=1

tr(cov(vec(Y))−1vec(Y (r))vec(Y (r))′)

+ some constant irrelevant to the parameters

We use the following equations to facilitate the computation

cov(vec(Y))−1 = R̃
−1 − R̃−1C̃(Σ−1 + C̃

′
R̃
−1
C̃)−1C̃

′
R̃
−1

log det(cov(vec(Y))) = log det(Σ−1 + C̃
′
R̃
−1
C̃) + log det(Σ) + log det(R̃)

Estimating the source space activity

Estimating the source space activity J t is not our primary goal in this model. However, we can
still estimate J t once the ROI means ut is estimated in the end of the E-M algorithm. Given the
hierarchical model below

J t|ut ∼ N (Lut,QJ)

yt|J t ∼ N (GJ t,Qe)

we have

J t|(ut,yt) ∼ N
(
(G′Q−1e G+Q−1J)−1(G′Q−1e yt +Q

−1
J Lut), (G′Q−1e G+Q−1J)−1

)
(10)

Given an estimate of ut, which we denote by ût, we can estimate J t by the mean term in Equation 10,

Ĵ t = (G′Q−1e G+ Q̂J

−1
)−1(G′Q−1e yt + Q̂J

−1
Lût)

where Q̂J is based on the estimations of σ2
i s. Note that to make the notation succinct, we have

omitted the trial index (r). But such an estimate step can easily be done for each time point t and
each trial.

Additional details about the simulations

In the simulations, the bilateral pericalcarine sulci and the parahippocampal gyri were automatically
labeled by the Freesurfer software (3) according to the anatomy. With p = 2 ROIs, T = 20 time
points and q = 200 trials, we had a relatively large number of observations. Therefore, in the prior
of {At}Tt=1, we preselected λ0 = 0 and λ1 = 0.1, expecting that these values only added minimal
regularization. In practice, these values can be selected as the ones that maximize the cross-validated
log-likelihood of the sensor data. When using the posterior estimates of ut to predict yt and quantify
how much variance of the sensor data was explained by the state-variables, we observed about 5.95%
in our simulations when a = 2 and 10.84% when a = 5.

It is worth noting that the in the two-step MNE method, although the estimated ut could be temporally
correlated with the true ut in the simulations, the scale was much smaller. For example, Figure 1a
shows the true ut (blue) in one trial, one ROI (ROI 2), and one simulation (α = 5), as well as the
estimated ut in the two-step MNE method (red), and the posterior estimate of ut by the state-space
model (green). The one from the two-step MNE method was close to zero. This could be due to the
shrinkage effect of the L2 penalty with a relatively large penalization parameter λ. However, using a
smaller λ resulted in extremely noisy estimations of ut, which were not correlated with the true ut.

Although the auto-regressive (AR) coefficients (Ats) should not be very sensitive to the scales of ut,
when the scaling is different for each ROI, the off-diagonal entries might be affected. In contrast, the
diagonal entries, which describe the dependence of the ROI activity on the one-step-back history of
itself, are unlikely to be affected by the scales. To give the two-step MNE method a chance to correct
for scaling for the off-diagonal entries, we also computed a different measurement of the relative
error. LetAt denote the true AR coefficients. For each pair of ROIs, (i, j), we multiply the estimates
(Ât) with a scalar α, such that

∑T
t=1(At[i, j]− αÂt[i, j])

2 was minimized, and then we defined the
relative error as √√√√∑T

t=1(At[i, j]− αÂt[i, j])2∑T
t=1(At[i, j])2

5

We took the average of the relative error after scaling for the off-diagonal (i, j) pairs (i.e. i 6= j)
(Figure 1b); in the results, we still observed that the state-space model yielded smaller errors than the
two-step MNE method.

0 5 10 15 20

time index

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

u
 i
n
 2

t
h
 R

O
I

1e−8

truth

ss

mne

(a)

2 5
a

−1.0

−0.5

0.0

0.5

1.0

A
 s

ca
le

 o
ff

 d
ia

g

ss

mne

diff ss-mne

(b)

Figure 1: (a), Visualization of ut in ROI 2 in one trial from a simulation. (The legends: truth (blue),
true values; ss (green), estimates by the state-space model; mne (red), estimates by the two-step MNE
method.) (b) Relative error of AR coefficients after scaling, averaged within off-diagonal entries by
the state-space models and the two-step MNE method, as well as the paired difference. The error
bars show standard errors across individual simulations.

Additional details about the empirical MEG data

Data in the MEG experiment was collected using a 306-channel whole-head MEG system (Elekta
Neuromag, Helsinki, Finland) at the Brain Mapping Center at the University of Pittsburgh. During the
experiment, a human participant processed naturalistic photographs of scenes. In each trial, while the
participant fixated their eyes on a “+” symbol in the center of a gray screen, one image centered in the
screen appeared and lasted for 200 ms. Afterwards, the screen switched back to the “+” symbol on
the gray background. The participant was instructed to press a button if the image was identical to the
previous one. In the entire session, 362 images of scenes were used and each image was repeated 5
times (excluding the consecutive repetitions) in a pseudo-random order. The participant gave written
informed consent and was financially compensated. All procedures followed the principles in the
Declaration of Helsinki and were approved by the Institutional Review Boards of Carnegie Mellon
University and the University of Pittsburgh.

The MEG recordings were acquired at 1 kHz, high-pass filtered at 0.1 Hz and low-pass filtered at
330 Hz. In the preprocessing, the raw data was filtered with a 1-110 Hz bandpass filter, and then
with a notch filter at 60 Hz to reduce the power-line interference; independent component analysis
(ICA) was used to decompose the MEG data into multiple components, and the components that
were highly correlated with eye blinks and heartbeats were removed. After the preprocessing, the
MEG data was cropped from -140 ms to 960 ms for each trial, where 0 is the stimulus onset. A
signal space projection (SSP) was applied to the data; the SSP constructed a low-dimensional linear
subspace characterizing the empty room noise (via principal component analysis), and removed from
the experimental MEG recordings the projection onto this subspace, so that neural signals orthogonal
to the principal components of empty room noise remained. For each sensor, a baseline temporal
mean within -140 ms to -40 ms was subtracted for all time points, separately for each trial. The data
was further down-sampled at 100 Hz (i.e., one time point for every 10 ms). For each image, data
across 5 repetitions were averaged, and further cropped from −100 to 700 ms. Finally, the sample
mean of the n × (T + 1) sensor data across the q = 362 observations were subtracted off. The
preprocessing, the source-space definition, the forward modeling, and the minimum-norm estimates
were done in the MNE (MNE-python) software (4; 5).

References
[1] R. H. Shumway and D. S. Stoffer. An approach to time series smoothing and forecasting using

the EM algorithm. Journal of time series analysis, 3(4):253–264, 1982.

6

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New York,
NY, USA, 2004.

[3] B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. Van Der Kouwe,
R. Killiany, D. Kennedy, S. Klaveness, et al. Whole brain segmentation: automated labeling of
neuroanatomical structures in the human brain. Neuron, 33(3):341–355, 2002.

[4] A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, R. Goj,
M. Jas, T. Brooks, L. Parkkonen, et al. Meg and eeg data analysis with mne-python. Frontiers in
neuroscience, 7:267, 2013.

[5] A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, L. Parkkonen,
and M. S. Hämäläinen. MNE software for processing MEG and EEG data. Neuroimage,
86:446–460, 2014.

7

