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Abstract

Deep neural networks continue to advance the state-of-the-art of image recog-
nition tasks with various methods. However, applications of these methods to
multimodality remain limited. We present Multimodal Residual Networks (MRN)
for the multimodal residual learning of visual question-answering, which extends
the idea of the deep residual learning. Unlike the deep residual learning, MRN
effectively learns the joint representation from vision and language information.
The main idea is to use element-wise multiplication for the joint residual mappings
exploiting the residual learning of the attentional models in recent studies. Var-
ious alternative models introduced by multimodality are explored based on our
study. We achieve the state-of-the-art results on the Visual QA dataset for both
Open-Ended and Multiple-Choice tasks. Moreover, we introduce a novel method
to visualize the attention effect of the joint representations for each learning block
using back-propagation algorithm, even though the visual features are collapsed
without spatial information.

1 Introduction

Visual question-answering tasks provide a testbed to cultivate the synergistic proposals which handle
multidisciplinary problems of vision, language and integrated reasoning. So, the visual question-
answering tasks let the studies in artificial intelligence go beyond narrow tasks. Furthermore, it may
help to solve the real world problems which need the integrated reasoning of vision and language.

Deep residual learning [6] not only advances the studies in object recognition problems, but also gives
a general framework for deep neural networks. The existing non-linear layers of neural networks
serve to fit another mapping of F(x), which is the residual of identity mapping x. So, with the
shortcut connection of identity mapping x, the whole module of layers fit F(x) + x for the desired
underlying mappingH(x). In other words, the only residual mapping F(x), defined byH(x)− x, is
learned with non-linear layers. In this way, very deep neural networks effectively learn representations
in an efficient manner.

Many attentional models utilize the residual learning to deal with various tasks, including textual
reasoning [25, 21] and visual question-answering [29]. They use an attentional mechanism to handle
two different information sources, a query and the context of the query (e.g. contextual sentences
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Figure 1: Inference flow of Multimodal Residual Net-
works (MRN). Using our visualization method, the at-
tention effects are shown as a sequence of three images.
More examples are shown in Figure 4.
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Figure 2: A schematic diagram of
Multimodal Residual Networks with
three-block layers.

or an image). The query is added to the output of the attentional module, that makes the attentional
module learn the residual of query mapping as in deep residual learning.

In this paper, we propose Multimodal Residual Networks (MRN) to learn multimodality of visual
question-answering tasks exploiting the excellence of deep residual learning [6]. MRN inherently
uses shortcuts and residual mappings for multimodality. We explore various models upon the
choice of the shortcuts for each modality, and the joint residual mappings based on element-wise
multiplication, which effectively learn the multimodal representations not using explicit attention
parameters. Figure 1 shows inference flow of the proposed MRN.

Additionally, we propose a novel method to visualize the attention effects of each joint residual
mapping. The visualization method uses back-propagation algorithm [22] for the difference between
the visual input and the output of the joint residual mapping. The difference is back-propagated up
to an input image. Since we use the pretrained visual features, the pretrained CNN is augmented
for visualization. Based on this, we argue that MRN is an implicit attention model without explicit
attention parameters.

Our contribution is three-fold: 1) extending the deep residual learning for visual question-answering
tasks. This method utilizes multimodal inputs, and allows a deeper network structure, 2) achieving the
state-of-the-art results on the Visual QA dataset for both Open-Ended and Multiple-Choice tasks, and
finally, 3) introducing a novel method to visualize spatial attention effect of joint residual mappings
from the collapsed visual feature using back-propagation.

2 Related Works

2.1 Deep Residual Learning

Deep residual learning [6] allows neural networks to have a deeper structure of over-100 layers. The
very deep neural networks are usually hard to be optimized even though the well-known activation
functions and regularization techniques are applied [17, 7, 9]. This method consistently shows
state-of-the-art results across multiple visual tasks including image classification, object detection,
localization and segmentation.

This idea assumes that a block of deep neural networks forming a non-linear mapping F(x) may
paradoxically fail to fit into an identity mapping. To resolve this, the deep residual learning adds
x to F(x) as a shortcut connection. With this idea, the non-linear mapping F(x) can focus on the
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residual of the shortcut mapping x. Therefore, a learning block is defined as:
y = F(x) + x (1)

where x and y are the input and output of the learning block, respectively.

2.2 Stacked Attention Networks

Stacked Attention Networks (SAN) [29] explicitly learns the weights of visual feature vectors to
select a small portion of visual information for a given question vector. Furthermore, this model stacks
the attention networks for multi-step reasoning narrowing down the selection of visual information.
For example, if the attention networks are asked to find a pink handbag in a scene, they try to find
pink objects first, and then, narrow down to the pink handbag.

For the attention networks, the weights are learned by a question vector and the corresponding
visual feature vectors. These weights are used for the linear combination of multiple visual feature
vectors indexing spatial information. Through this, SAN successfully selects a portion of visual
information. Finally, an addition of the combined visual feature vector and the previous question
vector is transferred as a new input question vector to next learning block.

qk = F(qk−1,V) + qk−1 (2)

Here, ql is a question vector for l-th learning block and V is a visual feature matrix, whose columns
indicate the specific spatial indexes. F(q,V) is the attention networks of SAN.

3 Multimodal Residual Networks

Deep residual learning emphasizes the importance of identity (or linear) shortcuts to have the non-
linear mappings efficiently learn only residuals [6]. In multimodal learning, this idea may not
be readily applied. Since the modalities may have correlations, we need to carefully define joint
residual functions as the non-linear mappings. Moreover, the shortcuts are undetermined due to its
multimodality. Therefore, the characteristics of a given task ought to be considered to determine the
model structure.

3.1 Background

We infer a residual learning in the attention networks of SAN. Since Equation 18 in [29] shows a
question vector transferred directly through successive layers of the attention networks. In the case of
SAN, the shortcut mapping is for the question vector, and the non-linear mapping is the attention
networks.

In the attention networks, Yang et al. [29] assume that an appropriate choice of weights on visual
feature vectors for a given question vector sufficiently captures the joint representation for answering.
However, question information weakly contributes to the joint representation only through coefficients
p, which may cause a bottleneck to learn the joint representation.

F(q,V) =
∑
i

piVi (3)

The coefficients p are the output of a nonlinear function of a question vector q and a visual feature
matrix V (see Equation 15-16 in Yang et al. [29]). The Vi is a visual feature vector of spatial index i
in 14× 14 grids.

Lu et al. [15] propose an element-wise multiplication of a question vector and a visual feature vector
after appropriate embeddings for a joint model. This makes a strong baseline outperforming some of
the recent works [19, 2]. We firstly take this approach as a candidate for the joint residual function,
since it is simple yet successful for visual question-answering. In this context, we take the global
visual feature approach for the element-wise multiplication, instead of the multiple (spatial) visual
features approach for the explicit attention mechanism of SAN. (We present a visualization technique
exploiting the element-wise multiplication in Section 5.2.)

Based on these observations, we follow the shortcut mapping and the stacking architecture of SAN
[29]; however, the element-wise multiplication is used for the joint residual function F . These
updates effectively learn the joint representation of given vision and language information addressing
the bottleneck issue of the attention networks of SAN.
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Figure 3: Alternative models are explored to justify our proposed model. The base model (a) has a
shortcut for a question vector as SAN does [29], and the joint residual function takes the form of the
Deep Q+I model’s joint function [15]. (b) extra embedding for visual modality. (c) extra embeddings
for both modalities. (d) identity mappings for shortcuts. In the first learning block, use a linear
mapping for matching a dimension with the joint dimension. (e) two shortcuts for both modalities.
For simplicity, the linear mapping of visual shortcut only appears in the first learning block. Notice
that (d) and (e) are compared to (b) after the model selection of (b) among (a)-(c) on test-dev results.
Eventually, we chose (b) as the best performance and relative simplicity.

3.2 Multimodal Residual Networks

MRN consists of multiple learning blocks, which are stacked for deep residual learning. Denoting an
optimal mapping byH(q,v), we approximate it using

H1(q,v) = W
(1)
q′ q + F (1)(q,v). (4)

The first (linear) approximation term is W (1)
q′ q and the first joint residual function is given by

F (1)(q,v). The linear mapping Wq′ is used for matching a feature dimension. We define the joint
residual function as

F (k)(q,v) = σ(W (k)
q q)� σ(W

(k)
2 σ(W

(k)
1 v)) (5)

where σ is tanh, and � is element-wise multiplication. The question vector and the visual feature
vector directly contribute to the joint representation. We justify this choice in Sections 4 and 5.

For a deeper residual learning, we replace q with H1(q,v) in the next layer. In more general terms,
Equations 4 and 5 can be rewritten as

HL(q,v) = Wq′q +

L∑
l=1

WF(l)F (l)(Hl−1,v) (6)

where L is the number of learning blocks, H0 = q, Wq′ = ΠL
l=1W

(l)
q′ , and WF(l) = ΠL

m=l+1W
(m)
q′ .

The cascading in Equation 6 can intuitively be represented as shown in Figure 2. Notice that the
shortcuts for a visual part are identity mappings to transfer the input visual feature vector to each
layer (dashed line). At the end of each block, we denote Hl as the output of the l-th learning block,
and ⊕ is element-wise addition.

4 Experiments

4.1 Visual QA Dataset

We choose the Visual QA (VQA) dataset [1] for the evaluation of our models. Other datasets may
not be ideal, since they have limited number of examples to train and test [16], or have synthesized
questions from the image captions [14, 20].
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Table 1: The results of alternative models (a)-
(e) on the test-dev.

Open-Ended

All Y/N Num. Other

(a) 60.17 81.83 38.32 46.61
(b) 60.53 82.53 38.34 46.78
(c) 60.19 81.91 37.87 46.70
(d) 59.69 81.67 37.23 46.00
(e) 60.20 81.98 38.25 46.57

Table 2: The effect of the visual features and #
of target answers on the test-dev results. Vgg
for VGG-19, and Res for ResNet-152 features de-
scribed in Section 4.

Open-Ended

All Y/N Num. Other

Vgg, 1k 60.53 82.53 38.34 46.78
Vgg, 2k 60.77 82.10 39.11 47.46
Vgg, 3k 60.68 82.40 38.69 47.10
Res, 1k 61.45 82.36 38.40 48.81
Res, 2k 61.68 82.28 38.82 49.25
Res, 3k 61.47 82.28 39.09 48.76

The questions and answers of the VQA dataset are collected via Amazon Mechanical Turk from
human subjects, who satisfy the experimental requirement. The dataset includes 614,163 questions
and 7,984,119 answers, since ten answers are gathered for each question from unique human subjects.
Therefore, Agrawal et al. [1] proposed a new accuracy metric as follows:

min

(
# of humans that provided that answer

3
, 1

)
. (7)

The questions are answered in two ways: Open-Ended and Multiple-Choice. Unlike Open-Ended,
Multiple-Choice allows additional information of eighteen candidate answers for each question. There
are three types of answers: yes/no (Y/N), numbers (Num.) and others (Other). Table 3 shows that
Other type has the most benefit from Multiple-Choice.

The images come from the MS-COCO dataset, 123,287 of them for training and validation, and
81,434 for test. The images are carefully collected to contain multiple objects and natural situations,
which is also valid for visual question-answering tasks.

4.2 Implementation

Torch framework and rnn package [13] are used to build our models. For efficient computation of
variable-length questions, TrimZero is used to trim out zero vectors [11]. TrimZero eliminates zero
computations at every time-step in mini-batch learning. Its efficiency is affected by a batch size, RNN
model size, and the number of zeros in inputs. We found out that TrimZero was suitable for VQA
tasks. Approximately, 37.5% of training time is reduced in our experiments using this technique.

Preprocessing We follow the same preprocessing procedure of DeeperLSTM+NormalizedCNN
[15] (Deep Q+I) by default. The number of answers is 1k, 2k, or 3k using the most frequent answers,
which covers 86.52%, 90.45% and 92.42% of questions, respectively. The questions are tokenized
using Python Natural Language Toolkit (nltk) [3]. Subsequently, the vocabulary sizes are 14,770,
15,031 and 15,169, respectively.

Pretrained Models A question vector q ∈ R2,400 is the last output vector of GRU [4], initialized
with the parameters of Skip-Thought Vectors [12]. Based on the study of Noh et al. [19], this method
shows effectiveness of question embedding in visual question-answering tasks. A visual feature vector
v is an output of the first fully-connected layer of VGG-19 networks [23], whose dimension is 4,096.
Alternatively, ResNet-152 [6] is used, whose dimension is of 2,048. The error is back-propagated to
the input question for fine-tuning, yet, not for the visual part v due to the heavy computational cost
of training.

Postprocessing Image captioning model [10] is used to improve the accuracy of Other type. Let the
intermediate representation v ∈ R|Ω| which is right before applying softmax. |Ω| is the vocabulary
size of answers, and vi is corresponding to answer ai. If ai is not a number or yes or no, and appeared
at least once in the generated caption, then update vi ← vi + 1. Notice that the pretrained image
captioning model is not part of training. This simple procedure improves around 0.1% of the test-dev
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Table 3: The VQA test-standard results. The precision of some accuracies [29, 2] are one less than
others, so, zero-filled to match others.

Open-Ended Multiple-Choice

All Y/N Num. Other All Y/N Num. Other

DPPnet [19] 57.36 80.28 36.92 42.24 62.69 80.35 38.79 52.79
D-NMN [2] 58.00 - - - - - - -
Deep Q+I [15] 58.16 80.56 36.53 43.73 63.09 80.59 37.70 53.64
SAN [29] 58.90 - - - - - - -
ACK [27] 59.44 81.07 37.12 45.83 - - - -
FDA [8] 59.54 81.34 35.67 46.10 64.18 81.25 38.30 55.20
DMN+ [28] 60.36 80.43 36.82 48.33 - - - -

MRN 61.84 82.39 38.23 49.41 66.33 82.41 39.57 58.40
Human [1] 83.30 95.77 83.39 72.67 - - - -

overall accuracy (0.3% for Other type). We attribute this improvement to “tie break” in Other type.
For the Multiple-Choice task, we mask the output of softmax layer with the given candidate answers.

Hyperparameters By default, we follow Deep Q+I. The common embedding size of the joint
representation is 1,200. The learnable parameters are initialized using a uniform distribution from
−0.08 to 0.08 except for the pretrained models. The batch size is 200, and the number of iterations
is fixed to 250k. The RMSProp [26] is used for optimization, and dropouts [7, 5] are used for
regularization. The hyperparameters are fixed using test-dev results. We compare our method to
state-of-the-arts using test-standard results.

4.3 Exploring Alternative Models

Figure 3 shows alternative models we explored, based on the observations in Section 3. We carefully
select alternative models (a)-(c) for the importance of embeddings in multimodal learning [18, 24],
(d) for the effectiveness of identity mapping as reported by [6], and (e) for the confirmation of using
question-only shortcuts in the multiple blocks as in [29]. For comparison, all models have three-block
layers (selected after a pilot test), using VGG-19 features and 1k answers, then, the number of learning
blocks is explored to confirm the pilot test. The effect of the pretrained visual feature models and the
number of answers are also explored. All validation is performed on the test-dev split.

5 Results

5.1 Quantitative Analysis

The VQA Challenge, which released the VQA dataset, provides evaluation servers for test-dev
and test-standard test splits. For the test-dev, the evaluation server permits unlimited submissions
for validation, while the test-standard permits limited submissions for the competition. We report
accuracies in percentage.

Alternative Models The test-dev results of the alternative models for the Open-Ended task are
shown in Table 1. (a) shows a significant improvement over SAN. However, (b) is marginally better
than (a). As compared to (b), (c) deteriorates the performance. An extra embedding for a question
vector may easily cause overfitting leading to the overall degradation. And, the identity shortcuts
in (d) cause the degradation problem, too. Extra parameters of the linear mappings may effectively
support to do the task.

(e) shows a reasonable performance, however, the extra shortcut is not essential. The empirical results
seem to support this idea. Since the question-only model (50.39%) achieves a competitive result to
the joint model (57.75%), while the image-only model gets a poor accuracy (28.13%) (see Table 2 in
[1]). Eventually, we chose model (b) as the best performance and relative simplicity.
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examples examples

What kind of animals are these ? sheep What animal is the picture ? elephant

What is this animal ? zebra What game is this person playing ? tennis

How many cats are here ? 2 What color is the bird ? yellow

What sport is this ? surfing Is the horse jumping ? yes

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Examples for visualization of the three-block layered MRN. The original images are shown
in the first of each group. The next three images show the input gradients of the attention effect for
each learning block as described in Section 5.2. The gradients of color channels for each pixel are
summed up after taking absolute values of these gradients. Then, these summed absolute values
which are greater than the summation of the mean and the standard deviation of these values are
visualized as the attention effect (bright color) on the images. The answers (blue) are predicted by
MRN.

The effects of other various options, Skip-Thought Vectors [12] for parameter initialization, Bayesian
Dropout [5] for regularization, image captioning model [10] for postprocessing, and the usage of
shortcut connections, are explored in Appendix A.1.

Number of Learning Blocks To confirm the effectiveness of the number of learning blocks selected
via a pilot test (L = 3), we explore this on the chosen model (b), again. As the depth increases, the
overall accuracies are 58.85% (L = 1), 59.44% (L = 2), 60.53% (L = 3) and 60.42% (L = 4).

Visual Features The ResNet-152 visual features are significantly better than VGG-19 features for
Other type in Table 2, even if the dimension of the ResNet features (2,048) is a half of VGG features’
(4,096). The ResNet visual features are also used in the previous work [8]; however, our model
achieves a remarkably better performance with a large margin (see Table 3).

Number of Target Answers The number of target answers slightly affects the overall accuracies
with the trade-off among answer types. So, the decision on the number of target answers is difficult
to be made. We chose Res, 2k in Table 2 based on the overall accuracy (for Multiple-Choice task, see
Appendix A.1).

Comparisons with State-of-the-arts Our chosen model significantly outperforms other state-of-
the-art methods for both Open-Ended and Multiple-Choice tasks in Table 3. However, the performance
of Number and Other types are still not satisfactory compared to Human performance, though the
advances in the recent works were mainly for Other-type answers. This fact motivates to study on a
counting mechanism in future work. The model comparison is performed on the test-standard results.
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5.2 Qualitative Analysis

In Equation 5, the left term σ(Wqq) can be seen as a masking (attention) vector to select a part of
visual information. We assume that the difference between the right term V := σ(W2σ(W1v)) and
the masked vector F(q,v) indicates an attention effect caused by the masking vector. Then, the
attention effect Latt = 1

2‖V − F‖
2 is visualized on the image by calculating the gradient of Latt with

respect to a given image I, while treating F as a constant.

∂Latt

∂I
=
∂V
∂I

(V − F) (8)

This technique can be applied to each learning block in a similar way.

Since we use the preprocessed visual features, the pretrained CNN is augmented only for this
visualization. Note that model (b) in Table 1 is used for this visualization, and the pretrained VGG-19
is used for preprocessing and augmentation. The model is trained using the training set of the VQA
dataset, and visualized using the validation set. Examples are shown in Figure 4 (more examples in
Appendix A.2-4).

Unlike the other works [29, 28] that use explicit attention parameters, MRN does not use any explicit
attentional mechanism. However, we observe the interpretability of element-wise multiplication as
an information masking, which yields a novel method for visualizing the attention effect from this
operation. Since MRN does not depend on a few attention parameters (e.g. 14×14), our visualization
method shows a higher resolution than others [29, 28]. Based on this, we argue that MRN is an
implicit attention model without explicit attention mechanism.

6 Conclusions

The idea of deep residual learning is applied to visual question-answering tasks. Based on the two
observations of the previous works, various alternative models are suggested and validated to propose
the three-block layered MRN. Our model achieves the state-of-the-art results on the VQA dataset
for both Open-Ended and Multiple-Choice tasks. Moreover, we have introduced a novel method to
visualize the spatial attention from the collapsed visual features using back-propagation.

We believe our visualization method brings implicit attention mechanism to research of attentional
models. Using back-propagation of attention effect, extensive research in object detection, segmenta-
tion and tracking are worth further investigations.
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