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1 Preparatory Results

McDiarmid’s Inequality Let f : Xm → R be a function such that for all i ∈ {1, ...,m}, there
exists ci <∞ for which

sup
x∈Xm,x̃∈X

|f(x1, ..., xm)− f(x1, ..., xi−1, x̃, xi+1, ..., xm)| ≤ ci (1)

Then for all probability measures p and every ε > 0,

Pr(f(x)− Ex(f(x)) > ε) < exp(− 2ε2∑m
i=1 ci

2
) (2)

whereEx denotes the expectation over them random variables xi ∼ p, and Pr denotes the probability
over these m variables.

Lemma 1.1. For any fixed function h(xs, λ), g(xt, β),any λ, β, bounded kernel K, we have

P (sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ))− Exsf(h(xs, λ))| − Exs sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ))− Exsf(h(xs, λ))| > ε)

(3)

≤ exp (−ε
2n

2K
) (4)

P (sup
f∈F
| 1
m

m∑
i=1

f(g(xit, β))− Extf(g(xt, β))| − Ext sup
f∈F
| 1
m

m∑
i=1

f(g(xit, β))− Extf(g(xt, β))| > ε)

(5)

≤ exp (−ε
2m

2K
) (6)
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Proof. When we replace xis by x̃is and xs by x̃s, we have

sup
x̃s

|(sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ))− Exsf(h(xs, λ))|)− (sup
f∈F
| 1
n

n∑
i=1

f(h(x̃is, λ))− Exsf(h(xs, λ))|)|

(7)
We use the fact that | sup

x
f1(x)− sup

x
f2(x)| is smaller than sup

x
|f1(x)− f2(x)|, and get

≤ sup
x̃s

sup
f∈F
|( 1

n

n∑
i=1

f(h(xis, λ))− Exsf(h(xs, λ)))− (
1

n

n∑
i=1

f(h(x̃is, λ))− Exsf(h(xs, λ)))|

(8)

= sup
x̃s

sup
f∈F
| 1
n

(f(h(xis, λ))− f(h(x̃is, λ)))| (9)

It follows from Riesz representation theorem in reproducing Hilbert space that

=
1

n
sup
x̃s

‖K(h(xis, λ), .)−K(h(x̃is, λ), .)‖H (10)

It follows from kernel bounded property that

≤ 2
√
K

n
(11)

Now using McDiarmid’s Inequality, we have

P (sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ))− Exsf(h(xs, λ))| − Exs sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ))− Exsf(h(xs, λ))| > ε)

(12)

≤ exp(−ε
2n

2K
) (13)

A similar proof holds for g(xt, β). This proof can also be found in [1].

Lemma 1.2. For any fixed function h(xs, λ), g(xt, β),any λ, β, bounded kernel K, we have

Exs sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ))− Exsf(h(xs, λ))| ≤ 2
√
K√
n

(14)

Ext sup
f∈F
| 1
m

m∑
i=1

f(g(xit, β))− Extf(g(xt, β))| ≤ 2
√
K√
m

(15)
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Proof. Let x′s be the samples generated from the same distribution as xs. Also, σii.i.d ∼ {−1, 1}
with equal probability. We can show,

Exs sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ))− Exsf(h(xs, λ))| (16)

= Exs sup
f∈F
|Ex′

s
(

1

n

n∑
i=1

f(h(x′
i
s, λ))− 1

n

n∑
i=1

f(h(xis, λ)))| (17)

It follows from the convexity of the absolute function, and Jensen’s Inequality that

≤ Exs sup
f∈F

Ex′
s
|( 1

n

n∑
i=1

f(h(x′s
i
, λ))− 1

n

n∑
i=1

f(h(xis, λ)))| (18)

≤ ExsEx′
s

sup
f∈F
|( 1

n

n∑
i=1

f(h(x′s
i
, λ))− 1

n

n∑
i=1

f(h(xis, λ)))| (19)

For any fixed σ, the remainder have the same value because x′s, xs are i.i.d samples, so

= EσExsEx′
s

sup
f∈F
| 1
n

n∑
i=1

σi(f(h(x′s
i
, λ))− f(h(xis, λ)))| (20)

= ExsEx′
s
Eσ sup

f∈F
| 1
n

n∑
i=1

σi(f(h(x′s
i
, λ))− f(h(xis, λ)))| (21)

≤ ExsEx′
s
Eσ sup

f∈F
| 1
n

n∑
i=1

σi(f(h(x′s
i
, λ))|+ ExsEx′

s
Eσ sup

f∈F
|
n∑
i=1

σif(h(xis, λ)))| (22)

= 2ExsEσ sup
f∈F
| 1
n

n∑
i=1

σif(h(xis, λ))| (23)

=
2

n
ExsEσ

∥∥∥∥∥
n∑
i=1

σiK(h(xis, λ), .)

∥∥∥∥∥
H

(24)

=
2

n
ExsEσ(

n∑
i,j=1

σiσjK(h(xis, λ), h(xjs, λ)))

1/2

(25)

It follows from Jensen’s Inequality that

≤ Exs

 n∑
i,j=1

Eσ(σiσj)K(h(xis, λ), h(xjs, λ))

1/2

(26)

By using properties of σ,

=
2

n
Exs

(
n∑
i=1

K(h(xis, λ), h(xis, λ))

)1/2

(27)

≤ 2
√
K√
n

(28)

A similar proof holds for g(xt, β) and can also be found in [1].
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Lemma 1.3. For any fixed function h(xs, λ), g(xt, β) and a bounded kernel K, if (A1) holds, we
have

P ( sup
λ∈Ωλ

sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ))− Exsf(h(xs, λ))| >
√
K√
n

(
4 +

√
C(h,α) +

dλ
2rh

log n

)
) ≤ α

2

(29)

P ( sup
β∈Ωβ

sup
f∈F
| 1
m

m∑
i=1

f(g(xit, β))− Extf(g(xt, β))| >
√
K√
m

(
4 +

√
C(g,α) +

dβ
2rg

logm

)
) ≤ α

2

(30)

whereC(h,α) = log(2|Ωλ|)+logα−1+ dλ
rh

log Lh√
K

, andC(g,α) = log(2|Ωβ |)+logα−1+
dβ
rg

log
Lg√
K

Proof. Observe that we can choose a covering for Ωλ using balls with any radius δ > 0. Define Nδ
to be number of those balls, and λ1

0, λ
2
0, ..., λ

Nδ
0 be the center of those balls. For any d(λ1, λ2) ≤ δ,

we have

sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ1))− Exsf(h(xs, λ1))| − sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ2))− Exsf(h(xs, λ2))|

(31)
We use the fact that | sup

x
f1(x)− sup

x
f2(x)| is smaller than sup

x
|f1(x)− f2(x)|

≤ sup
f∈F
|[ 1

n

n∑
i=1

f(h(xis, λ1))− Exsf(h(xs, λ1))]− [
1

n

n∑
i=1

f(h(xis, λ2))− Exsf(h(xs, λ2))]|

(32)

≤ sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ1))− 1

n

n∑
i=1

f(h(xis, λ2))|+ sup
f∈F
|Exsf(h(xs, λ1))− Exsf(h(xs, λ2))|

(33)
We use Riesz representation theorem in reproducing Hilbert space

=

∥∥∥∥∥ 1

n

n∑
i=1

(K(h(xis, λ1), .)−K(h(xis, λ2), .))

∥∥∥∥∥
H

+ ‖Exs(K(h(xs, λ1), .)−K(h(xs, λ2), .))‖H

(34)
We use Jensen’s Inequality

≤ 1

n

n∑
i=1

∥∥(K(h(xis, λ1), .)−K(h(xis, λ2), .))
∥∥
H

+ Exs ‖(K(h(xs, λ1), .)−K(h(xs, λ2), .))‖H

(35)
≤ 2 sup

xs

||K(h(xs, λ1), .)−K(h(xs, λ2), .)||H (36)

We use (A1)
≤ 2Lhδ

rh (37)

Thus,
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sup
λ∈Ωλ

sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ))− Exsf(h(xs, λ))| (38)

= max
k∈1,2...,Nδ

sup
d(λ,λk0 )≤δ

sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ))− Exsf(h(xs, λ))| (39)

= max
k∈1,2...,Nδ

sup
d(λ,λk0 )≤δ

(sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ))− Exsf(h(xs, λ))| − sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ
k
0))− Exsf(h(xs, λ

k
0))|)

(40)

+ max
k∈1,2...,Nδ

sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ
k
0))− Exsf(h(xs, λ

k
0))| (41)

≤ 2Lhδ
rh + max

k∈1,2...,Nδ
sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ
k
0))− Exsf(h(xs, λ

k
0))| (42)

Thus,

P ( sup
λ∈Ωλ

sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ))− Exsf(h(xs, λ))| > 2Lhδ
rh +

2
√
K√
n

+ ε) (43)

≤ P (2Lhδ
rh + max

k∈1,2...,Nδ
sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ
k
0))− Exsf(h(xs, λ

k
0))| > 2Lhδ

rh +
2
√
K√
n

+ ε)

(44)

= P ( max
k∈1,2...,Nδ

sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ
k
0))− Exsf(h(xs, λ

k
0))| > 2

√
K√
n

+ ε) (45)

It follows from union bound that

≤
Nδ∑
k=1

P (sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ
k
0))− Exsf(h(xs, λ

k
0))| > 2

√
K√
n

+ ε) (46)

≤ Nδ max
k∈1,2...,Nδ

P (sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ
k
0))− Exsf(h(xs, λ

k
0))| > 2

√
K√
n

+ ε) (47)

It follows from Lemma 1.1 and Lemma 1.2 that

≤ Nδ exp(−ε
2n

2K
) (48)

=
|Ω|
δdλ

exp(−ε
2n

2K
) (49)

where dλ is the dimension of λ. Here, we focus on the Euclidean space setting, but the result can
directly generalized to other spaces as long as a finite covering exists for a distance measure satisfying
(A1).
The results follows by setting

ε =

√
2K

n

√
log(2|Ω|) + logα−1 + dλ log δ−1 (50)

δ =

(
K

L2
hn

) 1
2rh

(51)

A similar proof holds for g(xt, β).
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4 Consistency

Theorem 4.1 (MMD Convergence). Under the null hypothesis H0,
|‖ExsK(h(xs, λ̂), ·)− ExtK(g(xt, β̂), ·)‖H − ‖ExsK(h(xs, λ0), ·)− ExtK(g(xt, β0), ·)‖H | → 0

with the rate max
(√

logn√
n
,
√

logm√
m

)
.

Proof. Recall the basic inequality

sup
f∈F

(
1

m

m∑
i=1

f(g(xit, β̂))− 1

n

n∑
i=1

f(h(xis, λ̂))) ≤ sup
f∈F

(
1

m

m∑
i=1

f(g(xit, β0))− 1

n

n∑
i=1

f(h(xit, λ0)))

(52)

||ExisK(h(xis, λ̂), .)− ExtK(g(xt, β̂)||
H
− ||ExisK(h(xis, λ0), .)− ExtK(g(xt, β0)||

H
(53)

= sup
f∈F

(Extf(g(xt, β̂))− Exisf(h(xis, λ̂)))− sup
f∈F

(Extf(g(xt, β0))− Exisf(h(xis, λ0))) (54)

We use a basic inequality and get

≤ sup
f∈F

(Extf(g(xt, β̂))− Exisf(h(xis, λ̂)))− sup
f∈F

(Extf(g(xt, β0))− Exisf(h(xis, λ0))) (55)

+ sup
f∈F

(
1

m

m∑
i=1

f(g(xit, β0))− 1

n

n∑
i=1

f(h(xit, λ0)))− sup
f∈F

(
1

m

m∑
i=1

f(g(xit, β̂))− 1

n

n∑
i=1

f(h(xis, λ̂)))

(56)

≤ | sup
f∈F

(
1

m

m∑
i=1

f(g(xit, β̂))− 1

n

n∑
i=1

f(h(xis, λ̂)))− sup
f∈F

(Extf(g(xt, β̂))− Exisf(h(xis, λ̂)))|

(57)

+ | sup
f∈F

(
1

m

m∑
i=1

f(g(xit, β0))− 1

n

n∑
i=1

f(h(xis, λ0)))− sup
f∈F

(Extf(g(xt, β0))− Exisf(h(xis, λ0)))|

(58)
We use the fact that | sup

x
f1(x)− sup

x
f2(x)| is smaller than sup

x
|f1(x)− f2(x)|

λ̂, λ0 ∈ Ωλ, β̂, β0 ∈ Ωβ and get

≤ 2 sup
λ∈Ωλ,β∈Ωβ

sup
f∈F
|( 1

m

m∑
i=1

f(g(xit, β))− 1

n

n∑
i=1

f(h(xis, λ)))− (Extf(g(xt, β))− Exisf(h(xis, λ)))|

(59)

≤ 2 sup
λ∈Ωλ,β∈Ωβ

sup
f∈F
|( 1

m

m∑
i=1

f(g(xit, β))− Extf(g(xt, β))| (60)

+ 2 sup
λ∈Ωλ,β∈Ωβ

sup
f∈F
|( 1

n

n∑
i=1

f(h(xis, λ))− Exisf(h(xis, λ)))| (61)

= 2 sup
β∈Ωβ

sup
f∈F
|( 1

m

m∑
i=1

f(g(xit, β))− Extf(g(xt, β))|+ 2 sup
λ∈Ωλ

sup
f∈F
|( 1

n

n∑
i=1

f(h(xis, λ))− Exisf(h(xis, λ)))|

(62)
The results follows from Lemma 1.3, by noticing that for every random variable W,Z, constant a, b,
we have P (W + Z > a+ b) ≤ P (W > a) + P (Z > b).
Thus, for any α > 0, with probability at least 1− α.

||ExisK(h(xis, λ̂), .)− ExtK(g(xt, β̂)||
H
− ||ExisK(h(xis, λ0), .)− ExtK(g(xt, β0)||

H
(63)

≤ 2

√
K√
n

(
4 +

√
C(h,α) +

dλ
2rh

log n

)
+ 2

√
K√
m

(
4 +

√
C(g,α) +

dβ
2rg

logm

)
(64)
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whereC(h,α) = log(2|Ωλ|)+logα−1+ dλ
rh

log Lh√
K

, andC(g,α) = log(2|Ωβ |)+logα−1+
dβ
rg

log
Lg√
K

Lemma 4.2 (Consistency). Under H0, the estimators λ̂ and β̂ are consistent.

Proof. We assume that Ωλ,Ωβ are bounded.
For notational convinence we simply call ||ExsK(h(xs, λ̂), .)− ExtK(g(xt, β̂), .)||H −
||ExsK(h(xs, λ0), .)− ExtK(g(xt, β0), .)||H as ζ(λ̂, β̂).

Notice that ζ(·) is continuous because ζ(·)2 is the summation of expectations of bounded continuous
functions (because the kernel is bounded continuous). If (λ̂, β̂) doesn’t converge to (λ0, β0) when
ζ(λ̂, β̂) converges to 0, then we have a sequence (λ̂k, β̂k) and an ε > 0, such that ||(λ̂k, β̂k) −
(λ0, β0)|| > ε but ζ(λ̂k, β̂k) converges to 0. Because Ωλ,Ωβ bounded, ζ(·) is continuous, and hence
T (λ, β, C) = {λ ∈ Ωλ, β ∈ Ωβ |ζ(λ, β) < C} is a compact set of (λ, β) for some constant C.

So we can find a point (λ̃, β̃) in T (λ, β, C) ∩ {(λ, β)|||(λ, β)− (λ0, β0)| > ε} such that there is a
subsequence (λ̂kl , β̂kl) which converges to (λ̃, β̃) when l goes to∞, based on Bolzano-Weierstrass
theorem. But since ζ(·) is continuous, we have ζ(λ̃, β̃) = 0, with ||(λ̃, β̃) − (λ0, β0)|| > ε. This
contradicts with the unique solution requirement of (λ0, β0).

Theorem 4.3 (Hypothesis Testing). (a) Whenever H0 is true, with probability at least 1− α,

0 ≤M(λ̂, β̂) ≤
√

2K(m+ n) logα−1

mn
+

2
√
K√
n

+
2
√
K√
m

(65)

(b) Whenever HA is true, with probability at least 1− ε,

M(λ̂, β̂) ≤M∗(λA, βA) +

√
2K(m+ n) log ε−1

mn
+

2
√
K√
n

+
2
√
K√
m

M(λ̂, β̂) ≥M∗(λA, βA)−
√
K√
n

(
4 +

√
C(h,ε) +

dλ
2rh

log n

)
−
√
K√
m

(
4 +

√
C(g,ε) +

dβ
2rg

logm

)
(66)

where C(h,ε) = log(2|Ωλ|)+log ε−1 + dλ
rh

log Lh√
K

, and C(g,ε) = log(2|Ωβ |)+log ε−1 +
dβ
rg

log
Lg√
K

Proof. Under H0,

M(λ̂, β̂)−M∗(λ0, β0) (67)
≤M(λ0, β0)−M∗(λ0, β0) (68)
= MMD(h(xs, λ0), g(xt, β0))−MMD∗(h(xs, λ0), g(xt, β0)) (69)

where MMD∗(·) is the MMD in the population sense while MMD(·) takes the expectation in a
sample sense. The MMD empirical bound from Theorem 7 in [1] can be directly applied to the right
hand side of the above inequality. This application will lead to the bound on H0 in (65).

Similarly, under HA,

M(λ̂, β̂)−M∗(λA, βA) (70)
≤M(λA, βA)−M∗(λA, βA) (71)
= MMD(h(xs, λA), g(xt, βA))−MMD∗(h(xs, λA), g(xt, βA)) (72)

Similar to the case of H0, the upper bound follows from Theorem 7 of [1]. The lower bound proof
under the alternative follows from Lemma 1.3.
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|M(λ̂, β̂)−M∗(λA, βA)| = | min
λ∈Ωλ

min
β∈Ωβ

sup
f∈F

(
1

m

m∑
i=1

f(g(xit, β))− 1

n

n∑
i=1

f(h(xis, λ))) (73)

− min
λ∈Ωλ

min
β∈Ωβ

sup
f∈F

(Extf(g(xt, β))− Exsf(h(xs, λ)))| (74)

Use the fact that |minx f1(x)−minx f2(x)| is smaller than supx |f1(x)− f2(x)|, we have

|M(λ̂, β̂)−M∗(λA, βA)| (75)

≤ sup
λ∈Ωλ,β∈Ωβ

sup
f∈F
|( 1

m

m∑
i=1

f(g(xit, β))− 1

n

n∑
i=1

f(h(xis, λ)))− (Extf(g(xt, β))− Exsf(h(xs, λ)))|

(76)

≤ sup
β∈Ωβ

sup
f∈F
| 1
m

m∑
i=1

f(g(xit, β))− Extf(g(xt, β))|+ sup
λ∈Ωλ

sup
f∈F
| 1
n

n∑
i=1

f(h(xis, λ))− Exsf(h(xs, λ))|

(77)

The results come from Lemma 1.3, and the fact that for every random variable W,Z, constant a, b,
we have P (W + Z > a+ b) ≤ P (W > a) + P (Z > b)

Lemma 4.4 (Linear transformation). Under H0, identity g(·) with h = φ(xs)
Tλ, we have Ωλ :=

{λ; | 1n
∑n
i=1 ‖xit − φ(xis)

Tλ)‖2 ≤ 3
∑p
k=1 Var(xt,k) + ε}. For any ε, α > 0 and sufficiently large

sample size, a neighborhood of λ0 is contained in Ωλ with probability at least 1− α.

Proof. Let φ(xs) = (φ1, φ2, . . . , φp), and define Σk = V ar(φk), µk = E(φk). Then we have

E[||xt − φ(xs)
′λ||2] = E[||φ(x̃s)

′λ0 − φ(xs)
′λ||2] (78)

= λ′0

p∑
k=1

Σkλ0 + λ′
p∑
k=1

Σkλ+ (λ− λ0)′
p∑
k=1

µkµ
′
k(λ− λ0) (79)

≤ 3λ′0

p∑
k=1

Σkλ0 + (λ− λ0)′
p∑
k=1

(2Σk + µkµ
′
k)(λ− λ0) (80)

= 3

p∑
k=1

Var(xt,k) + (λ− λ0)′
p∑
k=1

(2Σk + µkµ
′
k)(λ− λ0) (81)

The set S2 = {λ|E[||xt − φ(xs)
′λ||2] ≤ 3λ′0

∑p
k=1 Σkλ0 + C} includes the set S1 = {λ|(λ −

λ0)′
∑p
k=1(2Σk + µkµ

′
k)(λ− λ0) ≤ C} for any C ≥ 0.

S1 is a neighbourhood of λ0 as an eclipse characterized
∑p
k=1(2Σk + µkµ

′
k). Now we see that our

proposed trust region is S2.
Further, we can just set ε = 0 since whenever λ = λ0, the upper bound should be exactly
2λ′0

∑p
k=1 Σkλ0 instead of 3λ′0

∑p
k=1 Σkλ0, which means there already exists some relaxations.

4.1 Additional results pertaining to the constants

Lemma 4.5. Let S(λ,C) = {λ ∈ Ωλ|∃β ∈ Ωβ s.t. ||ExtK(g(xt, β).)− ExsK(h(xs, λ), .)||H −
||ExtK(g(xt, βA).)− ExsK(h(xs, λA), .)||H ≤ C}. Under alternative, we could replace |Ωλ| in
C(h,α) from (66) by |S(λ,C)| for any C > 0 whenever m and n are large enough, and theorem 4.1
still holds. The result applies to β as well.
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Proof.

M∗(λA, βA)−M(λ̂, β̂) (82)

= sup
f∈F

(Extf(g(xt, βA))− Exsf(h(xs, λA)))− min
λ∈Ωλ

min
β∈Ωβ

sup
f∈F

(
1

m

m∑
i=1

f(g(xit, β))− 1

n

n∑
i=1

f(h(xis, λ)))

(83)

= sup
λ∈Ωλ

sup
β∈Ωβ

[sup
f∈F

(Extf(g(xt, βA))− Exsf(h(xs, λA)))− sup
f∈F

(
1

m

m∑
i=1

f(g(xit, β))− 1

n

n∑
i=1

f(h(xis, λ)))]

(84)
= sup
λ∈Ωλ

sup
β∈Ωβ

{[sup
f∈F

(Extf(g(xt, βA))− Exsf(h(xs, λA)))− sup
f∈F

(Extf(g(xt, β))− Exsf(h(xs, λ)))]

(85)

+ [sup
f∈F

(Extf(g(xt, β))− Exsf(h(xs, λ)))− sup
f∈F

(
1

m

m∑
i=1

f(g(xit, β))− 1

n

n∑
i=1

f(h(xis, λ)))]}

(86)

Similar to S(λ,C), let T (β,C) = {β ∈ Ωβ |∃λ ∈
Ωλ s.t. ||ExtK(g(xt, β).)− ExsK(h(xs, λ), .)||H−||ExtK(g(xt, βA).)− ExsK(h(xs, λA), .)||H ≤
C}.
For any ε > 0, supλ∈Ωλ,β∈Ωβ

(·) = sup((λ,β)∈S(λ,C)×T (β,C),(λ,β)/∈S(λ,C)×T (β,C))(·).
(λA, βA) is contained in the S(λ,C)× T (β,C). So simply using (λ, β) = (λA, βA) will give us a
lower bound on the corresponding set. Hence

0 + [sup
f∈F

(Extf(g(xt, βA))− Exsf(h(xs, λA)))− sup
f∈F

(
1

m

m∑
i=1

f(g(xit, βA))− 1

n

n∑
i=1

f(h(xis, λA)))]

(87)

≥ 0−
√

2K

√
m+ n

mn

√
log ε−1 − 2

√
K√
n
− 2
√
K√
m

(88)

with probability at least 1− ε. The last inequality follow from Theorem 7 in [1].

Alternatively when (λ, β) /∈ S(λ,C)× T (β,C), the first term [supf∈F (Extf(g(xt, βA)) −
Exsf(h(xs, λA))) − supf∈F (Extf(g(xt, β)) − Exsf(h(xs, λ)))] is uniformly smaller than -C,
which follow from condition in Lemma and Riesz Representation theorem.

The second term supλ∈Ωλ
supβ∈Ωβ

[supf∈F (Extf(g(xt, β)) − Exsf(h(xs, λ))) −
supf∈F ( 1

m

∑m
i=1 f(g(xit, β)) − 1

n

∑n
i=1 f(h(xis, λ)))] appeared before when we proved lower

bound under alternative. So we use these results given in the proof procedure of Theorem 4.3, we
have the following with probability greater than 1− ε.
The second term is smaller than −C +

√
K√
n

(
4 +

√
C(h,ε) + dλ

2rh
log n

)
+

√
K√
m

(
4 +

√
C(g,ε) +

dβ
2rg

logm
)

.

So any C, which satisfies 0 −
√

2K
√

m+n
mn

√
log ε−1 − 2

√
K√
n
− 2

√
K√
m

> −C +
√
K√
n

(
4 +

√
C(h,ε) + dλ

2rh
log n

)
+
√
K√
m

(
4 +

√
C(g,ε) +

dβ
2rg

logm
)

, can then be used for
computing the sets S(λ,C), T (β,C).

The reason for this follows from the fact that the upper bound for second term would be smaller
than lower bound for first term, which implies sup(λ,β)∈Ωλ×Ωβ

(·) in (84) could be reduced to
sup(λ,β)∈S(λ,C)×T (β,C)(·). We point out that the proof procedure of the consistency lower bound
under HA ((66) from Theorem 4.3) also derives from (84).
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5 Further Experimental Results
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Figure 1: The histograms of minimal MMD statistics for three different source/target combinations –
Normal vs. Normal, Normal vs. Laplace and Normal vs. Exponential. The six plots correspond to
increasing sample sizes from 25 to 210.

Fig 1(c)(f) correlates to Fig 1 (e)(f) in the main body. The extra four sub-plots make up figures for
other sample sizes from 25 to 210.
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Figure 2: Estimation error for the setting where source and target samples are three-dimensional.
The six lines correspond to two different sets of experiments.

Section 7 includes model details.
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Figure 3: Scatter plots of corrected Batch1 and Batch2 (x and y axes) measures for the 12 proteins
using gold standard linear model (blue) and our minimal MMD based correction (red). The setting
is S1 where in only those samples whose corresponding source (Batch1) and target (Batch2) were
available. Note that our model does not use this pairwise correspondence information unlike the gold
standard.

The points in the scatter plot related to same persons appearing both in Batch 1 and Batch 2. Since
that, we’d like to see those points lie on the diagonal line after transformed. It shows that our minimal
MMD method works almost as good as gold standard method. The setting is S1 where in only those
samples whose corresponding source (Batch1) and target (Batch2) were available. Note that our
model does not use this pairwise correspondence information unlike the gold standard.
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Figure 4: Scatter plots of corrected Batch1 and Batch2 (x and y axes) measures for the 12 proteins
using gold standard linear model (blue) and our minimal MMD based correction (red). The setting
is S2 where our model uses all samples – even those whose corresponding source (Batch1) and
target (Batch2) were available. The gold standard plots (blue) nevertheless can only use pairwise
samples (i.e., S1, refer previous plot). Note that our model does not use this pairwise correspondence
information unlike the gold standard.

The points in the scatter plot related to same persons appearing both in Batch 1 and Batch 2. Since
that, we’d like to see those points lie on the diagonal line after transformed. It shows that our minimal
MMD method works almost as good as gold standard method. The setting is S2 where our model uses
all samples – even those whose corresponding source (Batch1) and target (Batch2) were available.
Note that our model does not use this pairwise correspondence information unlike the gold standard.
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6 Illustration Figure for Comparison with MMD
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Figure 5: Two normal distributions with different mean

MMD rejects the null hypothesis since two distributions are different. Our minimal MMD method
accepts our null hypothesis, since two distributions can be matched after a simple transformation
applied. Under this scenario, our method offers information and provides a transformation to match
the two distributions, while MMD tells nothing more than they are different.
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7 Simulation Model Details

Here are model details about Fig 1(c)(d) in the main body.
Fig 1 (c), model:

xt ∼ N(10, 4) (89)
xs ∼ N(0, 1) (90)
Model is xt = a× xs + b (91)

We generate samples from N(10, 4) for xt and from N(0, 1) for xs. Then we fit model
xt = a× xs + b using our minimal MMD. In other words, h(xs, λ) = a× xs + b. The parameter
λ = (a, b). We call parameter ’a’ slope and ’b’ intercept. The L1 error is |a− 2| for slope curve and
|b− 10| for intercept curve. With sample sizes from 24 to 210, we get the curve.

Fig 1 (d), Model 1:

w ∼ N
((

0
0

)
,

(
1 0.5

0.5 1

))
(92)

xs ∼ N
((

0
0

)
,

(
1 0.5

0.5 1

))
(93)

xt =

(
1 2 10
2 1 −20

)(
w
1

)
(94)

Model is xt =

(
a11 a12 a13

a21 a22 a23

)(
xs
1

)
(95)

We generate samples for xs, w, then we transform w to get xt. Based on samples, we fit a model

xt =

(
a11 a12 a13

a21 a22 a23

)(
xs
1

)
(96)

Quartic Mean of estimation error for "Model 1, first row" is√
(a11 − 1)

2
+ (a12 − 2)

2
+ (a13 − 10)

2

3
(97)

Quartic Mean of estimation error for "Model 1, second row" is√
(a21 − 2)

2
+ (a22 − 1)

2
+ (a23 + 20)

2

3
(98)

Fig 1 (d), Model 2:

w ∼
(
N(0, 1)
χ2

1

)
(99)

xs ∼
(
N(0, 1)
χ2

1

)
(100)

xt =

(
1 2 10
2 1 −20

)(
w
1

)
(101)

Model is xt =

(
a11 a12 a13

a21 a22 a23

)(
xs
1

)
(102)

We generate samples for xs, w, then we transform w to get xt. Based on samples, we fit a model

xt =

(
a11 a12 a13

a21 a22 a23

)(
xs
1

)
(103)
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Quartic Mean of estimation error for "Model 2, first row" is√
(a11 − 1)

2
+ (a12 − 2)

2
+ (a13 − 10)

2

3
(104)

Quartic Mean of estimation error for "Model 2, second row" is√
(a21 − 2)

2
+ (a22 − 1)

2
+ (a23 + 20)

2

3
(105)

Figure 2 in supplement, Model 1:

w ∼ N

((
0
0
0

)
,

(
1 0.5 0.5

0.5 1 0.5
0.5 0.5 1

))
(106)

xs ∼ N

((
0
0
0

)
,

(
1 0.5 0.5

0.5 1 0.5
0.5 0.5 1

))
(107)

xt =

(
1 0 2 10
1 2 0 20
0 2 1 −30

)(
w
1

)
(108)

Model is xt =

(
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

)(
xs
1

)
(109)

We generate samples for xs, w, then we transform w to get xt. Based on samples, we fit a model

xt =

(
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

)(
xs
1

)
(110)

Quartic Mean of estimation error for "Model 2, first row" is√
(a11 − 1)

2
+ (a12 − 0)

2
+ (a13 − 2)

2
+ (a14 − 10)

2

4
(111)

Quartic Mean of estimation error for "Model 2, second row" is√
(a21 − 1)

2
+ (a22 − 2)

2
+ (a23 − 0)

2
+ (a24 − 20)

4
(112)

Quartic Mean of estimation error for "Model 2, third row" is√
(a31 − 0)

2
+ (a32 − 2)

2
+ (a33 − 1)

2
+ (a34 + 30)

4
(113)
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