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In this supplementary material, we first prove Lemma 1 and Theorem 1 in this paper, then some
implementation details are discussed. At last, additional experimental results are also presented in
this material.

1 Reweighted Method on Symmetric ℓ2,1-norm

Lemma 1 The proximal problem M ′
k = argminM∈Sd

1
2∥M − Vk∥2F + λ∥M∥2,1 can be solved by

updating diagonal matrixes D1 and D2 and symmetric matrix M alternatively:

{D1,ii =
1

2∥mi∥2
, D2,ii =

1

2∥mi∥2
}di=1 ; vec(M) = (I ⊗ (I +

λ

2
D1)+ (

λ

2
D2 ⊗ I))−1vec(Vk) ,

where vec(·) is the vector form of a matrix and ⊗ means the Kronecker product. Due to the diagonal
property of each term, the update of M can be further simplified.

Proof sketch: When the row and column sparsity of a metric is needed, the regularizer of each met-
ric can be set as ℓ2,1-norm, i.e., Ωk(Mk) = ∥Mk∥2,1. In both alternative and stochastic optimization
processes, solving ℓ2,1-norm under symmetric constraint can be transformed to the following proxi-
mal sub-problem:

M = argmin
M∈Sd

1

2
∥M − V ∥2F + λ∥M∥2,1 . (1)

For simplicity, M is used to denote a certain metric in MK , and V is the intermediate solution
after the gradient descent. The PSD property of a metric can be preserved by a projection after
each iteration or a last-step projection [3]. Thus, only symmetric constraint is considered here, i.e.,
M ∈ Sd. Since ℓ2,1-norm is the sum of ℓ2-norm on each row of M , which violates the symmetric
requirement of a metric, directly optimizing may be time-consuming in some cases [7]. Taking
symmetry into consideration, we reformulate the problem in Eq.1 as follows:

M = argmin
M∈Sd

1

2
∥M − V ∥2F +

λ

2
∥M∥2,1 +

λ

2
∥M⊤∥2,1 . (2)

The impact of ℓ2,1-norm is shared on M and M⊤ equally. Taking the derivative of Eq. 2 w.r.t. M
and set it to zero, we can get:

M − V +
λ

2
D1M +

λ

2
MD2 = 0 . (3)

Both D1 and D2 are diagonal matrixes of size d × d, and the (i, i)-th elements in D1 and D2 are
a1i = 1

2∥mi∥2
and a2i = 1

2∥mi∥2
, respectively. Thus, D1 and D2 consider ℓ2-norm values from

both rows and columns of M . Eq. 3 is a Sylvester equation, which has a high computational cost
when solved with off-the-shelf tools. To accelerate, we consider the closed form results based on
Kronecker product ⊗, which comes to the result of Lemma 1:

vec(M) = (I ⊗ (I +
λ

2
D1) + (

λ

2
D⊤

2 ⊗ I))−1vec(V ) . (4)
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vec(·) means the vectorization of a matrix. It is notable that all terms in the inverse operation are
in diagonal forms, namely D1, D2 and identity matrix I . So the inverse is not on a matrix but on a
scalar. The (i, j)-element in M can be calculated as:

Mij = Vij/((1 +
λ

2
a1j ) +

λ

2
a2i ) . (5)

Since metric M can keep symmetry in each iteration, this update flow is symmetric projection free.
Thus, a1i = a2i , which further simplifies the computation. Since D1 and D2 in the closed form
update of M in Eq. 4 also depend on the current solution of M , both M and D1/D2 should be
updated alternatively. The convergence of this reweighted method can be easily proved [8] and is
validated in our additional experiments in section 4.1. In our implementation, it usually converges
in about 5∼10 iterations.

2 Proof of Theorem 1

Theorem 1 Suppose in the UM2L framework, the loss ℓ(·) is a convex one and the selection operator
κv in a piecewise linear form. If each training instance ∥x∥2 ≤ 1, the sub-gradient set of Ωk(·) is
bounded by R, i.e., ∥∂Ωk(Mk)∥2F ≤ R2 and sub-gradient of loss ℓ(·) is bounded by C. When for
each base metric1 ∥Mk −M∗

k∥F ≤ D, it holds that:

S∑
s=1

Ls
Ms

K
− Ls

M∗
K
≤ 2GD +B

√
S

with G2 = max(C2, R2) and B = (D
2

2 + 8G2). Given hinge loss, C2 = 16.

Proof sketch: First we review notations in the above theorem. Then we figure out the relationship
between two successive updates followed by the proof on the bound of sub-gradient updates.

Suppose there are totally S iterations, in s-th iteration, the optimization problem becomes:

Ls
Mk

= ℓsMs
K
+ λ

K∑
k=1

Ωk(M
s
k) = ℓ(f1(xs,ys)− f2(xs, zs)) + λ

K∑
k=1

Ωk(M
s
k), (6)

which is a loss function with one triplet plus regularizer for each metric. Without loss of generality,
we assume in the s-th iteration, triplet s is sampled. Ms

K = {Ms
1 , . . . ,M

s
K} is the solution of

current iteration, and M∗
K = {M∗

1 , . . . ,M
∗
K} is the optimal solution over all iterations. After a

gradient or a sub-gradient descent on the loss function, the k-th metric is updated as:

M
s+ 1

2

k = Ms
k − γs∇s

1,k . (7)

γs is current step-size and ∇s
1,k is the sub-gradient of loss w.r.t. Mk. For example, when smooth

hinge loss is used, as Eq. 3 in the main text, ∇s
1,k = ∇s

Mk
(as). Then a proximal sub-problem is

solved to get a further update [4]:

Ms+1
k = argmin

M∈Sd

1

2
∥M −M

s+ 1
2

k ∥2F + γsλΩ(M). (8)

Since Ms+1
k is the minimization of proximal subproblem in Eq. 8, we have:2

0 ∈ Ms+1
k − (Ms

k − γs∇s
1,k) + γs∇s+1

2,k ,

where ∇s+1
2,k ∈ ∂λΩ(Ms+1

k )

∂Ms+1
k

is one of the sub-gradient of the regularizer. Thus the iteration equality
relationship between two successive solutions is:

Ms+1
k = Ms

k − γs∇s
1,k − γs∇s+1

2,k .

1This condition generally holds according to the norm regularizer in the objective function.
2For Mk in Sd, symmetric of Mk can be guaranteed by the gradient of Eq. 1 with Ω(M) configured as

symmetric norms, e.g., trace norm or 1
2
(∥M∥2,1+∥M⊤∥2,1), therefore 0 can be a valid sub-gradient of the

objective function in proximal subproblem.

2



Since ℓsMs
K

is convex for each metric Ms
1 , . . . ,M

s
K , together with the convexity of Ωk(M

s
k), we can

get [6]:

ℓsMs
K
−ℓsM∗

K
+ λ

K∑
k=1

[
Ωk(M

s+1
k )− Ωk(M

∗
k )
]

≤
K∑

k=1

⟨
∂ℓsMs

K

∂Ms
k

,Ms
k −M∗

k

⟩
+

⟨
∂Ωk(M

s+1
k )

∂Ms+1
k

,Ms+1
k −M∗

k

⟩

=
K∑

k=1

⟨
∇s

1,k,M
s
k −M∗

k

⟩
+

⟨
∇s+1

2,k ,Ms+1
k −M∗

k

⟩
. (9)

To bound the r.h.s. of above inequality, it is noticed that:

∥Ms+1
k −Ms

k∥2F = ∥Ms
k − γs∇s

1,k − γs∇s+1
2,k −M∗

k∥2F
≤ ∥Ms

k −M∗
k∥2F − 2γs

⟨
Ms

k −M∗
k ,∇s

1,k

⟩
− 2γs

⟨
Ms+1

k −M∗
k ,∇s+1

2,k

⟩
+ (γs)2∥∇s

1,k +∇s+1
2,k ∥2F − 2γs

⟨
Ms

k −Ms+1
k ,∇s+1

2,k

⟩
. (10)

Now the goal transforms to bound the last two terms of Eq. 10. Given condition ∥∇s
1,k∥2 ≤ C2 and

∥∇s
2,k∥2 ≤ R2, we can bound both of above two terms with 4(γs)2G2 and G2 = max(C2, R2).

When hinge loss is used, the loss function in the s-th iteration becomes:

ℓsMs
K
=

[
1 + Dis2Mks

1,∗
(xs,ys)−Dis2Mks

2,∗
(xs, zs)

]
+

,

which is linear on Mk. Due to the constraint of each instance, i.e., ∥x∥2 ≤ 1, we have ∥∇s
1,k∥2F ≤

C2 = 16 in this case.

Plug the above relationship into Eq. 9, and sum up the loss difference for s = 1, . . . , S:

S∑
s=1

Ls
Ms

K
−

S∑
s=1

Ls
M∗

K

=
S∑

s=1

ℓsMs
K
−

S∑
s=1

ℓsM∗
K
+ λ

S∑
s=1

K∑
k=1

[
Ωk(M

s+1
k )− Ωk(M

∗
k )
]
−

K∑
k=1

[
Ωk(M

S+1
k )− Ωk(M

1
k )
]

≤ GD + 4G2
S∑

s=1

γs +
S∑

s=1

1

2γs
(∥Ms

k −M∗
k∥2F − ∥Ms+1

k −M∗
k∥2F ).

By setting step size γs = 1√
s

and using telescope sum [4], we can get the final result as in the
Theorem 1.

3 Implementation Details

UM2L is optimized in an alternative style, i.e., fixing metric set MK when optimizing affiliation por-
tion, and vice versa. We initialize the metric affiliation portion for each instance first. To determine
the affiliation portion is to find which metric in MK to use for a pair of instances in a particular
triplet. GMM or KMeans is conducted on data with the component number the same as K set in
UM2L. Thus, each instance can be represented as a vector of length K. Elements in this vector
can be regarded as a type of affiliation score of each component. Comparison between these coding
values indicates which component illustrating the similar/dissimilar relationship. For instance, in
Apical Dominating Similarity (ADS) with κ1 = κ2 = max(·), given similar pair (x,y) with coding
vector (x̄, ȳ), the initial metric of this pair is selected by:

k = argmax
k

min(x̄, ȳ) .

The selection can be interpreted as a two-stage process. First, a similarity value between instances
based on K components is calculated in a Histogram Intersection Kernel (HIK) style [9], where
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instances are similar based on some metric only when both of their affiliations are not small w.r.t. a
certain component. Second, a metric is selected based on the largest pair-similarity value.

For stochastic optimization, according to [4], we have a general theorem as following for further
accelerating the stochastic solution by deferring proximal steps.

Theorem 2 If mŜ is the solution after solving a succession of Ŝ self-similar proximal optimization
problems for s = 1, . . . , Ŝ as following:

ms = argmin
m

1

2
∥m−ms−1∥+ λs∥m∥q,

and m∗ is the optimal solution for the accumulated proximal problem:

m∗ = argmin
m

1

2
∥m−m0∥+

Ŝ∑
s=1

λs∥m∥q.

Then for q ∈ {1, 2,∞}, mŜ and m∗ should be identical.

With this theorem, for some frequently used norms we can use a lazy update rule which only per-
forms proximal operator after a number of sub-gradient descent operations rather than solving the
proximal sub-problem once the sub-gradient operation is finished.

Four types of similarity with UM2L are discussed, namely Apical Dominating Similarity (ADS),
One Vote Similarity (OVS), Rank Grouping Similarity (RGS) and Average Case Similarity (ACS),
which have different optimization properties. The RGS and ACS are convex and thus alternative
approach can get global optimal solutions. The OVS is a non-convex one, whose results depend on
initializations. The ADS is a semi-convex problem [5], i.e., the objective of ADS is convex when
the affiliations of similar pairs in triplets are fixed. To better utilize the semi-convex property, we
compute only the affiliations of similar pairs in the initialization phase and following an alternative
process. Since when these affiliations are fixed, the whole problem becomes a convex one even there
still exists a max(·) operator. Therefore, both the metric set MK and the affiliations of dissimilar
pairs can be jointly optimized.

4 Additional Experimental Results

To show different properties of UM2L, some more experimental settings and results are described
in this section. Our experiments are performed on a cluster of 32 machines, each of which has four
6-core 2.53GHz CPUs and 48G RAM.

4.1 Convergence of Reweighted Method on Symmetric ℓ2,1-norm

Since ℓ2,1-norm is often used to force row/column sparsity on learned metrics, we first validate the
convergence property of the reweighted method proposed in Section 1. Given different sizes of input
metrics, we test the change of the objective function in Eq. 2. Two sizes of metrics are showed in
Fig. 1: the first is a 20× 20 metric (a) and the second is of size 200 (b).

It can be found that: First, the reweighted method converges at last; Second, this method converges
very quickly and the time to converge may depend on the size of the input. The larger the metric
the more iterations it needs to converge. When the dimension is low, it can converge in about 5
iterations. While with a larger input of size 200, the objective value converges in about 10 iterations.

In addition, on the larger size input, time comparison is conducted between the reweighted method
and the symmetric iterative projection one in [7]. We force the two methods to achieve nearly the
same objective value in Eq. 1 at last and the time comparison is conducted 100 times in total. The
average convergence time (in second) for reweighted one and symmetric projection one are 0.0093
(0.0012) and 0.0665 (0.0023) respectively. Values in brackets are standard deviations of the 100-time
values. This result shows our reweighted solver can be more efficient when dealing with ℓ2,1-norm
regularization on metrics, since it takes norm on row and column into consideration simultaneously
and is symmetric projection free.
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(a) small metric (b) large metric

Figure 1: Convergence results of the reweighted method on symmetric ℓ2,1-norm. Changes of ob-
jective values on two different sizes (dimensions) of input metrics are showed.

4.2 Comparison on Classification Performance

To test the classification ability of UM2L, comparisons with state-of-the-art DML methods are con-
ducted on some larger datasets. 3NN is used to test the performance of each method. Each dataset
is randomly split into three parts, 40% for training, 30% for validation, and the rest is for test. Each
method first tunes parameters on the validation set and retrains the model with the best parameters
on the combination of training and validation data, then the model is used for test.

For UM2L, Apical Dominating Similarity (ADS) and Rank Grouping Similarity (RGS) specifica-
tions are used. For the first one, it tries to explain similarity between instances with different seman-
tics or local reasons. For the latter one, it can be regarded as rigorous constraints on each learned
metric that given triplets should be satisfied over all learned metrics. Thus, it will facilitate the last
prediction process with MK . The results are showed in Fig. 2. Four groups of methods, namely
UM2L, local DML, global DML and baseline kNN with Euclidean distance (denoted as EUCLID),
are separated by spaces. For local DML methods, the number of metrics is set the same as the num-
ber of classes. If a method cannot give a result in 24 hours, we set its test error the same as the worst
one in the others and denote it as “N/A”.

From comparison results, UM2LADS/RGS can achieve best results on 7/8 datasets. In general, the
RGS version performs better, but it may overfit sometimes, e.g., in Reut8. MMLMNN, a local metric
learning method which trains a metric for each cluster, is also competitive on most datasets since
it considers the spatial linkages between heterogeneous instances. SCML (local version) first con-
structs bases from data and then builds a parametric function to assign metric for each instance. The
performance of SCML depends on the bases selection and optimization process. The results of SCA
are not stable, since its optimization may fall into local optimal, which highly depends on the ini-
tialization. ISD and PLML consume a lot on large datasets. In particular, ISD, which learns a metric
for each instance in a transductive way and has a high computational burden, intends to overfit in
most cases. The global metric learning methods, i.e., ITML, EIG and LMNN can also get satisfied
results. In summary, Local DML methods have the ability to cover space and semantic locality in
the learning process, which leads to better performance compared with global DML methods. But
they are prone to overfit when the dimensionality is low, e.g., on Page_blocks.

More investigations are conducted to reveal the influences of the number of metrics on classification
performance. Fig. 3 gives test errors on different datasets when UM2LADS/RGS are provided with
different number of metrics. From the results, we can find that there are turning points on perfor-
mance curves, i.e., when the number of metrics increases, the test error decreases at first and then
increases. This could be attributed to the model complexity: the model becomes powerful with the
number of metrics increase, and then it is prone to overfitting. From the empirical results, it is sug-
gested that by configuring K (the number of metrics) close to the number of classes C (when the
number of latent semantics is known), the model can return satisfactory results in most cases.
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N/A N/A

(a) Letter (b) Optdigits (c) Page_blocks

N/A

(d) Pendigits

N/A N/A N/A

(e) Reut8 (f) Spambase
N/A N/A N/A

(g) USPS (h) Waveform
EUCLID

Figure 2: Classification test error of UM2L with other DML methods on 8 datasets. UM2L based on
ADS and RGS are placed at first. Followings are local and global based methods. Last is Euclidean
3NN baseline. Groups are separated by spaces.

(a) Autompg (C=3) (b) Clean1 (C=2) (c) Liver-disorders (C=2)

(d) Page_blocks (C=5) (e) Pendigits (C=10) (f) Sonar (C=2)

Figure 3: The change of classification performance (test error rate) when the number of metrics
learned in UM2LADS and UM2LRGS is changed. Bracket after the name of each dataset shows the
number of classes (C).
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(a) LMNN metric (b) PLML metric 1 (c) PLML metric 2 (d) MMLMNN 1

(e) MMLMNN 2 (f) MMLMNN 3 (g) SCA metric 1 (h) SCA metric 2

(i) SCA metric 3 (j) SCA metric 4 (k) SCA metric 5 (l) SCA metric 6

(m) UM2LADS metric 1 (n) UM2LADS metric 2 (o) UM2LADS metric 3 (p) UM2LADS metric 4

(q) UM2LADS metric 5 (r) UM2LADS metric 6 (s) UM2LOVS metric 1 (t) UM2LOVS metric 2

(u) UM2LOVS metric 3 (v) UM2LOVS metric 4 (w) UM2LOVS metric 5 (x) UM2LOVS metric 6

Figure 4: Word clouds generated from the results of compared DML methods. The size of word
depends on the importance weight of each word (feature). The weight is calculated by decomposing
each metric Mk = LkL

⊤
k , and calculate the ℓ2-norm of each row in Lk, where each row corresponds

to a specific word. Each subplot gives a word cloud for a base metric learned from DML approaches.
LMNN learns a global metric, therefore there is only one subplot for it. Metric bases learned by
PLML is similar to each other, so we only present two of them. MMLMNN by default learns 3
metrics, which is the same as the number of classes. SCA and UM2L both learn 6 metrics.

4.3 Comparisons of Latent Semantic Discovering

To investigate the ability of latent semantics discovering for UM2L, two assessments in real appli-
cations are performed, i.e., Academic Paper Linkages Explanation (APLE) and Image Weak Label
Discovering (IWLD).

For APLE, we test UM2LADS/OVS on a four-year ICML paper dataset. We use real-valued TF-
IDF features and each feature corresponds to a word in the paper corpus. The metric learned by
DML reveals a type of weights on different features. Given a learned metric Mk, we first do a
decomposition Mk = LkL

⊤
k , and the ℓ2-norm value of each row of L can be regarded as the weight

for each feature (word). Thus, local metric learning methods can get multiple metrics (weights of
words) for different semantics. Results of each method are demonstrated in word clouds in Fig. 4,
where the size of a word is in proportion to its weights.

Besides the results of global metric learning methods LMNN, local methods PLML, MMLMNN and
our proposed UM2LOVS, the results of SCA and UM2LADS are added. The number of metrics
learned by SCA is also set to 6. SCA can discover some key words in “online learning” and “deep
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(a) (sea, mountain) (b) (mountain, sea) (c) (plant, sunset) (d) (sunset, plant)

(e) (plant, mountain) (f) (plant, mountain) (g) (sunset, mountain) (h) (desert, sunset)

(i) (plant, sunset) (j) (mountain, plant) (k) (desert, mountain) (l) (desert, plant)

Figure 5: Results of visual semantic discovery on images. The first annotation in the bracket is the
provided weak label, and the second one is one of the latent semantic labels discovered by UM2L.

learning” fields, such as “reward”, “bound” and “adversary” about online learning as well as “GPU”,
“layer” for deep learning. For UM2LADS, 3 main session semantics are also discovered, but weights
of words are different from UM2LOVS. From subplot (m), the main topic should be domain adap-
tation, which can be related to transferrable feature learning in deep learning researches. Subplots
(n), (o) and (q) are all about feature learning but with different subfields, i.e., (n) should be mainly
about structure feature learning in DML, and pairwise constraints between items are emphasized; (o)
is about manifold learning in feature construction and (q) is about subspace learning and dimension-
ality reduction in feature learning, with the key word “eigenvector” being emphasized. Subplot (p)
is related with deep learning, the word cloud clearly shows the item “network layer”, “RBM”, etc.
The last subplot (r) is definitely about online learning, with key words “arm”, “optimal”, “bandit”
and “regret”. It is notable that latent semantics are discovered from leaned metric, which validate
the discriminative ability of UM2L over semantics. It will benefit some subsequent tasks such as
classification.

Besides APLE, UM2L can also be applied to Image Weak Label Discovering (IWLD). For an image,
there may be multiple complex semantics. The linkage between two images may only depend on one
of their shared semantic, while the disconnection between two images may also lie in a particular
semantic. We use an image dataset from [10] and the original dataset contains five labels, namely:
desert, mountain, sea, sunset, and plant. For each image, we select its most obvious label and
transform this dataset such that each instance only has a single label. Thus, in this case, although
images are with plenty of latent semantics, similarities between images are just based on one of them.
By computing similarities based on different learned metrics, latent semantics can be discovered, i.e.,
if we assume images connected with high similarities share the same label, missing labels can be
completed.

In our experiments, UM2LOVS is used with regularizer Ωk(Mk) = ∥Mk − I∥2F to avoid trivial
solutions. Results of IWLD are showed in Fig. 5, where the image annotations in brackets indicate
the pair of training label and discovered label. One image may have complex semantics. For instance,
image (b) is about a lake beside a mountain and image (j) is a picture of mountains and trees. They
are similar since both of them have mountains (similar since they are computed with the metric for
semantic “mountain”). Image (a) is also about mountains, but the lake is more obvious. Given the
training label “sea”, it is hard to link with pictures with “mountains”. UM2LOVS can learn multiple
metrics, one for each semantic. If images (a) and (b) are dissimilar in the supervision triplets,
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(a) MVTE View1 (b) MVTE View2 (c) SCA View1 (d) SCA View2 (e) SCA Noisy View1

(f) SCA Noisy View2 (g) UM2LADS Noisy View1 (h) UM2LADS Noisy View2 (i) UM2LRGS Noisy View1 (j) UM2LRGS Noisy View2

Figure 6: Subspaces discovered by MVTE (a,b) given original triplets by and SCA (c,d) with triplets
and data, respectively. Subspaces discovered by SCA, UM2LADS and UM2LRGS under noisy data
and original triplets are showed in (e) - (j). Instances possess 2 semantic properties, i.e., color and
shape. Blue dot-lines give the decision boundary (best viewed in color).

UM2LOVS finds one metric (may be about “sunset”) to explain their disconnection, and does not
deny their similarity over metrics about “sea” and “mountain”.

4.4 Investigations of Latent Multi-View Detection

This subsection gives more results on the ability of latent multi-view detection for UM2L. Trace
regularizer is used to get low rank projections with the learned metrics. Original data come from [1]
and there are two views (semantics), namely, the color view and the shape (circle and cross in the
following figures) view. Triplets are generated from original data as side information and feature
used are the combination of two views. The number of learned metrics is set to 2.

MVTE [1] generates 2-D representation of data only based on triplets, which gives 2-view results
in subplot (a) and (b) in Fig. 6. It can be found that these two representations of data correspond
to shape and color, respectively. However, there are some outliers, which reduce the discriminative
ability in each view. SCA [2] is also compared. With linkages from triplets and combined original
features, it can produce two low rank projections and get results in Fig. 6 (c) to (d). View1 reflects the
shape semantic and View2 shows the color one. Together with the results of 2-view representations
of UM2LADS/RGS in the main text of this paper, it can be found that UM2L can construct semantic
low rank representations of combined data. Moreover, methods learning with side information as
well as combined features such as UM2L and SCA can find better representations.

To better compare UM2L and SCA, we test them under a noisy environment. By concatenating
original data with 10 dimension random noise from [0,1], both methods learn projections together
with true triplet information under this difficult environment. Results of UM2LADS and SCA are
showed in subplots (e) - (h) in Fig. 6. In this hard scenario, SCA can find the color view as well,
but in shape view (View2, (f)), two shapes are not easy to determine, especially for instances near
the boundary. UM2LADS still finds color and shape views, and its projections are easy for boundary
determination. Thus, UM2L is robust to noise. It can extract useful features to explain the given
triplet constraints and discover different semantics.

UM2L with RGS is also tested on the noisy data. Different from the ADS version which assumes dif-
ferent views possess different semantics to build a linkage, RGS version restricts similar/dissimilar
consistency among all views. The noisy results from Fig. 6 (i) (j) are different from the result in
the main paper. In Fig. 3 (c) in the main text, both color and shape linkages can be explained in
a 2-D projection learned by UM2LRGS. In this noisy case which is hard to classify in both views,
UM2LRGS generates two different views. It is notable that the results of UM2LRGS not only reflect
two views of data (color and shape) but also have high discriminative ability, which results from the
rigorous constraints of UM2LRGS.
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