
Algorithm 4 SEQUENTIAL_DETECTION_RUN(examples as X , false_negative_loss)
1: Let max_value = 1
2: for i = 1 to LEN(examples) do
3: max_value← MAX(max_value, examples[i].label)
4: Let max_prediction = 1
5: for i = 1 to LEN(examples) do
6: max_prediction← MAX(max_prediction, PREDICT(x=examples[i], y=examples[i].label)) // maintain

max
7: if max_label > max_prediction then
8: LOSS(false_negative_loss) // The loss is asymmetric
9: else

10: if max_label < max_prediction then
11: LOSS(1)
12: else
13: LOSS(0)
14: if output.good then
15: output « max_prediction // if we should generate output, append our prediction

Algorithm 5 ENTITY_RELATION_RUN(sent as X)
1: output← INITIALIZE_STRUCTURE()
2: K← NUMBER_OF_ENTITIES(sent)
3: for n = 1 to K do
4: ref ← sent.entity_type[n]
5: output.entity_type[n]← PREDICT(x=sent.entity[i], y=ref , tag=n
6: LOSS(output.entity_type[n] 6= sent.entity_type[n].true_label)
7: for n = 1 to K-1 do
8: for m = n+1 to K) do
9: ref ← sent.relation_type[n,m].true_label

10: valid_relations← FIND_VALID_RELATIONS(output.entity_type[n], output.entity_type[m])
11: output.relation_type ← PREDICT(x=sent.relation[n,m], y=ref , tag=K*(n+1)+m,

valid_labels=valid_relations, condition=[n,m])
12: LOSS(output.relation_type[n,m] 6= sent.entity_type[n,m].true_label)
13: return output

Supplement: Credit Assignment Compiler for Joint Prediction

A Example TDOLR programs

In this section, a few other TDOLR programs which illustrate the ease and flexibility of program-
ming.

Algorithm 4 is for a sequential detection task where the goal is to detect whether or not a sequence
contains some rare element. This illustrates outputs of lengths other than the number of examples,
explicit loss functions.

Algorithm 5 provides an implementation for jointly assigning types to name entities in a sentence
and recognizing relations between them [43]. Besides features used for predicting entity and relation
types. We also consider constraints that ensure the entity-type assignments and relation-type assign-
ments are compatible with each other. For example, the first argument of the work_for relation need
to be tagged as person, and the second argument has to be an organization.

Finally, in Algorithm 6, we show an implementation of a shift-reduce dependency parser for natural
language. We discuss each subcomponent below. The detailed introduction to dependency parsing
is provided in the next section.

• GETVALIDACTION returns valid actions that can be taken by the current configuration.

• GETFEAT extracts features based on the current configuration. A detailed list of our fea-
tures is in the supplementary material.

10

Algorithm 6 RUNPARSER(sentence as X)
1: stack S← {Root}
2: buffer B← [words in sentence]
3: arcs A← ∅
4: while B 6= ∅ or |S| > 1 do
5: ValidActs← GETVALIDACTIONS(S,B)
6: features← GETFEAT(S,B,A)
7: ref ← GETGOLDACTION(S,B)
8: action← PREDICT(x=features, y=ref, ValidActs)
9: S,B,A← TRANS(S,B,A, action)

10: LOSS(A[w] 6= A∗[w], ∀w ∈ sentence)
11: return output

Action Configuration
Stack Buffer Arcs

[Root] [Flying planes can be dangerous] {}
SHIFT [Root Flying] [planes can be dangerous] {}
REDUCE-LEFT [Root] [planes can be dangerous] {(planes, Flying)}
SHIFT [Root planes] [can be dangerous] {(planes, Flying)}
REDUCE-LEFT [Root] [can be dangerous] {(planes, Flying), (can, planes)}
SHIFT [Root can] [be dangerous] {(planes, Flying), (can, planes)}
SHIFT [Root can be] [dangerous] {(planes, Flying), (can, planes)}
SHIFT [Root can be dangerous] [] {(planes, Flying), (can, planes)}
REDUCE-RIGHT [Root can be] [] {(planes, Flying), (can, planes), (be, dangerous)}
REDUCE-RIGHT [Root can] [] {(planes, Flying), (can, planes), (be, dangerous), (can, be)}
REDUCE-RIGHT [Root] [] {(planes, Flying), (can, planes), (be, dangerous), (can, be), (Root, can)}

Root Flying planes can be dangerous Root Flying planes can be dangerous

Parse tree derived by the above parser Gold parse tree

Figure 5: An illustrative example of an arc-hybrid transition parser. The above table show the actions
taken and the intermediate configurations generated by a parser. The parse tree derived by the parser
is in the bottom left, and the gold parse tree is the bottom right. The distance between these two
trees is 2.

• GETGOLDACTION implements the dynamic oracle described in [19]. The dynamic oracle
returns the optimal action in any state that leads to a reachable end state with the minimal
loss.
• PREDICT is a library call implemented in the L2S system. Given training samples, L2S can

learn the policy automatically. In the test phase, it returns a predicted action leading to an
end state with small structured loss.
• TRANS implements the hybrid-arc transition system described above.
• LOSS returns the number of words whose parents are wrong. It has no effect in the test

phase.

We show that this parser achieves strong results across ten languages from the CoNLL-X challenge
and performs well on two standard evaluation data sets, and requires only about 300 lines of readable
C++ code.

B Dependency Parsing

In the following, we provide a brief overview of transition-based dependency parsing. A transition-
based dependency parser takes a sequence of actions and parses a sentence from left to right by
maintaining a stack S, a buffer B, and a set of dependency arcs A. The stack maintains partial
parses, the buffer stores the words to be parsed, and A keeps the arcs that have been generated so
far. The configuration of the parser at each stage can be defined by a triple (S,B,A). For the ease of
notation, we use wp to represent the leftmost word in the buffer and use s1 and s2 to denote the top
and the second top words in the stack. A dependency arc (wh, wm) is a directed edge that indicates
word wh is the parent of word wm. When the parser terminates, the arcs in A form a projective
dependency tree. We assume that each word only has one parent in the derived dependency parse

11

Algorithm 7 TRANS(S, B, A, action)
1: Let wp be the leftmost element in B
2: if action = SHIFT then
3: S.push(wp)
4: remove wp from B
5: else if action= REDUCE-LEFT then
6: top← S.pop()
7: A← A∪ (wp,top)
8: else if action = REDUCE-RIGHT then
9: top← S.pop()

10: A← A∪ (S.top(), top)
11: return S,B,A

tree, and use A[wm] to denote the parent of word wm. For labeled dependency parsing, we further
assign a tag to each arc representing the dependency type between the head and the modifier. For
simplicity, we assume an unlabeled parser in the following description. The extension from an
unlabeled parser to a labeled parser is straightforward, and is discussed at the end of this section.

In the following, we describe an arc-hybrid transition system due to its simplicity. The arc-eager
system used in the experiments share the same spirit. In the initial configuration, the buffer B
contains all the words in the sentence, a dummy root node is pushed in the stack S, and the set of
arcs A is empty. The root node cannot be popped out at anytime during parsing. The system then
takes a sequence of actions until the buffer is empty and the stack contains only the root node (i.e.,
|B| = 0 and S = {Root}). When the process terminates, a parse tree is derived. At each state, the
system can take one of the following actions:

1. SHIFT: push wp to S and move p to the next word. (Valid when |B| > 0).

2. REDUCE-LEFT: add an arc (wp, s1) to A and pop s1. (Valid when |B| > 0 and |S| > 1).

3. REDUCE-RIGHT: add an arc (s2, s1) to A and pop s1. (Valid when |S| > 1).

Algorithm 7 shows the execution of these actions during parsing, and Figure 5 demonstrates an
example of transition-based dependency parsing.

C Additional Experiment Results

C.1 Sequential Tagging

In Figure 6, we enlarge the figures in 3 and provide the results of NER with default parameters.

C.2 Dependency Parsing

Table 2 show the complete experiment results for dependency parsing. The system is evaluated on
both unlabeled attachment score (UAS) and labeled attachment score. Again, conducting fair com-
parisons across different systems is difficult because different systems use different sets of features
and different assumptions about the structure of languages. Table 3 summarizes the differences.

D Experiment details

D.1 Datasets and Tasks

We conduct experiments based on two variants of the sequence labeling problem (Algorithm 1) The
first is a pure sequence labeling problem: Part of Speech tagging based on data from the Wall Street
Journal portion of the Penn Treebank. The second is a sequence chunking problem: named entity

19(∗) SNN makes assumptions about the structure of languages and hence obtains substantially worse perfor-
mance on languages with multi-root trees. (+) Languages contains more than 1% non-projective arcs, where a
transition-based parser (e.g. L2S) likely underperforms graph-based parser (Best) due to the model assump-
tions. (#) Numbers reported in the published papers [8, 16, 2].

12

Figure 6: Training time versus evaluation accuracy for part of speech tagging (left) and named
entity recognition (right). X-axis is in log scale. Different points correspond to different termination
criteria for training. Top figures use hyperparameters that were tuned (for accuracy) on the holdout
data. (Note: lines are curved due to log scale x-axis.)

Parser AR BU CH CZ+ DA DU+ JA+ PO+ SL+ SW PTB CTB

UAS

DYNA 75.3 89.8 88.7 81.5 87.9 74.2 92.1 88.9 78.5 88.9 90.3 80.0
SNN 67.4∗ 88.1 87.3 78.2 83.0 75.3 89.5 83.2∗ 63.6∗ 85.7 91.8# 83.9#

L2SO 75.3 89.5 87.4 81.1 86.0 75.3 90.4 88.4 78.5 89.9 91.9 85.1
L2S 78.2 92.0 89.8 84.8 89.8 79.2 91.8 90.6 82.2 89.7 91.9 85.1
Best 79.3 92.0 93.2 87.30 90.6 83.6 93.2 91.4 83.2 89.5 94.4# 87.2#

LAS

DYNA 64.3 85.0 84.6 74.1 82.5 70.3 90.6 85.0 68.5 83.5 88.1 78.8
SNN 51.7∗ 84.0 82.7 77.4 72.0 89.1 87.4 ∗ 77.9 ∗ 51.1∗ 80.1 89.6# 82.4#

L2SO 65.1 85.0 80.8 74.5 81.0 72.1 88.4 84.4 69.4 85.2 89.7 83.6
L2S 68.2 88.2 87.1 79.6 84.9 75.8 89.7 87.8 74.0 84.9 89.7 83.6
Best 66.9 87.6 90.0 80.2 84.8 79.2 91.7 87.6 73.4∗ 84.6 92.55# 85.7#

Table 2: Accuracy on PTB, CTB and CoNLL-X. Best: best results from the shared task. Best: the
best results reported in CoNLL-X (may come from different participants) and the best published
results (CTB,PTB). L2SO, DYNA, SNN use only features generated by word and POS tags, while
L2S and the models in CoNLL-X use additional morphologic features. L2S models use Brown
cluster for PTB, DYNA and the Best use word embedding features generated from unsupervised
text corpus with billion words. The Best models also used word embedding features for CTB.19

13

Parser AR BU CH CZ+ DA DU+ JA+ PO+ SL+ SW PTB CTB

DYNA r r r r r T T
SNN r’ r r r r’ r’ T T
L2SO r r r r r T T
L2S M M M rM M rM rM rM rM M ET T
Best TM TM TM TM TM TM TM TM TM TM ET ET

Table 3: T: tuned hyper-parameters, M: use morphological features, E: use word embedding or
word clustering, r: language structure assumption that may degrades the performance (the nature
of transition-based model), r’: strong language structure assumption (only one head) that severely
degrades the performance. Accuracy on PTB, CTB and CoNLL-X. Best: best results from the shared

Training Holdout Test
Sents Toks Labels Features Unique Fts Sents Toks Sents Toks

POS 38k 912k 45 13,685k 629k 5.5k 132k 5.5k 130k
NER 15k 205k 7 8,592k 347k 3.5k 52k 3.6k 47k

Table 4: Basic statistics about the data sets used for part of speech (POS) tagging and named entity
recognition (NER).

recognition using data from the CoNLL 2003 dataset. See Figure 7 for example inputs and outputs
for these tasks.

Part of speech tagging for English is based on the Penn Treebank tagset that includes 45 discrete
labels. The accuracy reported represents number of tokens tagged correctly. This is a pure sequence
labeling task. Named entity recognition for English is based on the CoNLL 2003 dataset that in-
cludes four entity types: Person, Organization, Location and Miscellaneous. We use the standard
evaluation metric to report performance as macro-averaged F-measure. In order to cast this chunk-
ing task as a sequence labeling task, we use the standard Begin-In-Out (BIO) encoding, though
some results suggest other encodings may be preferable [37] (we tried BILOU and our accuracies
decreased). The example sentence from Figure 7 in this encoding is:

LOC︷ ︸︸ ︷
Germany ’s rep to the

ORG︷ ︸︸ ︷
European Union ’s committee

PER︷ ︸︸ ︷
Werner Zwingmann said . . .

B-LOC O O O O B-ORG I-ORG O O B-PER I-PER O

Dependency parser is test on the English Penn Treebank (PTB) and the CoNLL-X datasets for
9 other languages, including Arabic, Bulgarian, Chinese, Danish, Dutch, Japanese, Portuguese,
Slovene and Swedish. For PTB, we convert the constituency trees to dependencies by the Stanford
parser 3.3.0. We follow the standard split: sections 2 to 21 for training, section 22 for development
and section 23 for testing. The POS tags in the evaluation data is assigned by the Stanford POS
tagger, which has an accuracy of 97.2% on the PTB test set. For CoNLL-X, we use the given
train/test splits and reserve the last 10% of training data for development if needed. The gold POS
tags given in the CoNLL-X datasets are used. The CTB is prepared following the instructions in [8].

D.2 Methodology

Comparing different systems is challenging because one wishes to hold constant as many variables
as possible. In particular, we want to control for both features and hyperparameters. In general, if
a methodological decision cannot be made “fairly,” we made it in favor of competing approaches.

POS NNP NNP , CD NNS JJ , MD VB DT NN IN DT JJ NN

Pierre Vinken , 61 years old , will join the board as a nonexecutive director . . .

NER
LOC︷ ︸︸ ︷

Germany ’s rep to the

ORG︷ ︸︸ ︷
European Union ’s committee

PER︷ ︸︸ ︷
Werner Zwingmann said . . .

Figure 7: Example inputs (below, black) and desired outputs (above, blue) for part of speech tagging
task, named entity recognition task, and entity-relation recognition task.

14

To control for features, for the two sequential tagging tasks (POS and NER), we use the built-in
feature template approach of CRF++ (duplicated in CRF SGD) to generate features. The other ap-
proaches (Structured SVM, VW Search and VW Classification) all use the features generated (offline)
by CRF++. For each task, we tested six feature templates and picked the one with best development
performance using CRF++. The templates included neighboring words and, in the case of NER,
neighboring POS tags. However, because VW Search is also able to generate features from its
own templates, we also provide results for VW Search (own fts) in which it uses its own, internal,
feature template generation, which were tuned to maximize it’s holdout performance on the most
time-consuming run (4 passes) and include neighboring words (and POS tags, for NER) and word
prefixes/suffixes.20 In all cases we use first order Markov dependencies, which lessens the speed
advantage of search based structured prediction.

To control for hyperparameters, we first separated each system’s hyperparameters into two sets: (1)
those that affect termination condition and (2) those that otherwise affect model performance. When
available, we tune hyperparameters for (a) learning rate and (b) regularization strength21. Addition-
ally, we vary the termination conditions to sweep across different amounts of time spent training.
For each termination condition, we can compute results using either the default hyperparameters
or the tuned hyperparameters that achieved best performance on holdout data. We report both
conditions to give a sense of how sensitive each approach is to the setting of hyperparameters (the
amount of hyperparameter tuning directly affects effective training time).

One final confounding issue is that of parallelization. Of the baseline approaches, only CRF++
supports parallelization via multiple threads at training time. In our reported results, CRF++’s time
is the total CPU time (i.e., effectively using only one thread). Experimentally, we found that wall
clock time could be decreased by a factor of 1.8 by using 2 threads, a factor of 3 using 4 threads,
and a (plateaued) factor of 4 using 8 threads. This should be kept in mind when interpreting results.
DEMI-DCD (for structured SVMs) also must use multiple threads. To be as fair as possible, we used
2 threads. Likewise, it can be sped up more using more threads [6]. VW (Search and Classification)
can also easily be parallelized using AllReduce [1]. We do not conduct experiments with this option
here because none of our training times warranted parallelization (a few minutes to train, max).

For dependency parsing, we fixed the hyper-parameters when test on CoNLL-X. For CTB and PTB,
we tune the size of beam in beam search and the history length of predictions. For PTB, we further
use dictionary features from Brown cluster.

D.3 Hardware Used

All timing results were obtained on the same machine with the following configuration. Nothing
else was run on this machine concurrently:

% 2 * Intel(R) Core(TM)2 Duo CPU E8500 @ 3.16GHz
6144 KB cache
8 GB RAM, 4 GB Swap
Red Hat Enterprise Linux Workstation release 6.5 (Santiago)
Linux 2.6.32-431.17.1.el6.x86_64 #1 SMP

from Fri Apr 11 17:27:00 EDT 2014 x86_64 x86_64 x86_64 GNU/Linux

D.4 Software Used

The precise software versions used for comparison are:

CRF++ The popular CRF++ toolkit [27] for conditional random fields [28].
CRF SGD A stochastic gradient descent conditional random field package [4].
Structured Perceptron An implementation of the structured perceptron [9] due to [6].

•] The cutting-plane implementation [23] of the structured SVMs [47] for “HMM” prob-
lems.

Structured SVM (DEMI-DCD) A multicore algorithm for optimizing structured SVMs called DE-
coupled Model-update and Inference with Dual Coordinate Descent.

20The exact templates used are provided in the supplementary materials.
21Precise details of hyperparameters tuned and their ranges is in the supplementary materials.

15

Our approach is implemented in the Vowpal Wabbit [29] toolkit on top of a cost-sensitive
classifier [3] that reduces to regression trained with an online rule incorporating AdaGrad
[15], per-feature normalized updates [42], and importance invariant updates [24].

VW Classification An unstructured baseline that predicts each label independently, using one-
against-all multiclass classification [3].

• latest Vowpal Wabbit version (May 2016) commit
2dfb1225c8b89c14552932161b95237fc90b636c

• CRF++ version 0.58

• crfsgd version 2.0

• svm_hmm_learn version 3.10, 14.08.08
includes SVM-struct V3.10 for learning complex outputs, 14.08.08
includes SVM-light V6.20 quadratic optimizer, 14.08.08

• Illinois-SL version 0.2.2

D.5 Hyperparameters Tuned

The hyperparameters tuned and the values we considered for each system are:

CRF++

% termination parameters:
number of passes (--max_iter) { 2, 4, 8, 16, 32, 64, 128 }
termination criteria (--eta) 0.000000000001 (to prevent termination)

tuned hyperparameters (default is *):
learning algorithm (--algorithm) { CRF*, MIRA }
cost parameter (--cost) { 0.0625, 0.125, 0.25, 0.5, 1*, 2, 4, 8, 16 }

CRF SGD

% termination parameters:
number of passes (-r) { 1, 2, 4, 8, 16, 32, 64, 128 }

tuned hyperparameters (default is *):
regularization parameter (-c) { 0.0625, 0.125, 0.25, 0.5, 1*, 2, 4, 8, 16 }
learning rate (-s) { auto*, 0.1, 0.2, 0.5, 1, 2, 5 }

Structured SVM

% termination parameters:
epsilon tolerance (-e) { 4, 2, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001 }

tuned hyperparameters (default is *):
regularization parameter (-c) { 0.0625, 0.125, 0.25, 0.5, 1*, 2, 4, 8, 16 }

Structured Perceptron

% termination parameters:
number of passes (MAX_NUM_ITER) { 1, 2, 4, 8, 16, 32, 64, 128 }

tuned hyperparameters (default is *):
NONE

Structured SVM (DEMI-DCD)

% termination parameters:
number of passes (MAX_NUM_ITER) { 1, 2, 4, 8, 16, 32, 64, 128 }

tuned hyperparameters (default is *):
regularization (C_FOR_STRUCTURE) { 0.01, 0.05, 0.1*, 0.5, 1.0 }

L2S

termination parameters:
number of passes (--passes) { 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 4 }
(note: a number of passes < 1 means that we perform one full pass, but
subsample the training positions for each sequence at the given rate)

tuned hyperparameters (default is *):
base classifier { csoaa*}
interpolation rate 10^{-10, -9, -8, -7, -6 }

16

VW Classifier

termination parameters:
number of passes (--passes) { 1, 2, 4 }

tuned hyperparameters (default is *):
learning rate (-l) { 0.25, 0.5*, 1.0 }

E Templates Used

For part of speech tagging (CRF++):

U00:%x[-2,0]
U01:%x[-1,0]
U02:%x[0,0]
U03:%x[1,0]
U04:%x[2,0]

For named entity recognition (CRF++):

U00:%x[-2,0]
U01:%x[-1,0]
U02:%x[0,0]
U03:%x[1,0]
U04:%x[2,0]

U10:%x[-2,1]
U11:%x[-1,1]
U12:%x[0,1]
U13:%x[1,1]
U14:%x[2,1]

U15:%x[-2,1]/%x[-1,1]
U16:%x[-1,1]/%x[0,1]
U17:%x[0,1]/%x[1,1]
U18:%x[1,1]/%x[2,1]

(where words are in position 0 and POS is in 1)

Additional features for L2S (ft) on POS Tagging:

-- the left and the right tokens of each word
-- the first and the last 2 characters for each token

For L2S (ft) on NER:

-- the left and the right two tokens of each word
-- the POS tags of the left and the right tokens for each word
-- the last charaster for each token

17

