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Abstract

Utilizing the structure of a probabilistic model can significantly increase its learning
speed. Motivated by several recent applications, in particular bigram models
in language processing, we consider learning low-rank conditional probability
matrices under expected KL-risk. This choice makes smoothing, that is the careful
handling of low-probability elements, paramount. We derive an iterative algorithm
that extends classical non-negative matrix factorization to naturally incorporate
additive smoothing and prove that it converges to the stationary points of a penalized
empirical risk. We then derive sample-complexity bounds for the global minimzer
of the penalized risk and show that it is within a small factor of the optimal
sample complexity. This framework generalizes to more sophisticated smoothing
techniques, including absolute-discounting.

1 Introduction

One of the fundamental tasks in statistical learning is probability estimation. When the possible
outcomes can be divided into k discrete categories, e.g. types of words or bacterial species, the task
of interest is to use data to estimate the probability masses p1, · · · , pk, where pj is the probability of
observing category j. More often than not, it is not a single distribution that is to be estimated, but
multiple related distributions, e.g. frequencies of words within various contexts or species in different
samples. We can group these into a conditional probability (row-stochastic) matrix Pi,1, · · · , Pi,k
as i varies over c contexts, and Pij represents the probability of observing category j in context i.
Learning these distributions individually would cause the data to be unnecessarily diluted. Instead,
the structure of the relationship between the contexts should be harnessed.

A number of models have been proposed to address this structured learning task. One of the wildly
successful approaches consists of positing that P , despite being a c×k matrix, is in fact of much lower
rank m. Effectively, this means that there exists a latent context space of size m� c, k into which
the original context maps probabilistically via a c×m stochastic matrix A, then this latent context
in turn determines the outcome via an m× k stochastic matrix B. Since this structural model means
that P factorizes as P = AB, this problem falls within the framework of low-rank (non-negative)
matrix factorization. Many topic models, such as the original work on probabilistic latent semantic
analysis PLSA, also map to this framework. We narrow our attention here to such low-rank models,
but note that more generally these efforts fall under the areas of structured and transfer learning.
Other examples include: manifold learning, multi-task learning, and hierarchical models.
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In natural language modeling, low-rank models are motivated by the inherent semantics of language:
context first maps into meaning which then maps to a new word prediction. An alternative form
of such latent structure, word embeddings derived from recurrent neural networks (or LSTMs) are
the state-of-the-art of current language models, [20, 25, 28]. A first chief motivation for the present
work is to establish a theoretical underpinning of the success of such representations. We restrict the
exposition to bigram models. The traditional definition of the bigram is that language is modeled as a
sequence of words generated by a first order Markov-chain. Therefore the ‘context’ of a new word is
simply its preceding word, and we have c = k. Since the focus here is not the dependencies induced
by such memory, but rather the ramifications of the structural assumptions on P , we take bigrams to
model word-pairs independently sampled by first choosing the contextual word with probability π
and then choosing the second word according to the conditional probability P , thus resulting in a
joint distribution over word-pairs (πiPij).

What is the natural measure of performance for a probability matrix estimator? Since ultimately
such estimators are used to accurately characterize the likelihood of test data, the measure of choice
used in empirical studies is the perplexity, or alternatively its logarithm, the cross entropy. For data
consisting of n word-pairs, if Cij is the number of times pair (i, j) appears, then the cross entropy
of an estimator Q is 1

n

∑
ij Cij log 1

Qij
. The population quantity that corresponds to this empirical

performance measure is the (row-by-row weighted) KL-divergence D(P‖Q) =
∑
ij πiPij log

Pij
Qij

.

Note that this is indeed the expectation of the cross entropy modulo the true entropy, an additive term
that does not depend on Q. This is the natural notion of risk for the learning task, since we wish
to infer the likelihood of future data, and our goal can now be more concretely stated as using the
data to produce an estimator Qn with a ‘small’ value of D(P‖Qn). The choice of KL-divergence
introduces a peculiar but important problem: the necessity to handle small frequencies appropriately.
In particular, using the empirical conditional probability is not viable, since a zero in Q implies
infinite risk. This is the problem of smoothing, which has received a great amount of attention by the
NLP community. Our second salient motivation for the present work is to propose principled methods
of integrating well-established smoothing techniques, such as add- 1

2 and absolute discounting, into
the framework of structured probability matrix estimation.

Our contributions are as follows, we provide:

• A general framework for integrating smoothing and structured probability matrix estimation, as an
alternating-minimization that converges to a stationary point of a penalized empirical risk.

• A sample complexity upper bound of O(km log2(2n+ k)/n) for the expected KL-risk, for the
global minimizer of this penalized empirical risk.

• A lower bound that matches this upper bound up to the logarithmic term, showing near-optimality.

The paper is organized as follows. Section 2 reviews related work. Section 3 states the problem
and Section 4 highlights our main results. Section 5 proposes our central algorithm and Section 6
analyzes its idealized variant. Section 7 provides some experiments and Section 8 concludes.

2 Related Work
Latent variable models, and in particular non-negative matrix factorization and topic models, have
been such an active area of research in the past two decades that the space here cannot possibly do
justice to the many remarkable contributions. We list here some of the most relevant to place our
work in context. We start by mentioning the seminal papers [12, 18] which proposed the alternating
minimization algorithm that forms the basis of the current work. This has appeared in many forms in
the literature, including the multiplicative updates [29]. Some of the earliest work is reviewed in [23].
These may be generally interpreted as discrete analogs to PCA (and even ICA) [10].

An influential Bayesian generative topic model, the Latent Dirichlet Allocation, [7] is very closely
related to what we propose. In fact, add-half smoothing effectively corresponds to a Dirichlet(1/2)
(Jeffreys) prior. Our exposition differs primarily in adopting a minimax sample complexity perspective
which is often not found in the otherwise elegant Bayesian framework. Furthermore, exact Bayesian
inference remains a challenge and a lot of effort has been expended lately toward simple iterative
algorithms with provable guarantees, e.g. [3, 4]. Besides, a rich array of efficient smoothing
techniques exists for probability vector estimation [2, 16, 22, 26], of which one could directly avail
in the methodology that is presented here.
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A direction that is very related to ours was recently proposed in [13]. There, the primary goal is to
recover the rows of A andB in `1-risk. This is done at the expense of additional separation conditions
on these rows. This makes the performance measure not easily comparable to our context, though
with the proper weighted combination it is easy to see that the implied `1-risk result on P is subsumed
by our KL-risk result (via Pinsker’s inequality), up to logarithmic factors, while the reverse isn’t true.
Furthermore, the framework of [13] is restricted to symmetric joint probability matrices, and uses
an SVD-based algorithm that is difficult to scale beyond very small latent ranks m. Apart from this
recent paper for the `1-risk, sample complexity bounds for related (not fully latent) models have been
proposed for the KL-risk, e.g. [1]. But these remain partial, and far from optimal. It is also worth
noting that information geometry gives conditions under which KL-risk behaves close to `2-risk [8],
thus leading to a Frobenius-type risk in the matrix case.

Although the core optimization problem itself is not our focus, we note that despite being a non-
convex problem, many instances of matrix factorization admit efficient solutions. Our own heuristic
initialization method is evidence of this. Recent work, in the `2 context, shows that even simple
gradient descent, appropriately initialized, could often provably converge to the global optimum [6].

Concerning whether such low-rank models are appropriate for language modeling, there has been
evidence that some of the abovementioned word embeddings [20] can be interpreted as implicit matrix
factorization [19]. Some of the traditional bigram smoothing techniques, such as the Kneser-Ney
algorithm [17, 11], are also reminiscent of rank reduction [14, 24, 15].

3 Problem Statement

DataDn consists of n pairs (Xs, Ys), s = 1, · · · , n, whereXs is a context and Ys is the corresponding
outcome. In the spirit of a bigram language model, we assume that the context and outcome spaces
have the same cardinality, namely k. Thus (Xs, Ys) takes values in [k]2. We denote the count of pairs
(i, j) by Cij . As a shortcut, we also write the row-sums as Ci =

∑
j Cij .

We assume the underlying generative model of the data to be i.i.d., where each pair is drawn by first
sampling the context Xs according to a probability distribution π = (πi) over [k] and then sampling
Ys conditionally on Xs according to a k × k conditional probability (stochastic) matrix P = (Pij), a
non-negative matrix where each row sums to 1. We also assume that P has non-negative rank m. We
denote the set of all such matrices by Pm. They can all be factorized (non-uniquely) as P = AB,
where both A and B are stochastic matrices in turn, of size k ×m and m× k respectively.

A conditional probability matrix estimator is an algorithm that maps the data into a stochastic matrix
Qn(X1, · · · , Xn) that well-approximates P , in the absence of any knowledge about the underlying
model. We generally drop the explicit notation showing dependence on the data, and use instead
the implicit n-subscript notation. The performance, or how well any given stochastic matrix Q
approximates P , is measured according to the KL-risk:

R(Q) =
∑
ij

πiPij log
Pij
Qij

(1)

Note that this corresponds to an expected loss, with the log-loss L(Q, i, j) = logPij/Qij . Although
we do seek out PAC-style (in-probability) bounds for R(Qn), in order to give a concise definition
of optimality, we consider the average-case performance E[R(Qn)]. The expectation here is with
respect to the data. Since the underlying model is completely unknown, we would like to do well
against adversarial choices of π and P , and thus we are interested in a uniform upper bound of the
form:

r(Qn) = max
π,P∈Pm

E[R(Qn)].

The optimal estimator, in the minimax sense, and the minimax risk of the class Pm are thus given by:

Q?n = arg min
Qn

r(Qn) = arg min
Qn

max
π,P∈Pm

E[R(Qn)]

r?(Pm) = min
Qn

max
π,P∈Pm

E[R(Qn)].

Explicitly obtaining minimax optimal estimators is a daunting task, and instead we would like to
exhibit estimators that compare well.
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Definition 1 (Optimality). If an estimator satisfies E[R(Qn)] ≤ ϕ ·E[R(Q?n)], ∀π, (called an oracle
inequality), then if ϕ is a constant (of n, k, and m), we say that the estimator is (order) optimal.
If ϕ is not constant, but its growth is negligible with respect to the decay of r?(Pm) with n or the
growth of r?(Pm) with k or m, then we can call the estimator near-optimal. In particular, we
reserve this terminology for a logarithmic gap in growth, that is an estimator is near-optimal if
logϕ/ log r?(Pm)→ 0 asymptotically in any of n, k, or m. Finally, if ϕ does not depend on P we
have strong optimality, and r(Qn) ≤ ϕ · r?(Pm). If ϕ does depend on P , we have weak optimality.

As a proxy to the true risk (1), we define the empirical risk:

Rn(Q) =
1

n

∑
ij

Cij log
Pij
Qij

(2)

The conditional probability matrix that minimizes this empirical risk is the empirical conditional
probability P̂n,ij = Cij/Ci. Not only is P̂n,ij not optimal, but since there always is a positive (even if
slim) probability that some Cij = 0 even if Pij 6= 0, it follows that E[Rn(P̂n)] =∞. This shows the
importance of smoothing. The simplest benchmark smoothing that we consider is add- 1

2 smoothing

P̂
Add- 12
ij = (Cij + 1/2) / (Ci + k/2) , where we give an additional “phantom” half-sample to each

word-pair, to avoid zeros. This simple method has optimal minimax performance when estimating
probability vectors. However, in the present matrix case it is possible to show that this can be a
factor of k/m away from optimal, which is significant (cf. Figure 1(a) in Section 7). Of course,
since we have not used the low-rank structure of P , we may be tempted to “smooth by factoring”, by
performing a low-rank approximation of P̂n. However, this will not eliminate the zero problem, since
a whole column may be zero. These facts highlight the importance of principled smoothing. The
problem is therefore to construct (possibly weakly) optimal or near-optimal smoothed estimators.

4 Main Results
In Section 5 we introduce the ADD- 1

2 -SMOOTHED LOW-RANK algorithm, which essentially consists
of EM-style alternating minimizations, with the addition of smoothing at each stage. Here we state
the main results. The first is a characterization of the implicit risk function that the algorithm targets.

Theorem 2 (Algorithm). QAdd- 12 -LR converges to a stationary point of the penalized empirical risk

Rn,penalized(W,H) = Rn(Q) +
1

2n

∑
i,`

log
1

Wi`
+

1

2n

∑
`,j

log
1

H`j
, where Q = WH. (3)

Conversely, any stationary point of (3) is a stable point of ADD- 1
2 -SMOOTHED LOW-RANK.

The proof of Theorem 2 follows closely that of [18]. We now consider the global minimum of
this implicit risk, and give a sample complexity bound. By doing so, we intentionally decouple the
algorithmic and statistical aspects of the problem and focus on the latter.
Theorem 3 (Sample Complexity). Let Qn ∈ Pm achieve the global minimum of Equation 3. Then
for all P ∈ Pm such that Pij > km

n log(2n+ k) ∀i, j and n > 3,

E[R(Qn)] ≤ ckm
n

log2(2n+ k), with c = 3100.

We outline the proof in Section 6. The basic ingredients are: showing the problem is near-realizable,
a quantization argument to describe the complexity of Pm, and a PAC-style [27] relative uniform
convergence which uses a sub-Poisson concentration for the sums of log likelihood ratios and uniform
variance and scale bounds. Finer analysis based on VC theory may be possible, but it would need to
handle the challenge of the log-loss being possibly unbounded and negative. The following result
shows that Theorem 3 gives weak near-optimality for n large, as it is tight up to the logarithmic factor.
Theorem 4 (Lower Bound). For n > k, the minimax rate of Pm satisfies:

r?(Pm) ≥ ckm
n
, with c = 0.06.

This is based on the vector case lower bound and providing the oracle with additional information:
instead of only (Xs, Ys) it observes (Xs, Zs, Ys), where Zs is sampled from Xs using A and Ys is
sampled from Zs using B. This effectively allows the oracle to estimate A and B directly.
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5 Algorithm
Our main algorithm is a direct modification of the classical alternating minimization algorithm for
non-negative matrix factorization [12, 18]. This classical algorithm (with a slight variation) can be
shown to essentially solve the following mathematical program:

QNNMF(Φ) = arg min
Q=WH

∑
i

∑
j

Φij log
1

Qij
.

The analysis is a simple extension of the original analysis of [12, 18]. By “essentially solves”, we
mean that each of the update steps can be identified as a coordinate descent, reducing the cost function
and ultimately converging as T →∞ to a stationary (zero gradient) point of this function. Conversely,
all stationary points of the function are stable points of the algorithm. In particular, since the problem
is convex in W and H individually, but not jointly in both, the algorithm can be thought of as taking
exact steps toward minimizing over W (as H is held fixed) and then minimizing over H (as W is
held fixed), whence the alternating-minimization name.

Before we incorporate smoothing, note that there are two ingredients missing from this algorithm.
First, the cost function is the sum of row-by-row KL-divergences, but each row is not weighted, as
compared to Equation (1). If we think of Φij as P̂ij = Cij/Ci, then the natural weight of row i is
πi or its proxy Ci/n. For this, the algorithm can easily be patched. Similarly to the analysis of the
original algorithm, one finds that this change essentially minimizes the weighted KL-risks of the
empirical conditional probability matrix, or equivalently the empirical risk as defined in Equation (2):

QLR(C) = arg min
Q=WH

Rn(Q) = arg min
Q=WH

∑
i

Ci
n

∑
j

Cij
Ci

log
1

Qij
.

Of course, this is nothing but the maximum likelihood estimator of P under the low-rank constraint.
Just like the empirical conditional probability matrix, it suffers from lack of smoothing. For instance,
if a whole column of C is zero, then so will be the corresponding column of QERM(C). The first
naive attempt at smoothing would be to add- 1

2 to C and then apply the algorithm:

QNaive Add- 12 -LR(C) = QLR(C + 1
2 )

However, this would result in excessive smoothing, especially when m is small. The intuitive reason
is this: in the extreme case of m = 1 all rows need to be combined, and thus instead of adding 1

2 to
each category, QNaiveadd− 1

2LR would add k/2, leading to the the uniform distribution overwhelming
the original distribution. We may be tempted to mitigate this by adding instead 1/2k, but this doesn’t
generalize well to other smoothing methods. A more principled approach should perform smoothing
directly inside the factorization, and this is exactly what we propose here. Our main algorithm is:

Algorithm: ADD- 1
2 -SMOOTHED LOW-RANK

• Input: k × k matrix (Cij); Initial W 0 and H0; Number of iterations T
• Iterations: Start at t = 0, increment and repeat while t < T

– For all i ∈ [k], ` ∈ [m], update W t
i` ←W t−1

i`

∑
j

Cij
(WH)t−1

ij

Ht−1
`j

– For all ` ∈ [m], j ∈ [k], update Ht
`j ← Ht−1

`j

∑
i

Cij

(WH)t−1
ij

W t−1
i`

– Add-1/2 to each element of W t and Ht, then normalize each row.
• Output: QAdd- 12 -LR(C) = WTHT

The intuition here is that, prior to normalization, the updated W and H can be interpreted as soft
counts. One way to see this is to sum each row i of (pre-normalized) W , which would give Ci. As for
H , the sums of its (pre-normalized) columns reproduce the sums of the columns of C. Next, we are
naturally led to ask: is QAdd- 12LR(C) implicitly minimizing a risk, just as QLR(C) minimizes Rn(Q)?
Theorem 2 shows that indeed QAdd- 12LR(C) essentially minimizes a penalized empirical risk.

More interestingly, ADD- 1
2 -SMOOTHED LOW-RANK lends itself to a host of generalizations. In

particular, an important smoothing technique, absolute discounting, is very well suited for heavy-
tailed data such as natural language [11, 21, 5]. We can generalize it to fractional counts as follows.
Let Ci indicate counts in traditional (vector) probability estimation, and let D be the total number of
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distinct observed categories, i.e. D =
∑
i I{Ci ≥ 1}. Let the number of fractional distinct categories

d be defined as d =
∑
i CiI{Ci < 1}. We have the following soft absolute discounting smoothing:

P̂Soft-AD
i (C,α) =

{
Ci−α∑

C if Ci ≥ 1,
1−α∑
CCi + α(D+d)

(k−D−d)
∑
C (1− Ci) if Ci < 1.

This gives us the following patched algorithm, which we do not place under the lens of theory
currently, but we strongly support it with our experimental results of Section 7.

Algorithm: ABSOLUTE-DISCOUNTING-SMOOTHED LOW-RANK

• Input: Specify α ∈ (0, 1)

• Iteration:
– Add-1/2 to each element of W t, then normalize.
– Apply soft absolute discounting to Ht

`j ← P̂Soft-AD
j (Ht

`,·, α)

• Output: QAD-LR(C,α) = WTHT

6 Analysis
We now outline the proof of the sample complexity upper bound of Theorem 3. Thus for the remainder
of this section we have:

Qn(C) = arg min
Q=WH

Rn(Q) +
1

2n

∑
i,`

log
1

Wi`
+

1

2n

∑
`,j

log
1

H`j
,

that is Qn ∈ Pm achieves the global minimum of Equation 3. Since we have a penalized empirical
risk minimization at hand, we can study it within the classical PAC-learning framework. However,
rates of order 1

n are often associated withe the realizable case, where Rn(Qn) is exactly zero [27].
The following Lemma shows that we are near the realizable regime.
Lemma 5 (Near-realizability). We have

E[Rn(Qn)] ≤ k

n
+
km

n
log(2n+ k).

We characterize the complexity of the class Pm by quantizing probabilities, as follows. Given a
positive integer L, define ∆L to be the subset of the appropriate simplex ∆ consisting of L-empirical
distributions (or “types” in information theory): ∆L consists exactly of those distributions p that can
be written as pi = Li/L, where Li are non-negative integers that sum to L.
Definition 6 (Quantization). Given a positive integer L, define the L-quantization operation as
mapping a probability vector p to the closest (in `1-distance) element of ∆L, p̃ = arg minq∈∆L

‖p−
q‖1. For a matrix P ∈ Pm, define an L-quantization for any given factorization choice P = AB as
P̃ = ÃB̃, where each row of Ã and B̃ is the L-quantization of the respective row of A and B. Lastly,
define Pm,L to be the set of all quantized probability matrices derived from Pm.

Via counting arguments, the cardinality of Pm,L is bounded by |Pm,L| ≤ (L+1)2km. This quantized
family gives us the following approximation ability.
Lemma 7 (De-quantization). For a probability vector p, L-quantization satisfies |pi − p̃i| ≤ 1

L for
all i, and ‖p− p̃‖1 ≤ 2

L . For a conditional probability matrix Q ∈ Pm, any quantization Q̃ satisfies
|Qij − Q̃ij | ≤ 3

L for all i. Furthermore, if Q > ε per entry and L > 6
ε , then:

|R(Q)−R(Q̃)| ≤ 6

Lε
and |Rn(Q)−Rn(Q̃)| ≤ 6

Lε
.

We now give a PAC-style relative uniform convergence bound on the empirical risk [27].
Theorem 8 (Relative uniform convergence). Assume lower-bounded P > δ and choose any τ > 0.
We then have the following uniform bound over all lower-bounded Q̃ > ε in Pm,L (Definition 6):

Pr

 sup
Q̃∈Pm,L,Q̃>ε

R(Q̃)−Rn(Q̃)√
R(Q̃)

> τ

 ≤ e

− nτ2

20 log
1
ε+2τ

√
10

1
δ log

1
ε

+2km log(L+1)

. (4)
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The proof of this Theorem consists, for fixed Q̃, of showing a sub-Poisson concentration of the sum
of the log likelihood ratios. This needs care, as a simple Bennett or Bernstein inequality is not enough,
because we need to eventually self-normalize. A critical component is to relate the variance and scale
of the concentration to the KL-risk and its square root, respectively. The theorem then follows from
uniformly bounding the normalized variance and scale over Pm,L and a union bound.

To put the pieces together, first note that thanks to the fact that the optimum is also a stable point of
the ADD- 1

2 -SMOOTHED LOW-RANK, the add- 1
2 nature of the updates implies that all of the elements

of Qn are lower-bounded by 1
2n+k . By Lemma 7 and a proper choice of L of the order of (2n+ k)2,

the quantized version won’t be much smaller. We can thus choose ε = 1
2n+k in Theorem 8 and use

our assumption of δ = km
n log(2n + k). Using Lemmas 5 and 7 to bound the contribution of the

empirical risk, we can then integrate the probability bound of (4) similarly to the realizable case.
This gives a bound on the expected risk of the quantized version of Qn of order kmn log 1

ε logL or
effectively km

n log2(2n+ k). We then complete the proof by de-quantizing using Lemma 7.

7 Experiments
Having expounded the theoretical merit of properly smoothing structered conditional probability
matrices, we give a brief empirical study of its practical impact. We use both synthetic and real data.
The various methods compared are as follows:

• Add- 1
2 , directly on the bigram counts: P̂Add- 12

n,ij = (Cij + 1
2 )/(Ci + 1

2 )

• Absolute-discounting, directly on the bigram counts: P̂AD
n (C,α) (see Section 5)

• Naive Add- 1
2 Low-Rank, smoothing the counts then factorizing: QNaive Add- 12 -LR = QLR(C + 1

2 )

• Naive Absolute-Discounting Low-Rank: QNaive AD-LR = QLR(nP̂AD
n (C,α))

• Stupid backoff (SB) of Google, a very simple algorithm proposed in [9]
• Kneser-Ney (KN), a widely successful algorithm proposed in [17]
• Add- 1

2 -Smoothed Low-Rank, our proposed algorithm with provable guarantees: QAdd- 12 -LR

• Absolute-Discounting-Smoothed Low-Rank, heuristic generalization of our algorithm: QAD-LR

The synthetic model is determined randomly. π is uniformly sampled from the k-simplex. The matrix
P = AB is generated as follows. The rows of A are uniformly sampled from the k-simplex. The
rows of B are generated in one of two ways: either sampled uniformly from the simplex or randomly
permuted power law distributions, to imitate natural language. The discount parameter is then fixed
to 0.75. Figure 1(a) uses uniformly sampled rows of B, and shows that, despite attempting to harness
the low-rank structure of P , not only does Naive Add- 1

2 fall short, but it may even perform worse
than Add- 1

2 , which is oblivious to structure. Add- 1
2 -Smoothed Low-Rank, on the other hand, reaps

the benefits of both smoothing and structure.

Figure 1(b) expands this setting to compare against other methods. Both of the proposed algorithms
have an edge on all other methods. Note that Kneser-Ney is not expected to perform well in this
regime (rows of B uniformly sampled), because uniformly sampled rows of B do not behave
like natural language. On the other hand, for power law rows, even if k � n, Kneser-Ney does
well, and it is only superseded by Absolute-Discounting-Smoothed Low-Rank. The consistent
good performance of Absolute-Discounting-Smoothed Low-Rank may be explained by the fact that
absolute-discounting seems to enjoy some of the competitive-optimality of Good-Turing estimation,
as recently demonstrated by [22]. This is why we chose to illustrate the flexibility of our framework
by heuristically using absolute-discounting as the smoothing component.

Before moving on to experiments on real data, we give a short description of the data sets. All but the
first one are readily available through the Python NLTK:

• tartuffe, a French text, train and test size: 9.3k words, vocabulary size: 2.8k words.
• genesis, English version, train and test size: 19k words, vocabulary size: 4.4k words
• brown, shortened Brown corpus, train and test size: 20k words, vocabulary size: 10.5k words

For natural language, using absolute-discounting is imperative, and we restrict ourselves to Absolute-
Discounting-Smoothed Low-Rank. The results of the performance of various algorithms are listed
in Table 1. For all these experiments, m = 50 and 200 iterations were performed. Note that the
proposed method has less cross-entropy per word across the board.
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Figure 2: Experiments on real data

Dataset Add- 1
2

AD SB KN AD-LR
tartuffe 7.1808 6.268 6.0426 5.7555 5.6923
genesis 7.3039 6.041 5.9058 5.7341 5.6673
brown 8.847 7.9819 7.973 7.7001 7.609

Table 1: Cross-entropy results for different methods on several small corpora

We also illustrate the performance of different algorithms as the training size increases. Figure 2
shows the relative performance of selected algorithms with Stupid Backoff chosen as the baseline. As
Figure 2(a) suggests, the amount of improvement in cross-entropy at n = 15k is around 0.1 nats/word.
This improvement is comparable, even more significant, than that reported in the celebrated work of
Chen and Goodman [11] for Kneser-Ney over the best algorithms at the time.

Even though our algorithm is given the rank m as a parameter, the internal dimension is not revealed,
if ever known. Therefore, we could choose the best m using model selection. Figure 2(c) shows one
way of doing this, by using a simple cross-validation for the tartuffe data set. In particular, half of the
data was held out as a validation set, and for a range of different choices for m, the model was trained
and its cross-entropy on the validation set was calculated. The figure shows that there exists a good
choice of m� k. A similar behavior is observed for all data sets. Most interestingly, the ratio of the
best m to the vocabulary size corpus is reminiscent of the choice of internal dimension in [20].

8 Conclusion
Despite the theoretical impetus of the paper, the resulting algorithms considerably improve over
several benchmarks. There is more work ahead, however. Many possible theoretical refinements
are in order, such as eliminating the logarithmic term in the sample complexity and dependence
on P (strong optimality). This framework naturally extends to tensors, such as for higher-order
N -gram language models. It is also worth bringing back the Markov assumption and understanding
how various mixing conditions influence the sample complexity. A more challenging extension,
and one we suspect may be necessary to truly be competitive with RNNs/LSTMs, is to parallel this
contribution in the context of generative models with long memory. The reason we hope to not only
be competitive with, but in fact surpass, these models is that they do not use distributional properties
of language, such as its quintessentially power-law nature. We expect smoothing methods such as
absolute-discounting, which do account for this, to lead to considerable improvement.
Acknowledgments We would like to thank Venkatadheeraj Pichapati and Ananda Theertha Suresh
for many helpful discussions. This work was supported in part by NSF grants 1065622 and 1564355.

8



References
[1] Abe, Warmuth, and Takeuchi. Polynomial learnability of probabilistic concepts with respect to the

Kullback-Leibler divergence. In COLT, 1991.

[2] Acharya, Jafarpour, Orlitsky, and Suresh. Optimal probability estimation with applications to prediction
and classification. In COLT, 2013.

[3] Agarwal, Anandkumar, Jain, and Netrapalli. Learning sparsely used overcomplete dictionaries via
alternating minimization. arXiv preprint arXiv:1310.7991, 2013.

[4] Arora, Ge, Ma, and Moitra. Simple, efficient, and neural algorithms for sparse coding. arXiv preprint
arXiv:1503.00778, 2015.

[5] Ben Hamou, Boucheron, and Ohannessian. Concentration Inequalities in the Infinite Urn Scheme for
Occupancy Counts and the Missing Mass, with Applications. Bernoulli, 2017.

[6] Bhojanapalli, Kyrillidis, and Sanghavi. Dropping convexity for faster semi-definite optimization. arXiv
preprint arXiv:1509.03917, 2015.

[7] Blei, Ng, and Jordan. Latent Dirichlet allocation. JMLR, 2003.

[8] Borade and Zheng. Euclidean information theory. IEEE Int. Zurich Seminar on Comm., 2008.

[9] Brants, Popat, Xu, Och, and Dean. Large language models in machine translation. In EMNLP, 2007.

[10] Buntine and Jakulin. Applying discrete PCA in data analysis. In Proceedings of the 20th conference on
Uncertainty in artificial intelligence, pages 59–66. AUAI Press, 2004.

[11] Chen and Goodman. An empirical study of smoothing techniques for language modeling. Computer
Speech & Language, 13(4):359–393, 1999.

[12] Hofmann. Probabilistic latent semantic indexing. In ACM SIGIR, 1999.

[13] Huang, Kakade, Kong, and Valiant. Recovering structured probability matrices. arXiv preprint
arXiv:1602.06586, 2016.

[14] Hutchinson, Ostendorf, and Fazel. Low rank language models for small training sets. IEEE SPL, 2011.

[15] Hutchinson, Ostendorf, and Fazel. A Sparse Plus Low-Rank Exponential Language Model for Limited
Resource Scenarios. IEEE Trans. on Audio, Speech, and Language Processing, 2015.

[16] Kamath, Orlitsky, Pichapati, and Suresh. On learning distributions from their samples. In COLT, 2015.

[17] Kneser and Ney. Improved backing-off for m-gram language modeling. In ICASSP, 1995.

[18] Lee and Seung. Algorithms for non-negative matrix factorization. In NIPS, 2001.

[19] Levy and Goldberg. Neural word embedding as implicit matrix factorization. In NIPS, 2014.
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