
Coordinate-wise Power Method

Qi Lei 1 Kai Zhong 1 Inderjit S. Dhillon 1,2

1 Institute for Computational Engineering & Sciences 2 Department of Computer Science
University of Texas at Austin

{leiqi, zhongkai}@ices.utexas.edu, inderjit@cs.utexas.edu

Abstract

In this paper, we propose a coordinate-wise version of the power method from
an optimization viewpoint. The vanilla power method simultaneously updates
all the coordinates of the iterate, which is essential for its convergence analysis.
However, different coordinates converge to the optimal value at different speeds.
Our proposed algorithm, which we call coordinate-wise power method, is able
to select and update the most important k coordinates in O(kn) time at each
iteration, where n is the dimension of the matrix and k  n is the size of the
active set. Inspired by the “greedy” nature of our method, we further propose a
greedy coordinate descent algorithm applied on a non-convex objective function
specialized for symmetric matrices. We provide convergence analyses for both
methods. Experimental results on both synthetic and real data show that our
methods achieve up to 23 times speedup over the basic power method. Meanwhile,
due to their coordinate-wise nature, our methods are very suitable for the important
case when data cannot fit into memory. Finally, we introduce how the coordinate-
wise mechanism could be applied to other iterative methods that are used in machine
learning.

1 Introduction
Computing the dominant eigenvectors of matrices and graphs is one of the most fundamental tasks
in various machine learning problems, including low-rank approximation, principal component
analysis, spectral clustering, dimensionality reduction and matrix completion. Several algorithms are
known for computing the dominant eigenvectors, such as the power method, Lanczos algorithm [14],
randomized SVD [2] and multi-scale method [17]. Among them, the power method is the oldest and
simplest one, where a matrix A is multiplied by the normalized iterate x

(l) at each iteration, namely,

x

(l+1)

= normalize(Ax

(l)
).

The power method is popular in practice due to its simplicity, small memory footprint and robustness,
and particularly suitable for computing the dominant eigenvector of large sparse matrices [14]. It has
applied to PageRank [7], sparse PCA [19, 9], private PCA [4] and spectral clustering [18]. However,
its convergence rate depends on |�

2

|/|�
1

|, the ratio of magnitude of the top two dominant eigenvalues
[14]. Note that when |�

2

| ⇡ |�
1

|, the power method converges slowly.
In this paper, we propose an improved power method, which we call coordinate-wise power method,
to accelerate the vanilla power method. Vanilla power method updates all n coordinates of the iterate
simultaneously even if some have already converged to the optimal. This motivates us to develop new
algorithms where we select and update a set of important coordinates at each iteration. As updating
each coordinate costs only 1

n of one power iteration, significant running time can be saved when n is
very large. We raise two questions for designing such an algorithm.
The first question: how to select the coordinate? A natural idea is to select the coordinate that will
change the most, namely,

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

argmaxi|ci|,where c =

Ax

x

TAx

� x, (1)

where Ax

x

TAx

is a scaled version of the next iterate given by power method, and we will explain this
special scaling factor in Section 2. Note that ci denotes the i-th element of the vector c. Instead of
choosing only one coordinate to update, we can also choose k coordinates with the largest k changes
in {|ci|}ni=1

. We will justify this selection criterion by connecting our method with greedy coordinate
descent algorithm for minimizing a non-convex function in Section 3. With this selection rule, we
are able to show that our method has global convergence guarantees and faster convergence rate
compared to vanilla power method if k satisfies certain conditions.
Another key question: how to choose these coordinates without too much overhead? How to efficiently
select important elements to update is of great interest in the optimization community. For example,
[1] leveraged nearest neighbor search for greedy coordinate selection, while [11] applied partially
biased sampling for stochastic gradient descent. To calculate the changes in Eq (1) we need to know
all coordinates of the next iterate. This violates our previous intention to calculate a small subset of
the new coordinates. We show, by a simple trick, we can use only O(kn) operations to update the
most important k coordinates. Experimental results on dense as well as sparse matrices show that our
method is up to 8 times faster than vanilla power method.
Relation to optimization. Our method reminds us of greedy coordinate descent method. Indeed,
we show for symmetric matrices our coordinate-wise power method is similar to greedy coordinate
descent for rank-1 matrix approximation, whose variants are widely used in matrix completion [8]
and non-negative matrix factorization [6]. Based on this interpretation, we further propose a faster
greedy coordinate descent method specialized for symmetric matrices. This method achieves up to 23
times speedup over the basic power method and 3 times speedup over the Lanczos method on large
real graphs. For this non-convex problem, we also provide convergence guarantees when the initial
iterate lies in the neighborhood of the optimal solution.
Extensions. With the coordinate-wise nature, our methods are very suitable to deal with the case
when data cannot fit into memory. We can choose a k such that k rows of A can fit in memory, and
then fully process those k rows of data before loading the RAM (random access memory) with a new
partition of the matrix. This strategy helps balance the data processing and data loading time. The
experimental results show our method is 8 times faster than vanilla power method for this case.
The paper is organized as follows. Section 2 introduces coordinate-wise power method for computing
the dominant eigenvector. Section 3 interprets our strategy from an optimization perspective and
proposes a faster algorithm. Section 4 provides theoretical convergence guarantee for both algorithms.
Experimental results on synthetic or real data are shown in Section 5. Finally Section 6 presents
the extensions of our methods: dealing with out-of-core cases and generalizing the coordinate-wise
mechanism to other iterative methods that are useful for the machine learning community.

2 Coordinate-wise Power Method
The classical power method (PM) iteratively multiplies the iterate x 2 Rn by the matrix A 2 Rn⇥n,
which is inefficient since some coordinates may converge faster than others. To illustrate this

(a) The percentage of unconverged coor-
dinates versus the number of operations

(b) Number of updates of each coordinate

Figure 1: Motivation for the Coordinate-wise Power Method. Figure 1(a) shows how the percentage
of unconverged coordinates decreases with the number of operations. The gradual decrease demonstrates the
unevenness of each coordinate as the iterate converges to the dominant eigenvector. In Figure 1(b), the X-axis
is the coordinate indices of iterate x sorted by their frequency of updates, which is shown on the Y-axis. The
area below each curve approximately equals the total number of operations.The given matrix is synthetic with
|�2|/|�1| = 0.5, and terminating accuracy ✏ is set to be 1e-5.

2

phenomenon, we conduct an experiment with the power method; we set the stopping criterion as
kx� v

1

k1 < ✏, where ✏ is the threshold for error, and let vi denote the i-th dominant eigenvector
(associated with the eigenvalue of the i-th largest magnitude) of A in this paper. During the iterative
process, even if some coordinates meet the stopping criterion, they still have to be updated at every
iteration until uniform convergence. In Figure 1(a), we count the number of unconverged coordinates,
which we define as {i : i 2 [n]

��|xi � v
1,i| > ✏}, and see it gradually decreases with the iterations,

which implies that the power method makes a large number of unnecessary updates. In this paper, for
computing the dominant eigenvector, we exhibit a coordinate selection scheme that has the ability to
select and update ”important” coordinates with little overhead. We call our method Coordinate-wise
Power Method (CPM). As shown in Figure 1(a) and 1(b), by selecting important entries to update,
the number of unconverged coordinates drops much faster, leading to an overall fewer flops.

Algorithm 1 Coordinate-wise Power Method
1: Input: Symmetric matrix A 2 Rn⇥n, number of selected coordinates k, and number of iterations, L.
2: Initialize x

(0) 2 Rn and set z(0) = Ax

(0). Set coordinate selecting criterion c

(0) = x

(0) � z

(0)

(x(0))T z

(0) .
3: for l = 1 to L do
4: Let ⌦(l) be a set containing k coordinates of c(l�1) with the largest magnitude. Execute the following

updates:

y

(l)
j =

8
<

:

z
(l�1)
j

(x(l�1))T z

(l�1) , j 2 ⌦(l)

x

(l�1)
j , j /2 ⌦(l)

(2)

z

(l) = z

(l�1) +A(y(l)

⌦(l) � x

(l�1)

⌦(l)) (3)

z

(l) = z

(l)
/ky(l)k, x

(l) = y

(l)
/ky(l)k

c

(l) = x

(l) � z

(l)

(x(l�1))Tz(l�1)

5: Output: Approximate dominant eigenvector x(L)

Algorithm 1 describes our coordinate-wise power method that updates k entries at a time for com-
puting the dominant eigenvector for a symmetric input matrix, while a generalization to asymmetric
cases is straightforward. The algorithm starts from an initial vector x(0), and iteratively performs
updates xi a

T
i x/x

TAx with i in a selected set of coordinates ⌦ ✓ [n] defined in step 4, where
ai is the i-th row of A. The set of indices ⌦ is chosen to maximize the difference between the current
coordinate value xi and the next coordinate value a

T
i x/x

TAx. z(l) and c

(l) are auxiliary vectors.
Maintaining z

(l) ⌘ Ax

(l) saves much time, while the magnitude of c represents importance of each
coordinate and is used to select ⌦.
We use the Rayleigh Quotient xTAx (x is normalized) for scaling, different from kAxk in the power
method. Our intuition is as follows: on one hand, it is well known that Rayleigh Quotient is the
best estimate for eigenvalues. On the other hand, the limit point using x

TAx scaling will satisfy
¯

x = A¯

x/¯xTA¯

x, which allows both negative or positive dominant eigenvectors, while the scaling
kAxk is always positive, so its limit point only lies in the eigenvectors associated with positive
eigenvalues, which rules out the possibility of converging to the negative dominant eigenvector.

2.1 Coordinate Selection Strategy
An initial understanding for our coordinate selection strategy is that we select coordinates with the
largest potential change. With a current iterate x and an arbitrary active set ⌦, let y⌦ be a potential
next iterate with only coordinates in ⌦ updated, namely,

(y

⌦

)i =

⇢
a

T
i x

x

TAx

, i 2 ⌦

xi, i /2 ⌦

According to our algorithm, we select active set ⌦ to maximize the iterate change. Therefore:

⌦ = argmax

I⇢[n],|I|=k

(����(x�
Ax

x

TAx

)I

����
2

= kyI � xk2
)

= argmin

I⇢[n],|I|=k

(����
Ax

x

TAx

� y

I

����
2

def
= kgk2

)

This is to say, with our updating rule, our goal of maximizing iteration gap is equivalent to minimizing
the difference between the next iterate y

(l+1) and Ax

(l)/(x(l)
)

TAx

(l), where this difference could
be interpreted as noise g

(l). A good set ⌦ ensures a sufficiently small noise g

(l), thus achieving a

3

similar convergence rate in O(kn) time (analyzed later) as the power method does in O(n2

) time.
More formal statement for the convergence analysis is given in Section 4.
Another reason for this selection rule is that it incurs little overhead. For each iteration, we maintain a
vector z ⌘ Ax with kn flops by the updating rule in Eq.(3). And the overhead consists of calculating
c and choosing ⌦. Both parts cost O(n) operations. Here ⌦ is chosen by Hoare’s quick selection
algorithm [5] to find the kth largest entry in |c|. Thus the overhead is negligible compared with O(kn).
Thus CPM spends as much time on each coordinate as PM does on average, while those updated k
coordinates are most important. For sparse matrices, the time complexity is O(n +

k
nnnz(A)) for

each iteration, where nnz(A) is the number of nonzero elements in matrix A.
Although the above analysis gives us a good intuition on how our method works, it doesn’t directly
show that our coordinate selection strategy has any optimal properties. In next section, we give
another interpretation of our coordinate-wise power method and establish its connection with the
optimization problem for low-rank approximation.

3 Optimization Interpretation
The coordinate descent method [12, 6] was popularized due to its simplicity and good performance.
With all but one coordinates fixed, the minimization of the objective function becomes a sequence of
subproblems with univariate minimization. When such subproblems are quickly solvable, coordinate
descent methods can be efficient. Moreover, in different problem settings, a specific coordinate
selecting rule in each iteration makes it possible to further improve the algorithm’s efficiency.
The power method reminds us of the rank-one matrix factorization

argmin

x2Rn,y2Rd

�
f(x,y) = kA� xy

T k2F

(4)

With alternating minimization, the update for x becomes x Ay

kyk2 and vice versa for y. Therefore
for symmetric matrix, alternating minimization is exactly PM apart from the normalization constant.
Meanwhile, the above similarity between PM and alternating minimization extends to the similarity
between CPM and greedy coordinate descent. A more detailed interpretation is in Appendix A.5,
where we show the equivalence in the following coordinate selecting rules for Eq.(4): (a) largest coor-
dinate value change, denoted as |�xi|; (b) largest partial gradient (Gauss-Southwell rule), |rif(x)|;
(c) largest function value decrease, |f(x+ �xiei)� f(x)|. Therefore, the coordinate selection rule
is more formally testified in optimization viewpoint.

3.1 Symmetric Greedy Coordinate Descent (SGCD)
We propose an even faster algorithm based on greedy coordinate descent. This method is designed
for symmetric matrices and additionally requires to know the sign of the most dominant eigenvalue.
We also prove its convergence to the global optimum with a sufficiently close initial point.
A natural alternative objective function specifically for the symmetric case would be

argmin

x2Rn

�
f(x) = kA� xx

T k2F

. (5)

Notice that the stationary points of f(x), which requirerf(x) = 4(kxk2x�Ax) = 0, are obtained
at eigenvectors: x⇤

i =

p
�ivi, if the eigenvalue �i is positive. The global minimum for Eq. (5) is the

eigenvector corresponding to the largest positive eigenvalue, not the one with the largest magnitude.
For most applications like PageRank we know �

1

is positive, but if we want to calculate the negative
eigenvalue with the largest magnitude, just optimize on f = kA+ xx

T k2F instead.
Now we introduce Algorithm 2 that optimizes Eq. (5). With coordinate descent, we update the i-th
coordinate by x(l+1)

i argmin↵ f(x(l)
+ (↵ � x(l)

i)ei), which requires the partial derivative of
f(x) in i-th coordinate to be zero, i.e.,

rif(x) = 4(xikxk2
2

� a

T
i x) = 0. (6)

() x3

i + pxi + q = 0, where p = kxk2 � x2

i � aii, and q = �aT
i x+ aiixi (7)

Similar to CPM, the most time consuming part comes from maintaining z (⌘ Ax), as the calculation
for selecting the criterion c and the coefficient q requires it. Therefore the overall time complexity for
one iteration is the same as CPM.

4

Notice that c from Eq.(6) is the partial gradient of f , so we are using the Gauss-Southwell rule to
choose the active set. And it is actually the only effective and computationally cheap selection rule
among previously analyzed rules (a), (b) or (c). For calculating the iterate change |�xi|, one needs to
obtain roots for n equations. Likewise, the function decrease |�fi| requires even more work.

Remark: for an unbiased initializer, x(0) should be scaled by a constant ↵ such that

↵ = argmin

a�0

kA� (ax(0)

)(ax(0)

)

T kF =

s
(x

(0)

)

TAx

(0)

kx(0)k4

Algorithm 2 Symmetric greedy coordinate descent (SGCD)
1: Input: Symmetric matrix A 2 Rn⇥n, number of selected coordinate, k, and number of iterations, L.
2: Initialize x

(0) 2 Rn and set z(0) = Ax

(0). Set coordinate selecting criterion c

(0) = x

(0) � z

(0)

kx(0)k2 .
3: for l = 0 to L� 1 do
4: Let ⌦(l) be a set containing k coordinates of c(l) with the largest magnitude. Execute the following

updates:

x

(l+1)
j =

(
argmin↵ f

⇣
x

(l) + (↵� x

(l)
j)ej

⌘
, if j 2 ⌦(l)

,

x

(l)
j , if j /2 ⌦(l)

.

z

(l+1) = z

(l) +A(x(l+1)

⌦(l) � x

(l)

⌦(l))

c

(l+1) = x

(l+1) � z

(l+1)

kx(l+1)k2

5: Output: vector x(L)

4 Convergence Analysis
In the previous section, we propose coordinate-wise power method (CPM) and symmetric greedy
coordinate descent (SGCD) on a non-convex function for computing the dominant eigenvector.
However, it remains an open problem to prove convergence of coordinate descent methods for general
non-convex functions. In this section, we show that both CPM and SGCD converge to the dominant
eigenvector under some assumptions.

4.1 Convergence of Coordinate-wise Power Method
Consider a positive semidefinite matrix A, and let v

1

be its leading eigenvector. For any sequence
(x

(0),x(1), · · ·) generated by Algorithm 1, let ✓(l) to be the angle between vector x

(l) and v

1

,

and �(l)
(k)

def
=min|⌦|=k

qP
i/2⌦

(c(l)i)

2/kc(l)k
2

= kg(l)k/kc(l)k. The following lemma illustrates
convergence of the tangent of ✓(l) .
Lemma 4.1. Suppose k is large enough such that

�(l)
(k) <

�
1

� �
2

(1 + tan ✓(l))�
1

. (8)

Then
tan ✓(l+1)  tan ✓(l)(

�
2

�
1

+

�(l)
(k))

cos ✓(l)
< tan ✓(l) (9)

With the aid of Lemma 4.1, we show the following iteration complexity:
Theorem 4.2. For any sequence (x(0),x(1), · · ·) generated by Algorithm 1 with k satisfying
�(l)

(k) < �1��2

2�1(1+tan ✓(l)
)

, if x(0) is not orthogonal to v

1

, then after T = O(

�1
�1��2

log(

tan ✓(0)

"))

iterations we have tan ✓(T)  ".

The iteration complexity shown is the same as the power method, but since it requires less operations
(O(knnz(A)/n) instead of O(nnz(A)) per iteration, we have
Corollary 4.2.1. If the requirements in Theorem 4.2 apply and additionally k satisfies:

k < n log((�
1

+ �
2

)/(2�
1

))/ log(�
2

/�
1

), (10)

CPM has a better convergence rate than PM in terms of the number of equivalent passes over the
coordinates.

5

The RHS of (10) ranges from 0.06n to 0.5n when �2
�1

goes from 10

�5 to 1 � 10

�5. Meanwhile,
experiments show that the performance of our algorithms isn’t too sensitive to the choice of k. Figure
6 in Appendix A.6 illustrates that a sufficiently large range of k guarantees good performances. Thus
we use a prescribed k =

n
20

throughout our experiments in this paper, which saves the burden of
tuning parameters and is a theoretically and experimentally favorable choice.
Part of the proof is inspired by the noisy power method [3] in that we consider the unchanged part
g as noise. For the sake of a neat proof we require our target matrix to be positive semidefinite,
although experimentally a generalization to regular matrices is also valid for our algorithm. Details
can be found in Appendix A.1 and A.3.

4.2 Local Convergence for Optimization on kA� xx

T k2F
As the objective in Problem (5) is non-convex, it is hard to show global convergence. Clearly, with
exact coordinate descent, Algorithm 2 will converge to some stationary point. In the following, we
show that Algorithm 2 converges to the global minimum with a starting point sufficiently close to it.

Theorem 4.3. (Local Linear Convergence) For any sequence of iterates (x(0),x(1), · · ·) generated
by Algorithm 2, assume the starting point x(0) is in a ball centered by

p
�
1

v

1

with radius r =

O(

�1��2p
�1

), or formally, x(0) 2 Br(
p
�
1

v

1

), then (x

0,x1, · · ·) converges to the optima linearly.

Specifically, when k = 1, then after T =

14�1�2�2+4maxi |aii|
µ log

f(x(0)
)�f⇤

" iterations, we have
f(x(T)

)� f⇤  ", where f⇤
= f(

p
�
1

v

1

) is the global minimum of the objective function f , and
µ = infx,y2Br(

p
�1v1)

krf(x)�rf(y)k1
kx�yk1

2 [

3(�1��2)

n , 3(�
1

� �
2

)].

We prove this by showing that the objective (5) is strongly convex and coordinate-wise Lipschitz
continuous in a neighborhood of the optimum. The proof is given in Appendix A.4.
Remark: For real-life graphs, the diagonal values aii = 0, and the coefficient in the iteration
complexity could be simplified as 14�1�2�2

µ when k = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ2/λ1

10 4

10 5

10 6

10 7

flo
ps

/n

CPM
SGCD
PM
Lanczos
VRPCA

(a) Convergence flops vs �2
�1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ2/λ1

10 0

10 1

10 2

tim
e

(s
ec

)

CPM
SGCD
PM
Lanczos
VRPCA

(b) Convergence time vs �2
�1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n

10 -1

10 0

10 1

10 2

tim
e

(s
ec

)

CPM
SGCD
PM
Lanczos
VRPCA

(c) Convergence time vs dimension

Figure 2: Matrix properties affecting performance. Figure 2(a), 2(b) show the performance of five methods
with �2

�1
ranging from 0.01 to 0.99 and fixed matrix size n = 5000. In Figure 2(a) the measurement is FLOPs

while in Figure 2(b) Y-axis is CPU time. Figure 2(c) shows how the convergence time varies with the dimension
when fixing �2

�1
= 2/3. In all figures Y-axis is in log scale for better observation. Results are averaged over from

20 runs.

5 Experiments
In this section, we compared our algorithms with PM, Lanczos method [14], and VRPCA [16] on
dense as well as sparse dataset. All the experiments were executed on Intel(R) Xeon(R) E5430
machine with 16G RAM and Linux OS. We implement all the five algorithms in C++ with Eigen
library.

5.1 Comparison on Dense and Simulated Dataset
We compare PM with our CPM and SGCD methods to show how coordinate-wise mechanism
improves the original method. Further, we compared with a state-of-the-art algorithm Lanczos
method. Besides, we also include a recent proposed stochastic SVD algorithm, VRPCA, that enjoys
exponential convergence rate and shows similar insight in viewing the data in a separable way.
With dense and synthetic matrices, we are able to test the condition that our methods are preferable,
and how the properties of the matrix, like �

2

/�
1

or the dimension, affect the performance. For each
algorithm, we start from the same random vector, and set stopping condition to be cos ✓ � 1� ✏, ✏ =
10

�6, where ✓ is the angle between the current iterate and the dominant eigenvector.

6

First we compare the performances with number of FLOPs (Floating Point Operations), which could
better illustrate how greediness affects the algorithm’s efficiency. From Figure 2(a) we can see our
method shows much better performance than PM, especially when �

2

/�
1

! 1, where CPM and
SGCD respectively achieve more than 2 and 3 times faster than PM. Figure 2(b) shows running time
using five methods under different eigenvalue ratios �

2

/�
1

. We can see that only in some extreme
cases when PM converges in less than 0.1 second, PM is comparable to our methods. In Figure 2(c)
the testing factor is the dimension, which shows the performance is independent of the size of n.
Meanwhile, in most cases, SGCD is better than Lanczos method. And although VRPCA has better
convergence rate, it requires at least 10n2 operations for one data pass. Therefore in real applications,
it is not even comparable to PM.

5.2 Comparison on Sparse and Real Dataset

Table 1: Six datasets and the performance of three methods on them.
Dataset n nnz(A) nnz/n �2

�1

Time (sec)
PM CPM SGCD Lanczos VRPCA

com-Orkut 3.07M 234M 76.3 0.71 109.6 31.5 19.3 63.6 189.7
soc-LiveJournal 4.85M 86M 17.8 0.78 58.5 17.9 13.7 25.8 88.1

soc-Pokec 1.63M 44M 27.3 0.95 118 26.5 5.2 14.2 596.2
web-Stanford 282K 3.99M 14.1 0.95 8.15 1.05 0.54 0.69 7.55

ego-Gplus 108K 30.5M 283 0.51 0.99 0.57 0.61 1.01 5.06
ego-Twitter 81.3K 2.68M 33 0.65 0.31 0.15 0.11 0.19 0.98

To test the scalability of our methods, we further test and compare our methods on large and sparse
datasets. We use the following real datasets:
1) com-Orkut: Orkut online social network
2) soc-LiveJournal: On-line community for maintaining journals, individual and group blogs
3) soc-Pokec: Pokec, most popular on-line social network in Slovakia
4) web-Stanford: Pages from Stanford University (stanford.edu) and hyperlinks between them
5) ego-Gplus (Google+): Social circles from Google+
6) ego-Twitter: Social circles from Twitter
The statistics of the datasets are summarized in Table 1, which includes the essential properties of the
datasets that affect the performances and the average CPU time for reaching cos ✓

x,v1 � 1� 10

�6.
Figure 3 shows tan ✓

x,v1 against the CPU time for the four methods with multiple datasets.
From the statistics in Table 1 we can see that in all the cases, either CPM or SGCD performs the best.
CPM is roughly 2-8 times faster than PM, while SGCD reaches up to 23 times and 3 times faster
than PM and Lanczos method respectively. Our methods show their privilege in the soc-Pokec(3(c))
and web-Stanford(3(d)), the most ill-conditioned cases (�

2

/�
1

⇡ 0.95), achieving 15 or 23 times
of speedup on PM with SGCD. Meanwhile, when the condition number of the datasets is not too
small (see 3(a),3(b),3(e),3(f)), both CPM and SGCD outperform PM as well as Lanczos method. And

time (sec)
0 20 40 60 80 100 120 140 160

ta
n
θ x

,v
1

10 -3

10 -2

10 -1

10 0

10 1

CPM
SGCD
PM
Lanczos
VRPCA

(a) Performance on com-Orkut
time (sec)

0 10 20 30 40 50 60 70

ta
n
θ x

,v
1

10 -3

10 -2

10 -1

10 0

10 1

CPM
SGCD
PM
Lanczos
VRPCA

(b) Performance on LiveJournal
time (sec)

0 20 40 60 80 100 120 140 160

ta
n
θ x

,v
1

10 -3

10 -2

10 -1

10 0

10 1

CPM
SGCD
PM
Lanczos
VRPCA

(c) Performance on soc-Pokec

time (sec)
0 1 2 3 4 5 6 7 8 9

ta
n
θ x

,v
1

10 -3

10 -2

10 -1

10 0

10 1

CPM
SGCD
PM
Lanczos
VRPCA

(d) Performance on web-Stanford
time (sec)

0 0.5 1 1.5 2 2.5 3

ta
n
θ x

,v
1

10 -3

10 -2

10 -1

10 0

10 1

CPM
SGCD
PM
Lanczos
VRPCA

(e) Performance on Google+
time (sec)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ta
n
θ x

,v
1

10 -3

10 -2

10 -1

10 0

10 1

CPM
SGCD
PM
Lanczos
VRPCA

(f) Performance on ego-Twitter

Figure 3: Time comparison for sparse dataset. X-axis shows the CPU time while Y-axis is log scaled tan ✓
between x and v1. The empirical performance shows all three methods have linear convergence.

7

similar to the reasoning in the dense case, although VRPCA requires less iterations for convergence,
the overall CPU time is much longer than others in practice.
In summary of performances on both dense and sparse datasets, SGCD is the fastest among others.

6 Other Application and Extensions
6.1 Comparison on Out-of-core Real Dataset

0 500 1000 1500 2000 2500 3000 3500 4000 4500

time (sec)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

ta
n
θ x

,v
1

CPM
SGCD
PM

Figure 4: A pseudograph for time comparison of
out-of-core dataset from Twitter. Each "staircase" il-
lustrates the performance of one data pass. The flat part
indicates the stage of loading data, while the downward
part shows the phase of processing data. As we only
updated auxiliary vectors instead of the iterate every
time we load part of the matrix, we could not test per-
formances until a whole data pass. Therefore for the
sake of clear observation, we group together the loading
phase and the processing phase in each data pass.

An important application for coordinate-wise
power method is the case when data can not fit
into memory. Existing methods can’t be easily
applied to out-of-core dataset. Most existing
methods don’t indicate how we can update part
of the coordinates multiple times and fully reuse
part of the matrix corresponding to those active
coordinates. Therefore the data loading and data
processing time are highly unbalanced. A naive
way of using PM would be repetitively loading
part of the matrix from the disk and calculating
that part of matrix-vector multiplication. But
from Figure 4 we can see reading from the disk
costs much more time than the process of com-
putation, therefore we will waste a lot of time
if we cannot fully use the data before dumping
it. For CPM, as we showed in Theorem 4.1 that
updating only k coordinates of iterate x may
still enhance the target direction, we could do
matrix vector multiplication multiple times after one single loading. As with SGCD, optimization on
part of x for several times will also decrease the function value.
We did experiments on the dataset from Twitter [10] using out-of-core version of the three algorithms
shown in Algorithm 3 in Appendix A.7. The data, which contains 41.7 million user profiles and 1.47
billion social relations, is originally 25.6 GB and then separated into 5 files. In Figure 4, we can see
that after data pass, our methods can already reach rather high precision, which compresses hours of
processing time to 8 minutes.

6.2 Extension to other linear algebraic methods
With the interpretation in optimization, we could apply a coordinate-wise mechanism to PM and get
good performance. Meanwhile, for some other iterative methods in linear algebra, if the connection to
optimization is valid, or if the update is separable for each coordinate, the coordinate-wise mechanism
may also be applicable, like Jacobi method.
For diagonal dominant matrices, Jacobi iteration [15] is a classical method for solving linear system
Ax = b with linear convergence rate. The iteration procedure is:

Initialize: A! D +R, where D =Diag(A), and R = A�D.
Iterations: x+ D�1

(b�Rx).

This method is similar to the vanilla power method, which includes a matrix vector multiplication
�Rx with an extra translation b and a normalization step D�1. Therefore, a potential similar
realization of greedy coordinate-wise mechanism is also applicable here. See Appendix A.8 for more
experiments and analyses, where we also specify its relation to Gauss-Seidel iteration [15].

7 Conclusion
In summary, we propose a new coordinate-wise power method and greedy coordinate descent
method for computing the most dominant eigenvector of a matrix. This problem is critical to many
applications in machine learning. Our methods have convergence guarantees and achieve up to 23
times of speedup on both real and synthetic data, as compared to the vanilla power method.

Acknowledgements
This research was supported by NSF grants CCF-1320746, IIS-1546452 and CCF-1564000.

8

References

[1] Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Nearest neighbor based greedy
coordinate descent. In Advances in Neural Information Processing Systems, pages 2160–2168,
2011.

[2] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review,
53(2):217–288, 2011.

[3] Moritz Hardt and Eric Price. The noisy power method: A meta algorithm with applications. In
Advances in Neural Information Processing Systems, pages 2861–2869, 2014.

[4] Moritz Hardt and Aaron Roth. Beyond worst-case analysis in private singular vector computa-
tion. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages
331–340. ACM, 2013.

[5] Charles AR Hoare. Algorithm 65: find. Communications of the ACM, 4(7):321–322, 1961.
[6] Cho-Jui Hsieh and Inderjit S Dhillon. Fast coordinate descent methods with variable selection

for non-negative matrix factorization. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1064–1072. ACM, 2011.

[7] Ilse Ipsen and Rebecca M Wills. Analysis and computation of google’s pagerank. In 7th IMACS
international symposium on iterative methods in scientific computing, Fields Institute, Toronto,
Canada, volume 5, 2005.

[8] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using
alternating minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory
of computing, pages 665–674. ACM, 2013.

[9] Michel Journée, Yurii Nesterov, Peter Richtárik, and Rodolphe Sepulchre. Generalized power
method for sparse principal component analysis. The Journal of Machine Learning Research,
11:517–553, 2010.

[10] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter, a social
network or a news media? Proceedings of the 19th international conference on World wide
web, pages 591–600, 2010.

[11] Deanna Needell, Rachel Ward, and Nati Srebro. Stochastic gradient descent, weighted sampling,
and the randomized Kaczmarz algorithm. In Advances in Neural Information Processing
Systems, pages 1017–1025, 2014.

[12] Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012.

[13] Julie Nutini, Mark Schmidt, Issam H Laradji, Michael Friedlander, and Hoyt Koepke. Coordinate
descent converges faster with the Gauss-Southwell rule than random selection. In Proceedings
of the 32nd International Conference on Machine Learning (ICML-15), pages 1632–1641, 2015.

[14] Beresford N Parlett. The Symmetric Eigenvalue Problem, volume 20. SIAM, 1998.
[15] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.
[16] Ohad Shamir. A stochastic PCA and SVD algorithm with an exponential convergence rate. In

Proc. of the 32st Int. Conf. Machine Learning (ICML 2015), pages 144–152, 2015.
[17] Si Si, Donghyuk Shin, Inderjit S Dhillon, and Beresford N Parlett. Multi-scale spectral

decomposition of massive graphs. In Advances in Neural Information Processing Systems,
pages 2798–2806, 2014.

[18] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,
2007.

[19] Xiao-Tong Yuan and Tong Zhang. Truncated power method for sparse eigenvalue problems.
The Journal of Machine Learning Research, 14(1):899–925, 2013.

9

