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Abstract

Non-negative matrix factorization is a popular tool for decomposing data into fea-
ture and weight matrices under non-negativity constraints. It enjoys practical suc-
cess but is poorly understood theoretically. This paper proposes an algorithm that
alternates between decoding the weights and updating the features, and shows that
assuming a generative model of the data, it provably recovers the ground-truth un-
der fairly mild conditions. In particular, its only essential requirement on features
is linear independence. Furthermore, the algorithm uses ReLU to exploit the non-
negativity for decoding the weights, and thus can tolerate adversarial noise that can
potentially be as large as the signal, and can tolerate unbiased noise much larger
than the signal. The analysis relies on a carefully designed coupling between two
potential functions, which we believe is of independent interest.

1 Introduction

In this paper, we study the problem of non-negative matrix factorization (NMF), where given a
matrix Y ∈ Rm×N , the goal to find a matrix A ∈ Rm×n and a non-negative matrix X ∈ Rn×N

such that Y ≈ AX.1 A is often referred to as feature matrix and X referred as weights. NMF has
been extensively used in extracting a parts representation of the data (e.g., [LS97, LS99, LS01]). It
has been shown that the non-negativity constraint on the coefficients forcing features to combine, but
not cancel out, can lead to much more interpretable features and improved downstream performance
of the learned features.

Despite all the practical success, however, this problem is poorly understood theoretically, with only
few provable guarantees known. Moreover, many of the theoretical algorithms are based on heavy
tools from algebraic geometry (e.g., [AGKM12]) or tensors (e.g. [AKF+12]), which are still not
as widely used in practice primarily because of computational feasibility issues or sensitivity to
assumptions on A and X. Some others depend on specific structure of the feature matrix, such as
separability [AGKM12] or similar properties [BGKP16].

A natural family of algorithms for NMF alternate between decoding the weights and updating the
features. More precisely, in the decoding step, the algorithm represents the data as a non-negative
combination of the current set of features; in the updating step, it updates the features using the
decoded representations. This meta-algorithm is popular in practice due to ease of implementa-
tion, computational efficiency, and empirical quality of the recovered features. However, even less
theoretical analysis exists for such algorithms.

1In the usual formulation of the problem, A is also assumed to be non-negative, which we will not require
in this paper.
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This paper proposes an algorithm in the above framework with provable recovery guarantees. To
be specific, the data is assumed to come from a generative model y = A∗x∗ + ν. Here, A∗

is the ground-truth feature matrix, x∗ are the non-negative ground-truth weights generated from
an unknown distribution, and ν is the noise. Our algorithm can provably recover A∗ under mild
conditions, even in the presence of large adversarial noise.

Overview of main results. The existing theoretical results on NMF can be roughly split into two
categories. In the first category, they make heavy structural assumptions on the feature matrix A∗

such as separability ([AGM12]) or allowing running time exponential in n ( [AGKM12]). In the
second one, they impose strict distributional assumptions on x∗ ([AKF+12]), where the methods
are usually based on the method of moments and tensor decompositions and have poor tolerance to
noise, which is very important in practice.

In this paper, we present a very simple and natural alternating update algorithm that achieves the best
of both worlds. First, we have minimal assumptions on the feature matrix A∗: the only essential
condition is linear independence of the features. Second, it is robust to adversarial noise ν which
in some parameter regimes be potentially be on the same order as the signal A∗x∗, and is robust to
unbiased noise potentially even higher than the signal by a factor of O(

√
n). The algorithm does not

require knowing the distribution of x∗, and allows a fairly wide family of interesting distributions.
We get this at a rather small cost of a mild “warm start”. Namely, we initialize each of the features
to be “correlated” with the ground truth features. This type of initialization is often used in practice
as well, for example in LDA-c, the most popular software for topic modeling ([lda16]).

A major feature of our algorithm is the significant robustness to noise. In the presence of adversarial
noise on each entry of y up to level Cν , the noise level ∥ν∥1 can be in the same order as the signal
A∗x∗. Still, our algorithm is able to output a matrix A such that the final ∥A∗ −A∥1 ≤ O(∥ν∥1)
in the order of the noise in one data point. If the noise is unbiased (i.e., E[ν|x∗] = 0), the noise level
∥ν∥1 can be Ω(

√
n) times larger than the signal A∗x∗, while we can still guarantee ∥A∗ −A∥1 ≤

O (∥ν∥1
√
n) – so our algorithm is not only tolerant to noise, but also has very strong denoising

effect. Note that even for the unbiased case the noise can potentially be correlated with the ground-
truth in very complicated manner, and also, all our results are obtained only requiring the columns
of A∗ are independent.

Technical contribution. The success of our algorithm crucially relies on exploiting the non-
negativity of x∗ by a ReLU thresholding step during the decoding procedure. Similar techniques
have been considered in prior works on matrix factorization, however to the best of our knowledge,
the analysis (e.g., [AGMM15]) requires that the decodings are correct in all the intermediate itera-
tions, in the sense that the supports of x∗ are recovered with no error. Indeed, we cannot hope for
a similar guarantee in our setting, since we consider adversarial noise that could potentially be the
same order as the signal. Our major technical contribution is a way to deal with the erroneous decod-
ing through out all the intermediate iterations. We achieve this by a coupling between two potential
functions that capture different aspects of the working matrix A. While analyzing iterative algo-
rithms like alternating minimization or gradient descent in non-convex settings is a popular topic in
recent years, the proof usually proceeds by showing that the updates are approximately performing
gradient descent on an objective with some local or hidden convex structure. Our technique diverges
from the common proof strategy, and we believe is interesting in its own right.

Organization. After reviewing related work, we define the problem in Section 3 and describe our
main algorithm in Section 4. To emphasize the key ideas, we first present the results and the proof
sketch for a simplified yet still interesting case in Section 5, and then present the results under much
more general assumptions in Section 6. The complete proof is provided in the appendix.

2 Related work

Non-negative matrix factorization relates to several different topics in machine learning.

Non-negative matrix factorization. The area of non-negative matrix factorization (NMF) has a rich
empirical history, starting with the practical algorithm of [LS97].On the theoretical side, [AGKM12]
provides a fixed-parameter tractable algorithm for NMF, which solves algebraic equations and thus
has poor noise tolerance. [AGKM12] also studies NMF under separability assumptions about the
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features. [BGKP16] studies NMF under heavy noise, but also needs assumptions related to separa-
bility, such as the existence of dominant features. Also, their noise model is different from ours.

Topic modeling. A closely related problem to NMF is topic modeling, a common generative model
for textual data [BNJ03, Ble12]. Usually, ∥x∗∥1 = 1 while there also exist work that assume x∗

i ∈
[0, 1] and are independent [ZX12]. A popular heuristic in practice for learning A∗ is variational
inference, which can be interpreted as alternating minimization in KL divergence norm. On the
theory front, there is a sequence of works by based on either spectral or combinatorial approaches,
which need certain “non-overlapping” assumptions on the topics. For example, [AGH+13] assume
the topic-word matrix contains “anchor words”: words which appear in a single topic. Most related
is the work of [AR15] who analyze a version of the variational inference updates when documents
are long. However, they require strong assumptions on both the warm start, and the amount of
“non-overlapping” of the topics in the topic-word matrix.

ICA. Our generative model for x∗ will assume the coordinates are independent, therefore our prob-
lem can be viewed as a non-negative variant of ICA with high levels of noise. Results here typically
are not robust to noise, with the exception of [AGMS12] that tolerates Gaussian noise. However, to
best of our knowledge, no result in this setting is provably robust to adversarial noise.

Non-convex optimization. The framework of having a “decoding” for the samples, along with
performing an update for the model parameters has proven successful for dictionary learning as
well. The original empirical work proposing such an algorithm (in fact, it suggested that the V1
layer processes visual signals in the same manner) was due to [OF97]. Even more, similar families
of algorithms based on “decoding” and gradient-descent are believed to be neurally plausible as
mechanisms for a variety of tasks like clustering, dimension-reduction, NMF, etc ([PC15a, PC14]).
A theoretical analysis came latter for dictionary learning due to [AGMM15] under the assumption
that the columns of A∗ are incoherent. The technique is not directly applicable to our case, as we
don’t wish to have any assumptions on the matrix A∗. For instance, if A∗ is non-negative and
columns with l1 norm 1, incoherence effectively means the the columns of A∗ have very small
overlap.

3 Problem definition and assumptions

Given a matrix Y ∈ Rm×N , the goal of non-negative matrix factorization (NMF) is to find a matrix
A ∈ Rm×n and a non-negative matrix X ∈ Rn×N , so that Y ≈ AX. The columns of Y are
called data points, those of A are features, and those of X are weights. We note that in the original
NMF, A is also assumed to be non-negative, which is not required here. We also note that typically
m ≫ n, i.e., the features are a few representative components in the data space. This is different
from dictionary learning where overcompleteness is often assumed.

The problem in the worst case is NP-hard [AGKM12], so some assumptions are needed to design
provable efficient algorithms. In this paper, we consider a generative model for the data point

y = A∗x∗ + ν (1)

where A∗ is the ground-truth feature matrix, x∗ is the ground-truth non-negative weight from some
unknown distribution, and ν is the noise. Our focus is to recover A∗ given access to the data
distribution, assuming some properties of A∗, x∗, and ν. To describe our assumptions, we let [M]i

denote the i-th row of a matrix M, [M]j its i-th column, Mi,j its (i, j)-th entry. Denote its column
norm, row norm, and symmetrized norm as ∥M∥1 = maxj

∑
i |Mi,j |, ∥M∥∞ = maxi

∑
j |Mi,j |,

and ∥M∥s = max {∥M∥1, ∥M∥∞} , respectively.

We assume the following hold for parameters C1, c2, C2, ℓ, Cν to be determined in our theorems.

(A1) The columns of A∗ are linearly independent.

(A2) For all i ∈ [n], x∗
i ∈ [0, 1], E[x∗

i ] ≤ C1

n and c2
n ≤ E[(x∗

i )
2] ≤ C2

n , and x∗
i ’s are independent.

(A3) The initialization A(0) = A∗(Σ(0) + E(0)) + N(0), where Σ(0) is diagonal, E(0) is off-
diagonal, and

Σ(0) ⪰ (1− ℓ)I,
∥∥∥E(0)

∥∥∥
s
≤ ℓ.

We consider two noise models.
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(N1) Adversarial noise: only assume that maxi |νi| ≤ Cν almost surely.

(N2) Unbiased noise: maxi |νi| ≤ Cν almost surely, and E[ν|x∗] = 0.

Remarks We make several remarks about each of the assumptions.
(A1) is the assumption about A∗. It only requires the columns of A∗ to be linear independent, which
is very mild and needed to ensure identifiability. Otherwise, for instance, if (A∗)3 = λ1(A

∗)1 +
λ2(A

∗)2, it is impossible to distinguish between the case when x∗
3 = 1 and the case when x∗

2 = λ1

and x∗
1 = λ2. In particular, we do not restrict the feature matrix to be non-negative, which is more

general than the traditional NMF and is potentially useful for many applications. We also do not
make incoherence or anchor word assumptions that are typical in related work.

(A2) is the assumption on x∗. First, the coordinates are non-negative and bounded by 1; this is simply
a matter of scaling. Second, the assumption on the moments requires that, roughly speaking, each
feature should appear with reasonable probability. This is expected: if the occurrences of the features
are extremely unbalanced, then it will be difficult to recover the rare ones. The third requirement
on independence is motivated by that the features should be different so that their occurrences are
not correlated. Here we do not stick to a specific distribution, since the moment conditions are more
general, and highlight the essential properties our algorithm needs. Example distributions satisfying
our assumptions will be discussed later.

The warm start required by (A3) means that each feature A(0)
i has a large fraction of the ground-truth

feature A∗
i and a small fraction of the other features, plus some noise outside the span of the ground-

truth features. We emphasize that N(0) is the component of A(0) outside the column space of A∗,
and is not the difference between A(0) and A∗. This requirement is typically achieved in practice
by setting the columns of A(0) to reasonable “pure” data points that contains one major feature and
a small fraction of some other features (e.g. [lda16, AR15]); in this initialization, it is generally
believed that N(0) = 0. But we state our theorems to allow some noise N(0) for robustness in the
initialization.

The adversarial noise model (N1) is very general, only imposing an upper bound on the entry-wise
noise level. Thus, ν can be correlated with x∗ in some complicated unknown way. (N2) additionally
requires it to be zero mean, which is commonly assumed and will be exploited by our algorithm to
tolerate larger noise.

4 Main algorithm

Algorithm 1 Purification

Input: initialization A(0), threshold α, step size η, scaling factor r, sample size N , iterations T
1: for t = 0, 1, 2, ..., T − 1 do
2: Draw examples y1, . . . , yN .
3: (Decode) Compute A†, the pseudo-inverse of A(t) with minimum ∥(A)†∥∞.

Set x = ϕα(A
†y) for each example y. // ϕα is ReLU activation; see (2) for the

definition
4: (Update) Update the feature matrix

A(t+1) = (1− η)A(t) + rηÊ
[
(y − y′)(x− x′)⊤

]
where Ê is over independent uniform y, y′ from {y1, . . . , yN}, and x, x′ are their decodings.

Output: A = A(T )

Our main algorithm is presented in Algorithm 1. It keeps a working feature matrix and operates in
iterations. In each iteration, it first compute the weights for a batch of N examples (decoding), and
then uses the computed weights to update the feature matrix (updating).

The decoding is simply multiplying the example by the pseudo-inverse of the current feature matrix
and then passing it through the rectified linear unit (ReLU) ϕα with offset α. The pseudo-inverse
with minimum infinity norm is used so as to maximize the robustness to noise (see the theorems).
The ReLU function ϕα operates element-wisely on the input vector v, and for an element vi, it is
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defined as

ϕα(vi) = max {vi − α, 0} . (2)

To get an intuition why the decoding makes sense, suppose the current feature matrix is the ground-
truth. Then A†y = A†A∗x∗ + A†ν = x∗ + A†ν. So we would like to use a small A† and use
threshold to remove the noise term.

In the encoding step, the algorithm move the feature matrix along the direction
E
[
(y − y′)(x− x′)⊤

]
. To see intuitively why this is a good direction, note that when the

decoding is perfect and there is no noise, E
[
(y − y′)(x− x′)⊤

]
= A∗, and thus it is moving

towards the ground-truth. Without those ideal conditions, we need to choose a proper step size,
which is tuned by the parameters η and r.

5 Results for a simplified case

Our intuitions can be demonstrated in a simplified setting with (A1), (A2’), (A3), and (N1), where

(A2’) x∗
i ’s are independent, and x∗

i = 1 with probability s/n and 0 otherwise for a constant
s > 0.

Furthermore, let N(0) = 0. This is a special case of our general assumptions, with C1 = c2 = C2 =
s where s is the parameter in (A2’). It is still an interesting setting; as far as we know, there is no
existing guarantee of alternating type algorithms for it.

To present our results, we let (A∗)† denote the matrix satisfying (A∗)†A∗ = I; if there are multiple
such matrices we let it denote the one with minimum ∥(A∗)†∥∞.
Theorem 1 (Simplified case, adversarial noise). There exists a absolute constant G such that when
Assumption (A1)(A2’)(A3) and (N1) are satisfied with l = 1/10, Cν ≤ Gc

max{m,n∥(A∗)†∥∞}
for

some 0 ≤ c ≤ 1, and N(0) = 0, then there exist α, η, r such that for every 0 < ϵ, δ < 1 and
N = poly(n,m, 1/ϵ, 1/δ) the following holds with probability at least 1− δ.

After T = O
(
ln 1

ϵ

)
iterations, Algorithm 1 outputs a solution A = A∗(Σ + E) + N where Σ ⪰

(1− ℓ)I is diagonal, ∥E∥1 ≤ ϵ+ c is off-diagonal, and ∥N∥1 ≤ c.

Remarks. Consequently, when ∥A∗∥1 = 1, we can do normalization Âi = Ai/∥Ai∥1, and the
normalized output Â satisfies

∥Â−A∗∥1 ≤ ϵ+ 2c.

So under mild conditions and with proper parameters, our algorithm recovers the ground-truth in
a geometric rate. It can achieve arbitrary small recovery error in the noiseless setting, and achieve
error up to the noise limit even with adversarial noise whose level is comparable to the signal.

The condition on ℓ means that a constant warm start is sufficient for our algorithm to converge,
which is much better than previous work such as [AR15]. Indeed, in that work, the ℓ needs to even
depend on the dynamic range of the entries of A∗ which is problematic in practice.

It is shown that with large adversarial noise, the algorithm can still recover the features up to the
noise limit. When m ≥ n∥ (A∗)

† ∥∞, each data point has adversarial noise with ℓ1 norm as large
as ∥ν∥1 = Cνm = Ω(c), which is in the same order as the signal ∥A∗x∗∥1 = O(1). Our algorithm
still works in this regime. Furthermore, the final error ∥A−A∗∥1 is O(c), in the same order as the
adversarial noise in one data point.

Note the appearance of ∥ (A∗)
† ∥∞ is not surprising. The case when the columns are the canonical

unit vectors for instance, which corresponds to ∥ (A∗)
† ∥∞ = 1, is expected to be easier than the

case when the columns are nearly the same, which corresponds to large ∥ (A∗)
† ∥∞.

A similar theorem holds for the unbiased noise model.
Theorem 2 (Simplified case, unbiased noise). If Assumption (A1)(A2’)(A3) and (N2) are satisfied
with Cν = Gc

√
n

max{m,n∥(A∗)†∥∞}
and the other parameters set as in Theorem 1, then the same guar-

antee in holds.
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Remarks. With unbiased noise which is commonly assumed in many applications, the algorithm
can tolerate noise level

√
n larger than the adversarial case. When m ≥ n∥ (A∗)

† ∥∞, each data
point has adversarial noise with ℓ1 norm as large as ∥ν∥1 = Cνm = Ω(c

√
n), which can be Ω(

√
n)

times larger than the signal ∥A∗x∗∥1 = O(1). The algorithm can recover the ground-truth in
this heavy noise regime. Furthermore, the final error ∥A−A∗∥1 is O (∥ν∥1/

√
n), which is only

O(1/
√
n) fraction of the noise in one data point. This is very strong denoising effect and a bit

counter-intuitive. It is possible since we exploit the average of the noise for cancellation, and also
use thresholding to remove noise spread out in the coordinates.

5.1 Analysis: intuition

A natural approach typically employed to analyze algorithms for non-convex problems is to define
a function on the intermediate solution A and the ground-truth A∗ measuring their distance and
then show that the function decreases at each step. However, a single potential function will not
be enough in our case, as we argue below, so we introduce a novel framework of maintaining two
potential functions which capture different aspects of the intermediate solutions.

Let us denote the intermediate solution and the update as (omitting the superscript (t))

A = A∗(Σ+E) +N, Ê[(y − y′)(x− x′)⊤] = A∗(Σ̃+ Ẽ) + Ñ,

where Σ and Σ̃ are diagonal, E and Ẽ are off-diagonal, and N and Ñ are the terms outside the span
of A∗ which is caused by the noise. To cleanly illustrate the intuition behind ReLU and the coupled
potential functions, we focus on the noiseless case and assume that we have infinite samples.

Since Ai = Σi,iA
∗
i +

∑
j ̸=i Ej,iA

∗
j , if the ratio between ∥Ei∥1 =

∑
j ̸=i |Ej,i| and Σi,i gets

smaller, then the algorithm is making progress; if the ratio is large at the end, a normalization of Ai

gives a good approximation of A∗
i . So it suffices to show that Σi,i is always about a constant while

∥Ei∥1 decreases at each iteration. We will focus on E and consider the update rule in more detail to
argue this. After some calculation, we have

E← (1− η)E+ rηẼ, Ẽ = E[(x∗ − (x′)∗) (x− x′)
⊤
], (3)

where x, x′ are the decoding for x∗, (x′)∗ respectively:

x = ϕα

(
(Σ+E)−1x∗) , x′ = ϕα

(
(Σ+E)−1(x′)∗

)
. (4)

To see why the ReLU function matters, consider the case when we do not use it.

Ẽ = E(x∗ − (x′)∗)
[
A†A∗(x∗ − (x′)∗)

]⊤
= E

[
(x∗ − (x′)∗)(x∗ − (x′)∗)⊤

] [
(Σ+E)−1

]⊤
∝
[
(Σ+E)−1

]⊤ ≈ Σ−1 −Σ−1EΣ−1.

where we used Taylor expansion and the fact that E
[
(x∗ − (x′)∗)(x∗ − (x′)∗)⊤

]
is a scaling of

identity. Hence, if we think of Σ as approximately I and take an appropriate r, the update to the
matrix E is approximately E ← E − ηE⊤. Since we do not have control over the signs of E
throughout the iterations, the problematic case is when the entries of E⊤ and E roughly match in
signs, which would lead to the entries of E increasing.

Now we consider the decoding to see why ReLU is important. Ignoring the higher order terms and
regarding Σ = I, we have

x = ϕα

(
(Σ+E)−1x∗) ≈ ϕα

(
Σ−1x∗ −Σ−1EΣ−1x∗) ≈ ϕα (x∗ −Ex∗) . (5)

The problematic term is Ex∗. These errors when summed up will be comparable or even larger
than the signals, and the algorithm will fail. However, since the signals are non-negative and most
coordinates with errors only have small values, thresholding with ReLU properly can remove those
errors while keeping a large fraction of the signals. This leads to large Σ̃i,i and small Ẽj,i’s, and
then we can choose an r such that Ej,i’s keep decreasing while Σi,i’s stay in a certain range.

To get a quantitative bound, we divide E into its positive part E+ and its negative part E−:

[E+]i,j = max {Ei,j , 0} , [E−]i,j = max {−Ei,j , 0} . (6)
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The reason to do so is the following: when Ei,j is negative, by the Taylor expansion approxima-
tion,

[
(Σ+E)−1x∗]

i
will tend to be more positive and will not be thresholded most of the time.

Therefore, Ej,i will turn more positive at next iteration. On the other hand, when Ei,j is positive,[
(Σ+E)−1x∗]

i
will tend to be more negative and zeroed out by the threshold function. Therefore,

Ej,i will not be more negative at next iteration. We will show for positive and negative parts of E:

postive(t+1) ← (1−η)positive(t)+(η)negative(t), negative(t+1) ← (1−η)negative(t)+(εη)positive(t)

for a small ε ≪ 1. Due to ϵ, we can couple the two parts so that a weighted average of them will
decrease, which implies that ∥E∥s is small at the end. This leads to our coupled potential function.2

5.2 Analysis: proof sketch

Here we describe a proof sketch for the simplified case while the complete proof is presented in the
appendix.

One iteration We focus on one update and omit the superscript (t). Recall the definitions of E, Σ
and N in (5.1), and Ẽ, Σ̃ and Ñ in (5.1). Our goal is to derive lower and upper bounds for Ẽ, Σ̃
and Ñ, assuming that Σi,i falls into some range around 1, while E and N are small. This will allow
doing induction on them.

First, begin with the decoding. Some calculation shows that, the decoding for y = A∗x∗ + ν is

x = ϕα (Zx∗ + ξ) , where Z = (Σ+E)
−1

, ξ = −A†NZx∗ +A†ν. (7)

Now, we can present our key lemmas bounding Ẽ, Σ̃, and Ñ.

Lemma 3 (Simplified bound on Ẽ, informal). (1) if Zi,j < 0, then
∣∣∣Ẽj,i

∣∣∣ ≤ O
(

1
n2 (|Zi,j |+ c)

)
,

(2) if Zi,j ≥ 0, then −O
(

c
n2 + c

n |Zi,j |+ 1
n2 |Zi,j |

)
≤
∣∣∣Ẽj,i

∣∣∣ ≤ O
(
1
n∥Zi,j∥

)
.

Note that Z ≈ Σ−1 −Σ−1EΣ−1, so Zi,j < 0 corresponds roughly to Ei,j > 0. In this case, the
upper bound on |Ẽj,i| is very small and thus |Ej,i| decreases, as described in the intuition. What
is most interesting is the case when Zi,j ≥ 0 (roughly Ei,j < 0). The upper bound is much
larger, corresponding to the intuition that negative Ei,j can contribute a large positive value to Ej,i.
Fortunately, the lower bounds are of much smaller absolute value, which allows us to show that
a potential function that couples Case (1) and Case (2) in Lemma 3 actually decreases; see the
induction below.
Lemma 4 (Simplified bound on Σ̃, informal). Σ̃i,i ≥ Ω(Σ−1

i,i − α)/n.

Lemma 5 (Simplified bound on Ñ, adversarial noise, informal).
∣∣∣Ñi,j

∣∣∣ ≤ O(Cν/n).

Induction by iterations We now show how to use the three lemmas to prove the theorem for the
adversarial noise, and that for the unbiased noise is similar.

Let at :=
∥∥∥E(t)

+

∥∥∥
s

and bt :=
∥∥∥E(t)

−

∥∥∥
s
, and choose η = ℓ/6. We begin with proving the following

three claims by induction on t: at the beginning of iteration t,

(1) (1− ℓ)I ⪯ Σ(t)

(2)
∥∥E(t)

∥∥
s
≤ 1/8, and if t > 0, then at + βbt ≤

(
1− 1

25η
)
(at−1 + βbt−1) + ηh, for some

β ∈ (1, 8), and some small value h,

(3)
∥∥N(t)

∥∥
s
≤ c/10.

The most interesting part is the second claim. At a high level, by Lemma 3, we can show that

at+1 ≤
(
1− 3

25
η

)
at + 7ηbt + ηh, bt+1 ≤

(
1− 24

25
η

)
bt +

1

100
ηat + ηh.

2Note that since intuitively, Ei,j gets affected by Ej,i after an update, if we have a row which contains
negative entries, it is possible that ∥Ai − A∗

i ∥1 increases. So we cannot simply use maxi ∥Ai − A∗
i ∥1 as a

potential function.
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Notice that the contribution of bt to at+1 is quite large (due to the larger upper bound in Case (2)
in Lemma 3), but the other terms are much nicer, such as the small contribution of at to bt+1. This
allows to choose a β ∈ (1, 8) so that at+1 + βbt+1 leads to the desired recurrence in the second
claim. In other words, at+1 + βbt+1 is our potential function which decreases at each iteration up
to the level h. The other claims can also be proved by the corresponding lemmas. Then the theorem
follows from the induction claims.

6 More general results

More general weight distributions. Our argument holds under more general assumptions on x∗.

Theorem 6 (Adversarial noise). There exists an absolute constant G such that when Assump-
tion (A0)-(A3) and (N1) are satisfied with l = 1/10, C2 ≤ 2c2, C3

1 ≤ Gc22n, Cν ≤{
c22Gc
C2

1m
,

c42Gc
C5

1n∥(A∗)†∥∞

}
for 0 ≤ c ≤ 1, and

∥∥N(0)
∥∥
∞ ≤ c22Gc

C3
1∥(A∗)†∥∞

, then there exist α, η, r

such that for every 0 < ϵ, δ < 1 and N = poly(n,m, 1/ϵ, 1/δ), with probability at least 1 − δ the
following holds.

After T = O
(
ln 1

ϵ

)
iterations, Algorithm 1 outputs a solution A = A∗(Σ + E) + N where Σ ⪰

(1− ℓ)I is diagonal, ∥E∥1 ≤ ϵ+ c/2 is off-diagonal, and ∥N∥1 ≤ c/2.

Theorem 7 (Unbiased noise). If Assumption (A0)-(A3) and (N2) are satisfied with Cν =
c2G

√
cn

C1 max{m,n∥(A∗)†∥∞}
and the other parameters set as in Theorem 6, then the same guarantee

holds.

The conditions on C1, c2, C2 intuitively mean that each feature needs to appear with reasonable
probability. C2 ≤ 2c2 means that their proportions are reasonably balanced. This may be a mild
restriction for some applications, and additionally we propose a pre-processing step that can relax
this in the next subsection. The conditions allow a rather general family of distributions, so we point
out an important special case to provide a more concrete sense of the parameters. For example,
for the uniform independent distribution considered in the simplified case, we can actually allow
s to be much larger than a constant; our algorithm just requires s ≤ Gn for a fixed constant G.
So it works for uniform sparse distributions even when the sparsity is linear, which is an order of
magnitude larger than in the dictionary learning regime. Furthermore, the distributions of x∗

i can
be very different, since we only require C3

1 = O(c22n). Moreover, all these can be handled without
specific structural assumptions on A∗.

More general proportions. A mild restriction in Theorem 6 and 7 is that C2 ≤ 2c2, that is,
maxi∈[n] E[(x∗

i )
2] ≤ 2mini∈[n] E[(x∗

i )
2]. To satisfy this, we propose a preprocessing algorithm for

balancing E[(x∗
i )

2]. The idea is quite simple: instead of solving Y ≈ A∗X, we could also solve
Y ≈ [A∗D][(D)−1X] for a positive diagonal matrix D, where E[(x∗

i )
2]/D2

i,i is with in a factor of
2 from each other. We show in the appendix that this can be done under assumptions as the above
theorems, and additionally Σ ⪯ (1 + ℓ)I and E(0) ≥ entry-wise. After balancing, one can use
Algorithm 1 on the new ground-truth matrix [A∗D] to get the final result.

7 Conclusion

A natural algorithm with alternating updates is proposed for non-negative matrix factorization and
theoretical guarantees are provided. The algorithm provably recovers a feature matrix close to the
ground-truth and is robust to noise. Our analysis provides insights on the effect of the ReLU units
in the presence of the non-negativity constraints, and the resulting interesting dynamics of the con-
vergence.
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A Preliminary

Given a matrix Y ∈ Rm×N , the goal of non-negative matrix factorization (NMF) is to find a matrix
A ∈ Rm×n and a non-negative matrix X ∈ Rn×N , so that Y ≈ AX. The columns of Y are called
data points, those of A are features, and those of X are weights.

The notation [M]j denotes the j-th column of M, [M]i denotes the i-th row of M, and Mi,j denotes
the element of M at the i-th row and j-th column. Furthermore, let M+ = denote the positive part
of the matrix, and let M− denote the absolute value of the negative part of the matrix:

[M+]i,j =

{
Mi,j if Mi,j ≥ 0,

0 if Mi,j < 0,

[M−]i,j =

{
0 if Mi,j ≥ 0,

|Mi,j | if Mi,j < 0.

For analysis, the following norms of the matrices are needed.
Definition (l1 norm of a matrix (induced column norm)). The (induced) l1 norm of a matrix E ∈
Rn×n is

∥E∥1 = max
i∈[n]


n∑

j=1

|Ej,i|

 .

Definition (l∞ norm of a matrix (induced row norm)). The (induced) l∞ norm of a matrix E ∈
Rn×n is

∥E∥∞ = max
i∈[n]


n∑

j=1

|Ei,j |

 .

These two norms are related, and they enjoy the sub-multipicity property of the induced norm.
Property 8 (dual norm). For a matrix E ∈ Rn×n,

∥E∥1 = ∥E⊤∥∞.

Note that unlike l2 norm, it is possible that ∥E∥1 ̸= ∥E⊤∥1 or ∥E∥∞ ̸= ∥E⊤∥∞.
Property 9 (induced norm of a matrix). Let E1,E2 ∈ Rn×n be two matrices, then

∥E1E2∥1 ≤ ∥E1∥1∥E2∥1,
∥E1E2∥∞ ≤ ∥E1∥∞∥E2∥∞.

The following two kinds of norms are also useful for the analysis.
Definition (symmetrized norm of a matrix). The symmetrized norm of a matrix E ∈ Rn×n is

∥E∥s = max(∥E∥1, ∥E∥∞).

Note that ∥E∥s is a norm since it’s the maximum of two norms.
Definition (max norm). The max norm of a matrix E ∈ Rm×n is

∥E∥max = max
i,j
|Ei,j | .

For the function ϕα used in our decoding algorithm, we frequently use the following properties in
the analysis.
Property 10 (ReLU). ϕα(z) = max (0, z − α) is non-decreasing. It is 1-Lipschitz, i.e.,

|ϕα(z1)− ϕα(z2)| ≤ |z1 − z2| . (8)

It satisfies

ϕα(z) ≥ z − α, (9)
ϕα(z) ≤ |z − α| . (10)

Furthermore, if α > 0,

ϕα(z) ≤ |z| . (11)

11



B Proofs for main algorithm: Purification

Since NMF is NP-hard in the worst case, some assumptions are needed to make it tractable. In this
paper, we consider a generative model for the data point y = A∗x∗ + ν, where A∗ is the ground-
truth feature matrix, x∗ is the ground-truth non-negative weight from some unknown distribution,
and ν is the noise. Our focus is to recover A∗ given access to the data distribution, assuming the
following hold for parameters C1, c2, C2, ℓ, Cν that will be determined in our theorems.

(A1) The columns of A∗ are linearly independent.

(A2) For all i ∈ [n], x∗
i ∈ [0, 1], E[x∗

i ] ≤ C1

n and c2
n ≤ E[(x∗

i )
2] ≤ C2

n , and x∗
i ’s are independent.

(A3) The initialization A(0) = A∗(Σ(0) + E(0)) + N(0), where Σ(0) is diagonal, E(0) is off-
diagonal, and

Σ(0) ⪰ (1− ℓ)I,
∥∥∥E(0)

∥∥∥
s
≤ ℓ.

We consider two noise models.

(N1) Adversarial noise: only assume that maxi |νi| ≤ Cν almost surely.
(N2) Unbiased noise: maxi |νi| ≤ Cν almost surely, and E[ν|x∗] = 0.

Algorithm 1 Purification

Input: initialization A(0), threshold α, step size η, scaling factor r, sample size N , iterations T
1: for t = 0, 1, 2, ..., T − 1 do
2: Draw examples y1, . . . , yN .
3: (Decode) Compute A†, the pseudo-inverse of A(t) with minimum ∥(A)†∥∞.

Set x = ϕα(A
†y) for each example y. // ϕα is ReLU activation; see (2) for the

definition
4: (Update) Update the feature matrix

A(t+1) = (1− η)A(t) + rηÊ
[
(y − y′)(x− x′)⊤

]
where Ê is over independent uniform y, y′ from {y1, . . . , yN}, and x, x′ are their decodings.

Output: A = A(T )

Our main algorithm is presented in Algorithm 1. It keeps a working feature matrix and operates in
iterations. In each iteration, it first compute the weights for N examples (decoding), and then use
the computed weights to update the feature matrix (updating).

The decoding is simply multiplying the example by the pseudo-inverse of the current feature matrix
and then passing it through a one-sided threshold function ϕα. The pseudo-inverse with minimum
infinity norm is used so as to maximize the robustness to noise (see the theorems). The one-sided
threshold function operates element-wisely on the input vector v, and for an element vi, it is defined
as

ϕα(vi) = max {vi − α, 0} .
This is just the rectified linear unit (ReLU) with offset α. To get some sense about the decoding,
suppose the current feature matrix is the ground-truth. Then A†y = A†A∗x∗ +A†ν = x∗ +A†ν.
So we would like to use a small A† and use threshold to remove the noise term.

In the encoding step, the algorithm move the feature matrix along the direction
E
[
(y − y′)(x− x′)⊤

]
. Suppose we have independent x∗

i ’s, perfect decoding and no noise,
then E

[
(y − y′)(x− x′)⊤

]
= A∗, and thus it is moving towards the ground-truth. Without those

ideal conditions, we need to choose a proper step size, which is tune by the parameters η and r.

At the end, the algorithm simply outputs the scaled features with unit norm. The output enjoys the
following guarantee in the adversarial noise model.

B.1 Analysis of one update step

In this subsection, we focus on one update step, bounding the changes of Σ,E,N and some auxiliary
variables, and then in the next subsection we put things together to prove the theorem. So through

12



out this subsection we will focus on a particular iteration t and omit the superscript (t), while in the
next subsection we will put back the superscript.

For analysis, denote A(t) as

A = A∗(Σ+E) +N

where Σ is a diagonal matrix, E is an off-diagonal matrix, and N is the component of A that lies
outside the span of A∗ (e.g., the noise caused by the noise in the sample).

Recall the following notations:

Z = (Σ+E)
−1

,

V = Z−Σ−1 = Σ−1
∞∑
k=1

(−EΣ−1)k,

ξ = −A†NZx∗ +A†ν.

Consider the update term Ê
[
(y − y′)(x− x′)⊤

]
and denote it as

∆ = Ê
[
(y − y′)(x− x′)⊤

]
= A∗(Σ̃+ Ẽ) + Ñ

where Σ̃ is a diagonal matrix, Ẽ is an off-diagonal matrix, and N is the component of ∆ that lies
outside the span of A∗.

Since we now use empirical average, we will have sampling noise. Denote it as

Ns = Ê[(y − y′)(x− x′)⊤]− E[(y − y′)(x− x′)⊤].

Then by definition, for y = A∗x∗ + ν and y′ = A∗(x′)∗ + ν′, we have

Ê[(y − y′)(x− x′)⊤] = E[(y − y′)(x− x′)⊤] +Ns

= A∗ E
[
(x∗ − (x′)∗)(x− x′)⊤

]︸ ︷︷ ︸
Σ̃+Ẽ

+E
[
(ν − ν′)(x− x′)⊤

]
+Ns︸ ︷︷ ︸

Ñ

.

Our goal is then bounding Σ̃, Ẽ, Ñ in terms of Σ,E,N. Before doing so, we present a lemma for
the decoding.
Lemma 11 (Main: Decoding). Let m ≥ n be two positive integers. Let A ∈ Rm×n be a matrix
such that A = A∗(Σ + E) +N where A∗ is full rank, Σ is a diagonal matrix such that Σ ⪰ 1

2I

and ∥E∥1 < 1
2 . Then for y = A∗x∗ + ν, the decoding is

x = ϕα (Zx∗ + ξ)

= ϕα

((
Σ−1 +V

)
x∗ + ξ

)
.

Proof of Lemma 11. Since A = A∗(Σ+E) +N, we have

A∗ = (A−N)(Σ+E)−1

y = (A−N)(Σ+E)−1x∗ + ν.

Plugging into the decoding we get the first statement.

Observing that Σ + E = (I + EΣ−1)Σ and ∥EΣ−1∥1 ≤ ∥Σ−1∥1∥E∥1 ≤ 2∥E∥1 < 1, we have
(Σ+E)−1 =

(
Σ−1 +V

)
, resulting in the second statement.

Lemma 12 (Main: Bound on Σ̃). Suppose |ξi| ≤ ρ < α for any example and every i ∈ [n], and
suppose Σ ⪰ 1

2I. Then for any i ∈ [n],

Σ̃i,i ≥ E
[
(x∗

i )
2
] (

2Σ−1
i,i − 2 |Vi,i|

)
− 2C1

n

(
α+ 2ρ+

C1

n
Σ−1

i,i +
2C1

n

∥∥∥[V]
i
∥∥∥
1

)
,

Σ̃i,i ≤ E
[
(x∗

i )
2
] (

2Σ−1
i,i + 2 |Vi,i|

)
+

2C1

n

(
ρ+

C1

n

∥∥∥[V]
i
∥∥∥
1

)
.
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Proof of Lemma 12. According to the definition, we have

Σ̃i,i =
[
(A∗)†E[(y − y′)(x− x′)⊤]

]
i,i

= E [(x∗
i − (x′

i)
∗)(xi − x′

i)]

= E [(x∗
i − (x′

i)
∗)xi] + E [((x′

i)
∗ − x∗

i )x
′
i] .

Since (x∗
i − (x′

i)
∗)xi and ((x′

i)
∗− x∗

i )x
′
i has the same distribution, and (x′)∗, x∗ are i.i.d. , we have

Σ̃i,i = 2E [(x∗
i − (x′

i)
∗)xi]

= 2E[x∗
i xi]− 2E[x∗

i ]E[xi].

So it suffices to bound E[x∗
i xi] and E[xi]. To do so, we first take a look at xi. By the decoding rule,

xi =
[
ϕα

((
Σ−1 +V

)
x∗ + ξ

)]
i
.

Since ϕα is 1-Lipschitz, denoting ∆ = |[Vx∗]i + ξi| we have[
ϕα

(
Σ−1x∗)]

i
−∆ ≤ xi ≤

[
ϕα

(
Σ−1x∗)]

i
+∆. (12)

For
[
ϕα

(
Σ−1x∗)]

i
, by the Property 10 of ϕα(z),

Σ−1
i,i x

∗
i − α ≤

[
ϕα

(
Σ−1x∗)]

i
= ϕα

(
Σ−1

i,i x
∗
i

)
≤ Σ−1

i,i x
∗
i . (13)

For ∆ = |[Vx∗]i + ξi|,

E[∆] ≤ E

∣∣∣∣∣∣
∑
j

Vi,jx
∗
j

∣∣∣∣∣∣
+ E [|ξi|]

≤ E

∑
j

|Vi,j |x∗
j

+ ρ

=
∑
j

|Vi,j |E
[
x∗
j

]
+ ρ

≤ C1

n

∥∥∥[V]
i
∥∥∥
1
+ ρ (14)

where the second step follows from the assumption |ξi| ≤ ρ, and the last step follows from Assump-
tion (A2).

Bounding E[xi]. By (12),(13), and (14), we have

E[xi] ≤ E[Σ−1
i,i x

∗] + E[∆] ≤ C1

n
Σ−1

i,i +
C1

n

∥∥∥[V]
i
∥∥∥
1
+ ρ.

Bounding E[x∗
i xi]. First, note that

E[x∗
i∆] ≤ E

x∗
i

∣∣∣∣∣∣
∑
j

Vi,jx
∗
j

∣∣∣∣∣∣
+ E [x∗

i |ξi|]

≤ E

x∗
i

∑
j

x∗
j |Vi,j |

+
ρC1

n

=
∑
j

E
[
x∗
i x

∗
j

]
|Vi,j |+

ρC1

n

= E
[
(x∗

i )
2
]
|Vi,i|+

∑
j:j ̸=i

E
[
x∗
i x

∗
j

]
|Vi,j |+

ρC1

n

≤ E
[
(x∗

i )
2
]
|Vi,i|+

C2
1

n2

∑
j:j ̸=i

|Vi,j |+
ρC1

n

≤ E
[
(x∗

i )
2
]
|Vi,i|+

C2
1

n2

∥∥∥[V]
i
∥∥∥
1
++

ρC1

n
,
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where the second and the fifth steps follow from Assumption (A2). Therefore,

E[x∗
i xi] ≥ E

[
x∗
i

(
Σ−1

i,i x
∗
i − α−∆

)]
(15)

≥ Σ−1
i,i E

[
(x∗

i )
2
]
− (α+ ρ)C1

n
− E

[
(x∗

i )
2
]
|Vi,i| −

C2
1

n2

∥∥∥[V]
i
∥∥∥
1
. (16)

Putting together. For the first statement,

Σ̃i,i = 2E[x∗
i xi]− 2E[x∗

i ]E[xi]

≥ 2Σ−1
i,i E

[
(x∗

i )
2
]
− 2

(α+ ρ)C1

n
− 2E

[
(x∗

i )
2
]
|Vi,i| − 2

C2
1

n2

∥∥∥[V]
i
∥∥∥
1

− 2
C2

1

n2
Σ−1

i,i − 2
C2

1

n2

∥∥∥[V]
i
∥∥∥
1
− 2

ρC1

n

≥ E
[
(x∗

i )
2
] (

2Σ−1
i,i − 2 |Vi,i|

)
− 2C1

n

(
α+ 2ρ+

C1

n
Σ−1

i,i +
2C1

n

∥∥∥[V]
i
∥∥∥
1

)
.

The second statement follows from

Σ̃i,i ≤ 2E[x∗
i xi] ≤ 2E[x∗

i (Σ
−1
i,i x

∗
i +∆)]

and the bound on E[x∗
i∆].

Lemma 13 (Main: Bound on Ẽ). Suppose |ξi| ≤ ρ < α for any example and every i ∈ [n]. Then
for all i, j ∈ [n] such that i ̸= j, the following holds.
(1) If Zi,j < 0, then ∣∣∣Ẽj,i

∣∣∣ ≤ 4C2
1∥Zi∥1

n2(α− ρ)
(|Zi,j |+ ρ) .

(2) If Zi,j ≥ 0, then

− 8C1ρ

n(α− ρ)

(
C1∥Zi∥1

n
+ Zi,j

)
−2C2

1

n2
Zi,j ≤ Ẽj,i ≤

8C1ρ

n(α− ρ)

(
C1∥Zi∥1

n
+ Zi,j

)
+2E[(x∗

j )
2]Zi,j .

Proof of Lemma 13. Since i ̸= j, we know that

Ẽj,i = E
[
(x∗

j − (x′
j)

∗)(xi − x′
i)
]

= E
[
x∗
j (xi − x′

i)
]
+ E

[
(x′

j)
∗(x′

i − xi)
]

= 2E
[
x∗
j (xi − x′

i)
]

where the last equality follows from that x∗
j (xi − x′

i) and (x′
j)

∗(x′
i − xi) has the same distribution.

This quantity can be bounded by a coupling between xi and x′
i. Define a new variable x̃∗ as

[x̃∗]i =

{
x∗
i , if i ̸= j,

(x′
j)

∗, if i = j.

By Assumption (A2), conditional on x∗
j , x̃∗ has the same distribution as (x′)∗. Therefore, consider

the variable x̃ given by x̃ = ϕα(A
†(A∗x̃∗ + ν′)), we then have

E
[
x∗
j (xi − x′

i)
]
= E

[
x∗
j (xi − x̃i)

]
.

In summary, we have
Ẽj,i = 2E[x∗

j (xi − x̃i)]

where

xi = [ϕα (Zx∗ + ξ)]i , ξ = −A†NZx∗ +A†ν,

x̃i =
[
ϕα

(
Zx∗ + ξ̃

)]
i
, ξ̃ = −A†NZx̃∗ +A†ν′.
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Introduce the notation
w = Zi,ix

∗
i +

∑
l ̸=i,j

Zi,lx
∗
l .

We have

xi = ϕα

(
w + Zi,jx

∗
j + ξi

)
,

x̃i = ϕα

(
w + Zi,j(x

′
j)

∗ + ξ̃i

)
.

(1) Since Zi,j < 0, |ξi| ≤ ρ, and |ξ̃i| ≤ ρ, we know that when w < α− ρ, xi = x̃i = 0. Then

E
[
x∗
j (xi − x̃i)

]
= Pr[w ≥ α− ρ] E

[
x∗
j (xi − x̃i)|w ≥ α− ρ

]
. (17)

By Property 10, ϕα (·) is 1-Lipschitz, so

|xi − x̃i| ≤ |Zi,j |
∣∣x∗

j − (x′
j)

∗∣∣+ ∣∣∣ξi − ξ̃i

∣∣∣ ,
which implies that∣∣E [x∗

j (xi − x̃i)|w ≥ α− ρ
]∣∣ ≤ E

[
x∗
j |Zi,j |

∣∣x∗
j − (x′

j)
∗∣∣+ x∗

j

∣∣∣ξi − ξ̃i

∣∣∣ ∣∣∣∣w ≥ α− ρ

]
≤ |Zi,j |max

{∣∣x∗
j − (x′

j)
∗∣∣}E [x∗

j |w ≥ α− ρ
]
+ 2ρE

[
x∗
j |w ≥ α− ρ

]
≤ |Zi,j |max

{∣∣x∗
j − (x′

j)
∗∣∣}E [x∗

j

]
+ 2ρE

[
x∗
j

]
≤ 2E

[
x∗
j

]
(|Zi,j |+ ρ)

≤ 2C1

n
(|Zi,j |+ ρ) . (18)

Now consider Pr[w ≥ α− ρ]. Since

E |w| ≤ |Zi,i|E[x∗
i ] +

∑
l ̸=i,j

|Zi,l|E[x∗
j ] ≤

C1

n
∥Zi∥1,

we have that

Pr[w ≥ α− ρ] ≤ E |w|
α− ρ

≤ C1∥Zi∥1
n(α− ρ)

(19)

Combining (17)(18) and (19) together completes the proof for the case when Zi,j < 0.

(2) Now consider the case when Zi,j ≥ 0. Again, we have

xi = ϕα

(
w + Zi,jx

∗
j + ξi

)
,

x̃i = ϕα

(
w + Zi,j(x

′
j)

∗ + ξ̃i

)
.

For the analysis, introduce a variable

ũi = ϕα

(
w + Zi,jx

∗
j + ξ̃i

)
.

If (x′
j)

∗ > x∗
j , by Property 10 ϕα(·) is 1-Lipschitz, so

x̃i ≤ ũi + Zi,j

(
(x′

j)
∗ − x∗

j

)
.

If (x′
j)

∗ ≤ x∗
j , by Property 10 ϕα(·) is non-decreasing, then

x̃i ≤ ũi.

In any case,

x̃i ≤ ũi + Zi,j(x
′
j)

∗.

16



Therefore,

E
[
x∗
j (xi − x̃i)

]
≥ E

[
x∗
j (xi − ũi)

]
− E

[
x∗
jZi,j(x

′
j)

∗]
≥ E

[
x∗
j (xi − ũi)

]
− C2

1

n2
Zi,j .

So we only need to consider E
[
x∗
j (xi − ũi)

]
. Let G denote the event that xi ̸= 0 or ũi ̸= 0. Then

by conditioning on x∗
j , we have

E
[
x∗
j (xi − ũi)

]
= E

[
x∗
jE
[
xi − ũi

∣∣∣∣x∗
j

]]
and

E
[
xi − ũi

∣∣∣∣x∗
j

]
= Pr

[
G

∣∣∣∣x∗
j

]
E
[
xi − ũi

∣∣∣∣x∗
j ,G

]
.

By Property 10 ϕα(·) is 1-Lipschitz, so∣∣∣∣E [xi − ũi

∣∣∣∣x∗
j ,G

]∣∣∣∣ ≤ E
[
|ξi|+

∣∣∣ξ̃i∣∣∣ ∣∣∣∣x∗
j ,G

]
≤ 2ρ.

Now consider Pr
[
G

∣∣∣∣x∗
j

]
. We have

E
[∣∣w + Zi,jx

∗
j

∣∣ ∣∣∣∣x∗
j

]
≤ E

[
|w|
∣∣∣∣x∗

j

]
+ Zi,j

≤ C1

n

∥∥Zi
∥∥
1
+ Zi,j ,

where the first step follows from x∗
j ≤ 1 and the second step follows from the conditional indepen-

dence in Assumption (A2). Then by Markov’s inequality,

Pr

[
xi ̸= 0

∣∣∣∣x∗
j

]
≤ Pr

[∣∣w + Zi,jx
∗
j

∣∣ ≥ α− ρ

∣∣∣∣x∗
j

]
≤ 1

α− ρ

(
C1

n

∥∥Zi
∥∥
1
+ Zi,j

)
.

A similar argument leads to that

Pr

[
ũi ̸= 0

∣∣∣∣x∗
j

]
≤ 1

α− ρ

(
C1

n

∥∥Zi
∥∥
1
+ Zi,j

)
and thus

Pr

[
G

∣∣∣∣x∗
j

]
≤ 2

α− ρ

(
C1

n

∥∥Zi
∥∥
1
+ Zi,j

)
.

Putting things together,∣∣E [x∗
j (xi − ũi)

]∣∣ ≤ 4ρ

α− ρ

(
C1∥Zi∥1

n
+ Zi,j

)
E
[
x∗
j

]
≤ 4C1ρ

n(α− ρ)

(
C1∥Zi∥1

n
+ Zi,j

)
.

This completes the proof for the lower bound.

Similarly, for the upper bound, introduce

ui = ϕα

(
w + Zi,j(x

′
j)

∗ + ξi
)
.

Then in any case,

xi ≤ ui + Zi,jx
∗
j

17



and thus

E
[
x∗
j (xi − x̃i)

]
≤ E

[
x∗
j (ui − x̃i)

]
+ E

[
(x∗

j )
2
]
Zi,j .

The same argument as above shows that∣∣E [x∗
j (ui − x̃i)

]∣∣ ≤ 4C1ρ

n(α− ρ)

(
C1∥Zi∥1

n
+ Zi,j

)
.

This completes the whole proof.

Lemma 14 (Main: Bound on Ñ). Suppose ∥E∥s ≤ ℓ, Σ ⪰ (1− ℓ)I, and |ξj | ≤ ρ < α.

(1) If the noise is correlated (Assumption (N1)), then∣∣∣Ñi,j

∣∣∣ ≤ 4CνC1

(1− 2ℓ)2n(α− ρ)
+ |[Ns]i,j |

(2) If the noise is unbiased (Assumption (N2)) and ∥A†ν∥∞ ≤ ρ′ < α, then∣∣∣Ñi,j

∣∣∣ ≤ 2C1Cνρ
′(1 + ∥A†N∥∞)

(1− 2ℓ)n(α− ρ′)
+
∣∣∣[Ns]i,j

∣∣∣ .
Proof of Lemma 14. (1) By the update rule,

Ñ = 2E[ν(x− x′)⊤] +Ns.

Under Assumption (N1), we have that for every i ∈ [n], j ∈ [n],

|Ñi,j | = |2E[νi(xj − x′
j)] + [Ns]i,j |

≤ 4CνE[xj ] + |[Ns]i,j |
= 4CνE [ϕα ([Zx∗]j + ξj)] + |[Ns]i,j |.

since |νi| is bounded by Cν .

Now focus on the term E [ϕα ([Zx∗]j + ξj)]. We have

|[Zx∗]j | ≤ ∥Z∥∞∥x∗∥∞ ≤ ∥Z∥∞ ≤
1

1− 2ℓ

by the fact that ∥x∗∥∞ ≤ 1 in Assumption (A2), and the assumptions of the lemma on Σ and E.
Then when [Zx∗]j + ξj ≥ α,

ϕα ([Zx∗]j + ξj) ≤ [Zx∗]j + ξj − α ≤ 1

1− 2ℓ
+ ρ− α ≤ 1

1− 2ℓ
,

and thus

E [ϕα ([Zx∗]j + ξj)] ≤
1

1− 2ℓ
Pr {[Zx∗]j + ξj ≥ α}

≤ 1

1− 2ℓ
Pr {|[Zx∗]j | ≥ α− ρ}

≤ 1

1− 2ℓ

E|[Zx∗]j |
α− ρ

≤ 1

1− 2ℓ

∥Z∥∞
α− ρ

E
[
x∗
j

]
≤ C1

(1− 2ℓ)2n(α− ρ)

where the last step uses the bound on E
[
x∗
j

]
in Assumption (A2). Therefore,

|Ñi,j | ≤
4CνC1

(1− 2ℓ)2n(α− ρ)
+ |[Ns]i,j |.
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(2) When the noise is unbiased, we have E[ν|x∗] = 0. Then E[νix′
j ] = 0, and∣∣∣Ñi,j

∣∣∣ = ∣∣2E[νi(xj − x′
j)] + [Ns]i,j

∣∣ ≤ 2 |E[νixj ]|+ |[Ns]i,j | . (20)

Consider the first term for a fixed x∗, i.e., consider the conditional expectation E[νixj | x∗]. For
notational simplicity, let Z̃ = (Z−A†NZ) and ξ̃ = A†ν. Then

E[νixj | x∗] = E [νiϕα ([Zx∗]j + ξj) | x∗] = E
[
νiϕα

(
[Z̃x∗]j + ξ̃j

)
| x∗

]
.

We consider the following two cases about [Z̃x∗]j .

(a) If [Z̃x∗]j ≤ α− ρ′, then ϕα

(
[Z̃x∗]j + ξ̃j

)
= 0 always holds, which implies that

|E[νixj | x∗]| = E
[
νiϕα

(
[Z̃x∗]j + ξ̃j

)
| x∗

]
= 0.

(b) If [Z̃x∗]j > α− ρ′, then

ϕα

(
[Z̃x∗]j + ξ̃j

)
≤ ϕα

(
[Z̃x∗]j + ρ′

)
≤ [Z̃x∗]j + ρ′ − α.

On the other side, by Property 10,

ϕα

(
[Z̃x∗]j + ξ̃j

)
≥ [Z̃x∗]j + ξ̃j − α ≥ [Z̃x∗]j − ρ′ − α.

Putting together, we conclude that

νi([Z̃x
∗]j − α)− |νiρ′| ≤ νiϕα

(
[Z̃x∗]j + ξ̃j

)
≤ νi([Z̃x

∗]j − α) + |νiρ′|.

Note that E[νi([Z̃x∗]j − α)|x∗] = 0, so

|E[νixj | x∗]| =
∣∣∣E [νiϕα

(
[Z̃x∗]j + ξ̃j

)
| x∗

]∣∣∣ ≤ E[|νiρ′||x∗] ≤ Cνρ
′.

Putting case (a) and case (b) together, we have

|E[νixj | x∗]| ≤ Cνρ
′ Pr

{
[Z̃x∗]j > α− ρ′

}
≤ Cνρ

′ Pr
{∣∣∣[Z̃x∗]j

∣∣∣ > α− ρ′
}
.

By definition of Z̃ and the assumptions of the lemma on Σ and E,∣∣∣[Z̃x∗]j

∣∣∣ ≤ (1 + ∥A†N∥∞) |[Zx∗]j | ≤ (1 + ∥A†N∥∞) |Z|∞ x∗
j ≤

1 + ∥A†N∥∞
1− 2ℓ

x∗
j . (21)

Then

Pr
{∣∣∣[Z̃x∗]j

∣∣∣ > α− ρ′
}
≤

E
∣∣∣[Z̃x∗]j

∣∣∣
α− ρ′

≤ C1(1 + ∥A†N∥∞)

(1− 2ℓ)n(α− ρ′)
.

The lemma then follows from (20) and (21).

There are three terms Z, V and ξ in the above lemmas that need to be bounded. Since Z = V+Σ−1,
we only need to bound V and ξ in the following two lemmas, respectively.
Lemma 15 (Bound on V). Suppose ∥E∥s < ℓe and Σ ⪰ (1− ℓ)I. Then

(1) ∥V+∥s ≤
1− ℓe

(1− ℓ)(1− ℓe − ℓ)
∥E−∥s +

ℓ

(1− ℓ)2(1− ℓe − ℓ)
∥E+∥s ,

(2) ∥V−∥s ≤
1− ℓe

(1− ℓ)(1− ℓe − ℓ)
∥E+∥s +

ℓ

(1− ℓ)2(1− ℓe − ℓ)
∥E−∥s ,

(3) ∥V∥s ≤
ℓe(1− ℓe)

(1− ℓ)2(1− ℓe − ℓ)
,

(4) |Vi,i| ≤
ℓℓe

(1− ℓ)2(1− ℓe − ℓ)
, ∀i ∈ [n].
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Proof of Lemma 15. Denote T = Σ−1
∑∞

k=2(−EΣ−1)k, so that

V = −Σ−1EΣ−1 +T.

The following bound on ∥T∥1 will be useful.

∥T∥1 ≤
∥∥Σ−1

∥∥
1

∞∑
k=2

∥∥(EΣ−1)k
∥∥
1

≤
∥∥Σ−1

∥∥
1

∞∑
k=2

∥∥EΣ−1
∥∥k
1

≤
∥∥Σ−1

∥∥
1

∥∥EΣ−1
∥∥2
1

1− ∥EΣ−1∥1

≤ 1

(1− ℓ)3
× ℓ×

∥E∥1
1− ℓe

1−ℓ

≤ ℓ

(1− ℓ)2(1− ℓe − ℓ)
∥E∥1. (22)

(1) We need to show the bound for both ∥V+∥1 and ∥V+∥∞. By definition of V, for any i,

∥V+∥1 =
∥∥∥[−Σ−1EΣ−1 +T

]
+

∥∥∥
1
.

Since for any A and B,
∥[A+B]+∥1 ≤ ∥[A]+∥1 + ∥[B]+∥1, and ∥[A]+∥1 ≤ ∥A∥1,

we have

∥[V+]i∥1 ≤
∥∥∥[−Σ−1EΣ−1

]
+

∥∥∥
1
+ ∥T+∥1

≤ 1

(1− ℓ)2
∥E−∥1 + ∥T∥1. (23)

By (22),

∥T∥1 ≤
ℓ

(1− ℓ)2(1− ℓe − ℓ)
∥E∥1 ≤

ℓ

(1− ℓ)2(1− ℓe − ℓ)
(∥E−∥1 + ∥E+∥1).

Combined with (23), it implies

∥[V+]i∥1 ≤
1− ℓe

(1− ℓ)2(1− ℓe − ℓ)
∥E−∥1 +

ℓ

(1− ℓ)2(1− ℓe − ℓ)
∥E+∥1.

Similarly, we have∥∥∥[V+]
i
∥∥∥
1
≤ 1− ℓe

(1− ℓ)2(1− ℓe − ℓ)
∥E−∥∞ +

ℓ

(1− ℓ)2(1− ℓe − ℓ)
∥E+∥∞.

Putting things together we have

∥V+∥s ≤
1− ℓe

(1− ℓ)(1− ℓe − ℓ)
∥E−∥s +

ℓ

(1− ℓ)2(1− ℓe − ℓ)
∥E+∥s .

(2) The argument for ∥V−∥s is similar to that for ∥V+∥s.
(3) We need to show the bound for both ∥V∥1 and ∥V∥∞.

∥V∥1 ≤
∥∥−Σ−1EΣ−1

∥∥
1
+ ∥T∥1

≤ ℓe
(1− ℓ)2

+
ℓ

(1− ℓ)2(1− ℓe − ℓ)
∥E∥1

≤ ℓe
(1− ℓ)2

+
ℓℓe

(1− ℓ)2(1− ℓe − ℓ)

=
ℓe(1− ℓe)

(1− ℓ)2(1− ℓe − ℓ)

20



where the second step is by (22).

Similarly, ∥V∥∞ ≤
ℓe(1−ℓe)

(1−ℓ)2(1−ℓe−ℓ) , so ∥V∥s ≤
ℓe(1−ℓe)

(1−ℓ)2(1−ℓe−ℓ) .

(4) Now consider Vi,i. By definition of T.

Vi,i =
[
−Σ−1EΣ−1

]
i,i

+Ti,i.

Note that since Ei,i = 0,
[
−Σ−1EΣ−1

]
i,i

= 0. Then

|Vi,i| = |Ti,i|
≤ ∥T∥1

≤ ℓ

(1− ℓ)2(1− ℓe − ℓ)
∥E∥1

≤ ℓℓe
(1− ℓ)2(1− ℓe − ℓ)

where the third step is by (22). This completes the proof.

Lemma 16 (Bound on ξ). Suppose ∥E∥s < ℓ ≤ 1/8 and Σ ⪰ (1− ℓ)I. Then for any i ∈ [n],

|ξi| ≤ γ :=
1

1− 2ℓ

∥∥A†∥∥
∞∥N∥∞ + Cν

∥∥A†∥∥
∞.

If furthermore, ∥N∥∞
∥∥∥(A∗)

†
∥∥∥
∞

< 1/8, then∥∥A†∥∥
∞ ≤ 2

∥∥∥(A∗)
†
∥∥∥
∞
,

γ ≤ 3
∥∥(A∗)†

∥∥
∞ (∥N∥∞ + Cν) .

Proof of Lemma 16. First, we have

∥ξ∥∞ ≤
∥∥A†NZx∗∥∥

∞ +
∥∥A†ν

∥∥
∞ ≤

∥∥A†∥∥
∞∥N∥∞∥Z∥∞∥x

∗∥∞ +
∥∥A†∥∥

∞∥ν∥∞.

Note that ∥x∗∥∞ ≤ 1 and ∥ν∥∞ ≤ Cν . Furthermore,

∥Z∥∞ ≤
1

1− 2ℓ
.

The first statement follows from combining these terms.

Now consider the second statement. We apply Lemma 17. Since

ζ = ∥EΣ−1 + (A∗)†NΣ−1∥∞
≤ ∥EΣ−1∥∞ + ∥(A∗)†NΣ−1∥∞

≤ 1

7
+ ∥(A∗)†∥∞ × ∥N∥∞ × ∥Σ−1∥∞

≤ 2

7
,

Lemma 17 implies that

∥A†∥∞ ≤
∥Σ−1∥∞
1− ζ

∥(A∗)†∥∞ ≤ 2∥(A∗)†∥∞.

Then γ is bounded by

γ =
1

1− 2ℓ

∥∥A†∥∥
∞∥N∥∞ + Cν

∥∥A†∥∥
∞

≤ 1

1− 2ℓ
×
(
2∥(A∗)†∥∞

)
× ∥N∥∞ + Cν ×

(
2∥(A∗)†∥∞

)
≤ 3
∥∥(A∗)†

∥∥
∞ (∥N∥∞ + Cν) .
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The following is the lemma about the norm of the pseudo-inverse, which is used in Lemma 16.
Lemma 17 (Pseudo-inverse). Let A∗,N ∈ Rm×n be two matrices with m ≥ n. Let (A∗)† be one
pseudo-inverse of A∗ such that (A∗)†A∗ = I. Let A = A∗(Σ + E) +N be another matrix, with
Σ being diagonal and

ζ := ∥EΣ−1 + (A∗)†NΣ−1∥∞.

satisfies ζ < 1. Then there exists a pseudo-inverse A† of A such that A†A = I and

∥A†∥∞ ≤
∥Σ−1∥∞
1− ζ

∥(A∗)†∥∞.

Proof of Lemma 17. Consider the matrix

A† = (Σ+E+ (A∗)†N)−1(A∗)†.

Then by definition,

A†A = (Σ+E+ (A∗)†N)−1(A∗)† (A∗(Σ+E) +N)

= (Σ+E+ (A∗)†N)−1(Σ+E+ (A∗)†N)

= I.

What remains is to bound ∥A†∥∞. We have

∥A†∥∞ ≤ ∥(Σ+E+ (A∗)†N)−1∥∞∥(A∗)†∥∞.

By Taylor expansion rule, the first term on the right-hand side is

(Σ+E+ (A∗)†N)−1 =
((
I+EΣ−1 + (A∗)†NΣ−1

)
Σ
)−1

= Σ−1
(
I+EΣ−1 + (A∗)†NΣ−1

)−1

=

∞∑
i=0

Σ−1
(
−EΣ−1 − (A∗)†NΣ−1

)i
where we use the assumption that ∥EΣ−1 + (A∗)†NΣ−1∥∞ = ζ < 1. Therefore,

∥(Σ+E+ (A∗)†N)−1∥∞ ≤ ∥Σ−1∥∞
∞∑
i=0

ζi =
∥Σ−1∥∞
1− ζ

.

B.2 Putting things together

We are now ready to prove our main theorems.
Theorem 6 (Adversarial noise). There exists an absolute constant G such that when Assump-
tion (A0)-(A3) and (N1) are satisfied with l = 1/10, C2 ≤ 2c2, C3

1 ≤ Gc22n, Cν ≤{
c22Gc
C2

1m
,

c42Gc
C5

1n∥(A∗)†∥∞

}
for 0 ≤ c ≤ 1, and

∥∥N(0)
∥∥
∞ ≤ c22Gc

C3
1∥(A∗)†∥∞

, then there exist α, η, r

such that for every 0 < ϵ, δ < 1 and N = poly(n,m, 1/ϵ, 1/δ), with probability at least 1 − δ the
following holds.

After T = O
(
ln 1

ϵ

)
iterations, Algorithm 1 outputs a solution A = A∗(Σ + E) + N where Σ ⪰

(1− ℓ)I is diagonal, ∥E∥1 ≤ ϵ+ c/2 is off-diagonal, and ∥N∥1 ≤ c/2.

Proof of Theorem 6. We consider the following set of parameters

α =
c2

80C1
, r =

n

c2
, η =

ℓ

6
.

Furthermore, set ρ = B1
c22c

C3
1

for a sufficiently small absolute constant B1. Since C1 ≥ nE[x∗
i ] ≥

nE[(x∗
i )

2] ≥ c2, this is small enough so that

ρ ≤ min

{
α

2
,

c2α

2048C1
,

c2α

8000× 100C2
1

,
cc2α

48000C2
1

}
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which will be used in the proof. The proof also needs C2
1 ≤ B1c2n,C

3
1 ≤ B2c

2
2n for sufficiently

small absolute constants B1 and B2. Since C1 > c2, we only need C3
1 ≤ Gc22n. Similarly, we need

Cν ≤ B1 min

{
c(α− ρ)c2

mC1
,

(α− ρ)c2
nC1∥(A∗)†∥∞

,
(α− ρ)c2ρ

nC1∥(A∗)†∥∞
,

ρ

∥(A∗)†∥∞

}
for a sufficiently small absolute constant B1. This can be satisfied by setting G small enough in the
theorem assumption.

After setting the parameters needed, we now prove the theorem. We prove it by proving the follow-
ing three claims by induction on t: at the beginning of iteration t,

(1) (1− ℓ)I ⪯ Σ(t),

(2)
∥∥E(t)

∥∥
s
≤ 1

8 , and if t > 0∥∥∥E(t)
+

∥∥∥
s
+ β

∥∥∥E(t)
−

∥∥∥
s
≤
(
1− 1

25
η

)(∥∥∥[E]
(t−1)
+

∥∥∥
s
+ β

∥∥∥[E]
(t−1)
−

∥∥∥
s

)
+

c

10
,

for β =
√
842+2800−84

2 ∈ (1, 8),

(3)
∥∥N(t)

∥∥
∞ ≤

1
8∥(A∗)†∥∞

, and ∥ξ(t)∥∞ ≤ ρ.

Claim (1) and (2) are clearly true at t = 0 by the assumption on initialization. The first part of Claim
(3) is true because of the assumption that

∥∥N(0)
∥∥
∞ ≤

Gc
8µ3∥(A∗)†∥∞

and that µ = C1/c2 ≥ 1. Then
the second part follows from Lemma 16.

Now we assume they are true up to t, and show them for t+ 1.

(1) First consider the diagonal terms. Combining Lemma 12 and Lemma 15, we have

Σ̃
(t)
i,i ≥ E

[
(x∗

i )
2
] (

2(Σ
(t)
i,i )

−1 − 2
∣∣∣V(t)

i,i

∣∣∣)− 2C1

n

(
α+ 2ρ+

C1

n
(Σ

(t)
i,i )

−1 +
2C1

n

∥∥∥∥[V(t)
]i∥∥∥∥

1

)
.

≥ 2C2

n

(
0− ℓ2

(1− 2ℓ)(1− ℓ)2

)
− 2C1

n

(
α+ α+

C1

n

1

1− ℓ
+

2C1

n

ℓ

(1− ℓ)(1− 2ℓ)

)
.

=
2C2

n

(
0− ℓ2

(1− 2ℓ)(1− ℓ)2

)
− 2C1

n

(
2α+

C1

n(1− ℓ)(1− 2ℓ)

)
> − c2

5n
.

The first inequality uses ρ < α/2 and the last inequality is due to α ≤ c2
80C1

and C2
1 ≤ c2n

80 .
Therefore,

Σ
(t+1)
i,i = (1− η)Σ

(t)
i,i + ηrΣ̃

(t)
i,i ≥ (1− η)Σ

(t)
i,i −

η

5
.

Assume for contradiction Σ
(t+1)
i,i < 1− ℓ. Then by the above inequality,

1− ℓ > Σ
(t+1)
i,i ≥ (1− η)Σ

(t)
i,i −

η

5
.

which implies Σ(t)
i,i ≤ 1− ℓ+ 2η. In this case, by Lemma 12 and Lemma 15,

Σ̃
(t)
i,i ≥ E

[
(x∗

i )
2
] (

2(Σ
(t)
i,i )

−1 − 2
∣∣∣V(t)

i,i

∣∣∣)− 2C1

n

(
α+ 2ρ+

C1

n
(Σ

(t)
i,i )

−1 +
2C1

n

∥∥∥∥[V(t)
]i∥∥∥∥

1

)
.

≥ 2c2
n

(
1

1− ℓ+ 2η
− ℓ2

(1− 2ℓ)(1− ℓ)2

)
− 2C1

n

(
2α+

C1

n(1− ℓ)(1− 2ℓ)

)
>

c2
n
.

Then
Σ

(t+1)
i,i = (1− η)Σ

(t)
i,i + ηrΣ̃

(t)
i,i = (1− η)Σ

(t)
i,i + η > Σ

(t)
i,i ,
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which is a contradiction. Therefore, (1− ℓ)I ⪯ Σ(t).

(2) Now consider the off-diagonal terms. We shall split them into the positive part and the negative
part. By the update rule, for any i ∈ [n],∥∥∥[E(t+1)

+

]
i

∥∥∥
1
≤ (1− η)

∥∥∥[E(t)
+

]
i

∥∥∥
1
+ ηr

∥∥∥[Ẽ(t)
+

]
i

∥∥∥
1
.

Recall the notations

Z(t) = (Σ(t) +E(t))−1 = (Σ(t))−1 +V(t),

V(t) = (Σ(t))−1
∞∑
k=1

(−E(t)(Σ(t))−1)k

By Lemma 13, we have∥∥∥[Ẽ(t)
+

]
i

∥∥∥
1
≤
∑
j ̸=i

4C2
1

n2(α− ρ)

∥∥∥∥[Z(t)
]i∥∥∥∥

1

(∣∣∣∣[Z(t)
−

]
i,j

∣∣∣∣+ ρ

)
︸ ︷︷ ︸

T1

+
∑
j ̸=i

8C1ρ

n(α− ρ)

(
C1

n

∥∥∥∥[Z(t)
]i∥∥∥∥

1

+

∣∣∣∣[Z(t)
+

]
i,j

∣∣∣∣)︸ ︷︷ ︸
T2

+
∑
j ̸=i

2E[(x∗
j )

2]

∣∣∣∣[Z(t)
+

]
i,j

∣∣∣∣︸ ︷︷ ︸
T3

.

First, by Lemma 15, ∥∥∥∥[Z(t)
]i∥∥∥∥

1

≤
[(

Σ(t)
)−1

]
i,i

+

∥∥∥∥[V(t)
]i∥∥∥∥

1

≤ 1

1− 2ℓ

Now consider Z(t)
+ and Z

(t)
− . We have∑

j:j ̸=i

∣∣∣∣[Z(t)
−

]
i,j

∣∣∣∣ ≤ ∥∥∥[V(t)
−

]
i

∥∥∥
1
,
∑
j:j ̸=i

∣∣∣∣[Z(t)
+

]
i,j

∣∣∣∣ ≤ ∥∥∥[V(t)
+

]
i

∥∥∥
1
.

Therefore,

T1 ≤ 8C2
1

n2(α− ρ)

∥∥∥[V(t)
−

]
i

∥∥∥
1
+

8C2
1ρ

n(α− ρ)
,

T2 ≤ 16C2
1ρ

n(α− ρ)
+

8C1ρ

n(α− ρ)

∥∥∥[V(t)
+

]
i

∥∥∥
1
,

T3 ≤ 2C2

n

∥∥∥[V(t)
+

]
i

∥∥∥
1
.

and thus we have∥∥∥[Ẽ(t)
+

]
i

∥∥∥
1
≤ 8C2

1

n2(α− ρ)

∥∥∥[V(t)
−

]
i

∥∥∥
1
+

(
2C2

n
+

8C1ρ

n(α− ρ)

)∥∥∥[V(t)
+

]
i

∥∥∥
1
+

24C2
1ρ

n(α− ρ)
.

Similarly, for any i ∈ [n],∥∥∥∥[Ẽ(t)
+

]i∥∥∥∥
1

≤ 8C2
1

n2(α− ρ)

∥∥∥∥[V(t)
−

]i∥∥∥∥
1

+

(
2C2

n
+

8C1ρ

n(α− ρ)

)∥∥∥∥[V(t)
+

]i∥∥∥∥
1

+
24C2

1ρ

n(α− ρ)
.

Putting the two together, we have∥∥∥Ẽ(t)
+

∥∥∥
s
≤ 8C2

1

n2(α− ρ)

∥∥∥V(t)
−

∥∥∥
s
+

(
2C2

n
+

8C1ρ

n(α− ρ)

)∥∥∥V(t)
+

∥∥∥
s
+

24C2
1ρ

n(α− ρ)
. (24)
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By Lemma 15 and ℓ ≤ 1
8 , we have:∥∥∥V(t)

+

∥∥∥
s
≤ 32

21

∥∥∥E(t)
−

∥∥∥
s
+

32

147

∥∥∥E(t)
+

∥∥∥
s
,∥∥∥V(t)

−

∥∥∥
s
≤ 32

21

∥∥∥E(t)
+

∥∥∥
s
+

32

147

∥∥∥E(t)
−

∥∥∥
s

So (24) becomes∥∥∥Ẽ(t)
+

∥∥∥
s
≤
(
64C2

147n
+

256C1ρ

147n(α− ρ)
+

256C2
1

21n2(α− ρ)

)∥∥∥E(t)
+

∥∥∥
s

(25)

+

(
64C2

21n
+

256C1ρ

21n(α− ρ)
+

256C2
1

147n2(α− ρ)

)∥∥∥E(t)
−

∥∥∥
s
+

24C2
1ρ

n(α− ρ)
. (26)

Now consider the negative part. The same argument as above leads to∥∥∥Ẽ(t)
−

∥∥∥
s
≤
(

64C2
1

147n2
+

256C1ρ

147n(α− ρ)
+

256C2
1

21n2(α− ρ)

)∥∥∥E(t)
+

∥∥∥
s

+

(
64C2

1

21n2
+

256C1ρ

21n(α− ρ)
+

256C2
1

147n2(α− ρ)

)∥∥∥E(t)
−

∥∥∥
s
+

24C2
1ρ

n(α− ρ)
. (27)

Note the difference between (26) and (27): C2

n in the former is replaced by C2
1

n2 in the latter, which is
much smaller. This is crucial for our proof, which will be clear below.

For simplicity, we introduce the following notations:

at :=
∥∥∥E(t)

+

∥∥∥
s
, bt :=

∥∥∥E(t)
−

∥∥∥
s
.

Then by the update rule, we have

at+1 ≤ (1− η)at + ηr
∥∥∥Ẽ(t)

+

∥∥∥
s
,

bt+1 ≤ (1− η)bt + ηr
∥∥∥Ẽ(t)

−

∥∥∥
s
.

Plugging in (26)and since r = n
c2
≤ 2n

C2
, we have

at+1 ≤ (1− η)at + η
2n

C2

(
64C2

147n
+

256C1ρ

147n(α− ρ)
+

256C2
1

21n2(α− ρ)

)
at

+ η
2n

C2

(
64C2

21n
+

256C1ρ

21n(α− ρ)
+

256C2
1

147n2(α− ρ)

)
bt + η

2n

C2

24C2
1ρ

n(α− ρ)

bt+1 ≤ (1− η)bt + η
2n

C2

(
64C2

1

147n2
+

256C1ρ

147n(α− ρ)
+

256C2
1

21n2(α− ρ)

)
at

+ η
2n

C2

(
64C2

1

21n2
+

256C1ρ

21n(α− ρ)
+

256C2
1

147n2(α− ρ)

)
bt + η

2n

C2

24C2
1ρ

n(α− ρ)
.

When 512C1ρ
C2(α−ρ) ≤

1
2 and 512C2

1

C2n(α−ρ) ≤
1
14 ,

at+1 ≤ (1− η)at +
129

147
ηat +

129

21
ηbt + η

48C2
1ρ

C2(α− ρ)

≤
(
1− 18

147
η

)
at +

129

21
ηbt + η

48C2
1ρ

C2(α− ρ)

Similarly, when 512C1ρ
C2(α−ρ) ≤

1
2 and 512C2

1

C2n(α−ρ) ≤
1
14 , and furthermore, 128C2

1

C2n
≤ 1

4 ,

bt+1 ≤ (1− η)bt +
1

100
ηat +

1

25
ηbt + η

48C2
1ρ

C2(α− ρ)

≤
(
1− 24

25
η

)
bt +

1

100
ηat + η

48C2
1ρ

C2(α− ρ)

25



Let h =
48C2

1ρ
C2(α−ρ) , we then have:

at+1 ≤
(
1− 3

25
η

)
at + 7ηbt + ηh,

bt+1 ≤
(
1− 24

25
η

)
bt +

1

100
ηat + ηh.

Now set β =
√
842+2800−84

2 , so that

at+1 + βbt+1 ≤
(
1− 3

25
η

)
at + 7ηbt + ηh+

(
β − 24

25
ηβ

)
bt +

β

100
ηat + ηβh

=

(
1− 3

25
η +

β

100
η

)
(at + βbt) + η(1 + β)h

≤
(
1− 1

25
η

)
(at + βbt) + 9ηh,

where the last inequality follows from that β < 8.

Note that the recurrence is true up to t+ 1. Using Lemma 29 to solve this recurrence, we obtain

at + bt ≤ a0 + b0 + 250h ≤ 1

10
+ 250h ≤ 1

8

when 4000C2
1ρ

C2(α−ρ) ≤
1

100 . Moreover, we know that∥∥∥E(t+1)
∥∥∥
s
≤ at+1 + βbt+1 ≤

(
1− 1

25
η

)t

+ 250h.

(3) Finally, consider the noise term. Set the sample size N to be large enough, so that by Lemma 14,
we have ∣∣∣Ñ(t)

i,j

∣∣∣ ≤ 4CνC1

(1− 2× ℓ)2n(α− ρ)
+
∣∣∣[N(t)

s ]i,j

∣∣∣
≤ 8CνC1

n(α− ρ)
.

Then by the update rule, we have
∣∣∣N(t+1)

i,j

∣∣∣ ≤ 8CνC1

(α−ρ)c2
. Then∥∥∥N(t+1)

∥∥∥
∞
≤ nmax

i,j

∣∣∣N(t+1)
i,j

∣∣∣ ≤ 8nCνC1

(α− ρ)c2
≤ 1

8∥(A∗)†∥∞
where the last inequality is due to

Cν ≤
(α− ρ)c2

64nC1∥(A∗)†∥∞
.

On the other hand, by Lemma 16, we have

∥ξ(t+1)∥∞ ≤ 3∥(A∗)†∥∞(∥N(t+1)∥∞ + Cν)

≤ 3∥(A∗)†∥∞
(

8nCνC1

(α− ρ)c2
+ Cν

)
≤ ρ

where the last inequality is due to

Cν ≤
(α− ρ)c2ρ

48nC1∥(A∗)†∥∞
, and Cν ≤

ρ

6∥(A∗)†∥∞
.

We also have (which will be useful in proving the final bound)∥∥∥N(t+1)
∥∥∥
1
≤ mmax

i,j

∣∣∣N(t+1)
i,j

∣∣∣ ≤ 8mCνC1

(α− ρ)c2
≤ c

10
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where the last inequality is due to

Cν ≤
c(α− ρ)c2
80mC1

.

Now, we shall prove the theorem statements. Recall that solving the recurrence about at and bt leads
to ∥∥∥E(t+1)

∥∥∥
s
≤ at+1 + βbt+1 ≤

(
1− 1

25
η

)t

+ 250h.

Since the setting of ρ makes sure h = O(c), when t = O
(
ln 1

ϵ

)
, we have the second statement∥∥∥Ê∥∥∥

s
≤ ϵ+ c

2 . Note that

A∗Σ̂ = A−A∗Ê− N̂

and ∥∥∥[A∗Σ̂
]
i

∥∥∥ = Σ̂i,i, ∥A∥1 = 1,
∥∥∥A∗Ê

∥∥∥
1
=
∥∥∥Ê∥∥∥

1
,

so we have

Σ̂i,i ≥ ∥A∥1 −
∥∥∥Ê∥∥∥

1
−
∥∥∥N̂∥∥∥

1

≥ 1− ϵ− c.

Similarly,

Σ̂i,i ≤ ∥A∥1 +
∥∥∥Ê∥∥∥

1
+
∥∥∥N̂∥∥∥

1

≤ 1 + ϵ+ c.

Then the final statement of the theorem follows by replacing c with c/4. This completes the proof.

Theorem 7 (Unbiased noise). If Assumption (A0)-(A3) and (N2) are satisfied with Cν =
c2G

√
cn

C1 max{m,n∥(A∗)†∥∞}
and the other parameters set as in Theorem 6, then the same guarantee

holds.

Proof. The proof is similar to that of Theorem 6, except using the second bound for unbiased noise
in Lemma 14. We highlight the different part, that is, the induction on the noise term.

In the induction, by Lemma 14 we have when N is large enough,∣∣∣Ñ(t)
i,j

∣∣∣ ≤ 2C1Cνρ
′(1 + ∥A†N(t)∥∞)

(1− 2ℓ)n(α− ρ′)
+

∣∣∣∣[N(t)
s

]
i,j

∣∣∣∣ ≤ 3C1Cνρ
′(1 + ∥A†N(t)∥∞)

n(α− ρ′)
.

By Lemma 16 and the induction, we have ∥A†N(t)∥∞ ≤ 1/4. Furthermore, ρ′ ≤ Cν∥A†∥∞ ≤
2Cν∥(A∗)†∥∞ and the parameter setting makes sure ρ′ ≤ α/2. Then∣∣∣Ñ(t)

i,j

∣∣∣ ≤ 16C2
νC1

∥∥(A∗)†
∥∥
∞

nα
.

Then by the update rule, we have ∣∣∣N(t+1)
i,j

∣∣∣ ≤ 32C2
νC1

∥∥(A∗)†
∥∥
∞

c2α

and ∥∥∥N(t+1)
∥∥∥
∞
≤

32nC2
νC1

∥∥(A∗)†
∥∥
∞

c2α
≤ 1

8∥(A∗)†∥∞
(28)

by the definition of α, and Cν ≤ 1
256

c2
C1

√
n

n∥(A∗)†∥∞
. This completes the induction for the noise.

Also, in proving the final bounds, we have∥∥∥N(t+1)
∥∥∥
1
≤

32mC2
νC1

∥∥(A∗)†
∥∥
∞

c2α
≤ c

10
(29)
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by the definition of α, and

Cν ≤
c

320

c2
C1

√
n

max {m,n∥(A∗)†∥∞}
≤
√
c

320

c2
C1

1√
m∥(A∗)†∥∞

where the last inequality can be shown by consider the two cases when
∥∥(A∗)†

∥∥
∞ ≤ m/n and∥∥(A∗)†

∥∥
∞ ≥ m/n. The rest of the proof is the same as in Theorem 6.

C Results for general proportions: Equilibration

Algorithm 2 ColumnUpdate
Input: A matrix A, a threshold value α, a step size η, ratios {rj : j ∈ [n]}, iteration number T , a

subset S ⊆ [n], sample size N
1: Set A(0) = A
2: for t = 0→ T − 1 do
3:

∀i ∈ S, [A(t+1)]i =
[
(1− η)A(t) + riηẼ

[
(y − y′)(x− x′)⊤

]]
i

(30)

Output: Â = A(T )

Algorithm 3 Rescale
Input: A matrix A, a threshold value α, a step size η, ratios {rj : j ∈ [n]}, iteration number T , and

a set S ⊆ [n], ϵ ∈ (0, 1).
1: Let Ã = ColumnUpdate(A, α, η, {rj}j , T, S,N)
2: for i ∈ S do
3: Set [Â]i =

1
1−ϵ [Ã]i

Output: Â

Algorithm 4 Equilibration
Input: A, α, η, T , and ϵ ∈ (0, 1), λ,N

1: S ← ∅, D← I
2: while |S| ≤ n do
3: mj ← Ê[x2

j ] for j ̸∈ S using N examples
4: while maxj ̸∈S mj < λ do
5: A← Rescale(A, α, η, {3/(5mj) : j ∈ [n]}, T, S, ϵ,N)
6: λ← (1− ϵ)λ, Dj,j ← Dj,j/(1− ϵ)

7: mj ← (1− ϵ)2mj for j ∈ S, and mj ← Ê[x2
j ] for j ̸∈ S using N examples

8: S ← S ∪ {j : mj ≥ λ}
Output: A

When the feature have various proportions (i.e., E[(x∗
i )

2] varies for different i), we propose Al-
gorithm 4 for balancing them. The idea is quite simple: instead of solving Y ≈ A∗X, we
could also solve Y ≈ [A∗D][(D)−1X] for a positive diagonal matrix D. Our goal is to find
A = A∗D(Σ+E) +N so that Σ is large, E,N are small, while E[(x∗

i )
2]/D2

i,i is with in a factor
of 2 from each other.

The algorithm works at stages and keeps a working set S of column index i such that E[(x∗
i )

2]/D2
i,i

is above a threshold λ. At each stage, it only updates the columns in S; at the end of the stage, it
increases these columns by a small factor so that E[(x∗

i )
2]/D2

i,i decreases. Then it decreases the
threshold λ, and add more columns to the working set and repeat. In this way, E[(x∗

i )
2]/D2

i,i(i ∈ S)
are always balanced; in particular, they are balanced at the end when S = [n]. Formally,
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Theorem 18 (Main: Equilibration). If there exists an absolute constant G such that Assumption
(A1)-(A3) and (N1) are satisfied with l = 1/50, C3

1 ≤ Gc22n, max
{
Cν , ∥N(0)∥∞

}
≤ Gc42

C5
1n∥(A∗)†∥∞

,

and additionally Σ(0) ⪯ (1 − ℓ)I, and E ≥ 0 entry-wise, then there exist α, η, T, λ such that
for sufficiently small ϵ > 0 and sufficiently large N = poly(n,m, 1/ϵ, 1/δ) the following hold with
probability at least 1−δ: Algorithm 4 outputs a solution A = A∗D(Σ+E)+N where Σ ⪰ (1−ℓ)I
is diagonal, ∥E∥s ≤ γℓ is off-diagonal, ∥N∥∞ ≤ 2∥N(0)∥∞, and D is diagonal and satisfies

maxi∈[n]
1

D2
i,i
E[(x∗

i )
2]

minj∈[n]
1

D2
j,j

E[(x∗
j )

2]
≤ 2.

If Assumption (A1)-(A3) and (N2) are satisfied with the same parameters except

max
{
Cν , ∥N(0)∥∞

}
≤ min

{√
Gc42
C5

1n
1

∥(A∗)†∥∞
,

Gc22
C3

1∥(A∗)†∥∞

}
, then the same guarantees

hold.

Now, we can view A∗D as the ground-truth feature matrix and D−1x∗ as the weights. Then apply-
ing Algorithm 1 with A can recover A∗D, and after normalization we get A∗.

The initialization condition of the theorem can be achieved by the popular practical heuristic that
sets the columns of A(0) to reasonable almost pure data points. It is generally believed that it gives
E

(0)
i,j ≥ 0 and N(0) = 0. We note that the parameters are not optimized; the algorithm can potentially

tolerate much better initialization.

Intuition. Before delving into the specifics of the algorithm, it will be useful to provide a high-
level outline of the proof. As described above, the algorithm makes use of the fact that samples from
a ground truth matrix A∗ and distribution x∗ can equivalently be viewed as coming from the ground
truth matrix A∗D and distribution D−1x∗, for some diagonal matrix D. Therefore, the goal is to
find a D such that the features are balanced:

maxi∈[n]
E[(x∗

i )
2]

D2
i,i

mini∈[n]
E[(x∗

i )
2]

D2
i,i

≤ κ.

The algorithm will implicitly calculate such a D gradually. Namely, at any point in time, the algo-
rithm will have an active set S ⊆ [n] of features, which are balanced, i.e.

maxi∈[n]
E[(x∗

i )
2]

D2
i,i

mini∈S
E[(x∗

i )
2]

D2
i,i

≤ κ. (31)

It is clear that when S = [n] the algorithm achieves the goal. Our algorithm begins with S = ∅ and
gradually increase S until S = [n].

The mechanism for increasing S will be as follows. Given S, A is of the form

A = A∗D(Σ+E) +N

with

E =

[
E1,1 E1,2

E2,1 E2,2

]
where the columns of A are sorted such that the first |S| columns correspond to the features of S,
and E1,1 ∈ R|S|×|S|, E2,1 ∈ R(n−|S|)×|S|, E1,2 ∈ R|S|×(n−|S|), E2,2 ∈ R(n−|S|)×(n−|S|). Then
scaling up the columns of A indexed by S by a factor of 1

1−ϵ is equivalent to

(1) scaling up the columns of D indexed by S by a factor of 1
1−ϵ and

(2) scaling up the columns of E2,1 by a factor of 1
1−ϵ and

(3) scaling down the columns of E1,2 by a factor of 1− ϵ.

29



Therefore, to increase the set S, the algorithm will scale up the columns of A indexed by S, until
some j ̸∈ S satisfies

max
i∈[n]

E[(x∗
i )

2]

D2
i,i

≤ κ
E[(x∗

j )
2]

D2
j,j

.

Then it can add j into S while keeping the corresponding features balanced as in (31). Note that
we do not need to explicitly maintain D, though it can be calculated along with the scaling. Further
note that the values of E[(x∗

i )
2] are not known but they can be estimated using the current A.

However, there is still one caveat: E should be kept small, so that at the end of the algorithm, we
still have a good initialization A. For this reason, the algorithm additionally maintains that for a
small constant 1 < γ < 2,

∥E1,1∥s ≤ γℓ, ∥E1,2∥s ≤ ℓ,

∥E2,1∥s ≤ γℓ, ∥E2,2∥s ≤ ℓ. (32)

Since scaling up A will scale up E2,1, we will need to first decrease ∥E2,1∥s before the scaling
step. The key observation is that by applying our training algorithm only on the columns indexed
by S, ∥E1,1∥s and ∥E2,1∥s will be decreased, while ∥E1,2∥s and ∥E2,2∥s unchanged. On a high
level, using the fact that the matrix E1,2 has no negative entries (which we get by virtue of our
initialization), and the fact that the contribution in the updates to the entry (E1,1)i,j mostly comes
from (E1,1)j,i (i.e. the matrix E1,1 in the first order contribution “updates itself”), and the fact that
the features in S are balanced, we can show that after sufficiently many updates, the symmetric norm
of E1,1 and E2,1 drops by a reasonable amount: ∥E1,1∥s ≤ (γ−1)ℓ and ∥E2,1∥s ≤ (1− ϵ)(γ−1)ℓ.
Now, we can do the scaling step without hurting the invariant 32.

Organization. The result of the section is as follows. We first prove in Section C.1 that applying
our training algorithm only on the columns indexed by S will decrease ∥E1,1∥s and ∥E2,1∥s. Then
in Section C.2 we analyze the scaling step, and show that the invariant (32) is maintained. In Sec-
tion C.3, we show how to increase S while maintaining the invariant (31), where the main technical
details are about how to estimate E[(x∗

i )
2].

C.1 Equilibration: ColumnUpdate

In this subsection, we focus on the update step, bounding the changes of Σ,E, and N.

First recall some notations. Let A = A∗(Σ+E)+N where Σ is diagonal, E is off diagonal, and N
is the component outside the span of A∗.3 Given the set S ⊆ [n] and a matrix M ∈ Rn×n, let M1,1

denote the submatrix indexed by S × S, and M2,1 denote the submatrix indexed by ([n]− S)× S,
M1,2 denote the submatrix indexed by S × ([n] − S), and M2,2 denote the submatrix indexed by
([n]− S)× ([n]− S). 4 In the special case when S = [s] where s = |S|,

M =

[
M1,1 M1,2

M2,1 M2,2

]
.

Also, let MS denote the submatrix formed by the columns indexed by S, and M−S the submatrix
formed by the other columns. 5

The input A(0) of Algorithm 2 can be written as A(0) = A∗(Σ(0) + E(0)) + N(0) where Σ(0) is
diagonal, and E(0) is off diagonal. Define E

(0)
1,1,E

(0)
1,2,E

(0)
2,1 and Ê2,2 as described above. Similarly,

define Ê1,1, Ê1,2, Ê2,1 and Ê2,2 for the output Â = A∗(Σ̂+Ê)+N̂ of Algorithm 2. Finally, define
N

(0)
S , N(0)

−S , N̂S , and N̂−S as described above.

The main result of the subsection is Lemma 19.

3Note that A∗ here can be any ground-truth matrix; in particular, later Lemma 19 will be applied where A∗

in the lemma corresponds to A∗D in the intuition described above.
4These notations will be used for M = E, M = Ẽ, and related matrices.
5These notations will be used for M = N or M = Ñ, and related matrices.
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Lemma 19 (Main: ColumnUpdate). Define

Rj = E[(x∗
j )

2], R = max
j∈[n]

Rj , r = max
j∈S

rj , (33)

h1 = r
8C1(C1 + 1)ρ

(1− ℓ− βℓ)n(α− ρ)
+

4C2
1

(1− ℓ− βℓ)n2(α− ρ)
r

(
1

(1− ℓ− βℓ)
+ 1

)
, (34)

h2 = r
Rβ2ℓ2

(1− ℓ)2(1− ℓ− βℓ)
+

12C1(C1 + 1)

n2(α− ρ)(1− ℓ− βℓ)

(
1

1− ℓ− βℓ
+ nρ

)
r, (35)

h = h1 + h2, (36)

Ua =
8rCνC1

α− ρ
, (37)

Un =
10rC1C

2
ν

∥∥(A∗)†
∥∥
∞

(1− 2ℓ)(α− 2Cν∥(A∗)†∥∞)
. (38)

Suppose ℓ ≤ 1/8, β is a constant with βℓ ≤ 1/2, γ ∈ (1, 2), ϵ ∈ (0, 1). The initialization satisfies

(1− ℓ)I ⪯ Σ(0),
∥∥∥E(0)

1,1

∥∥∥
s
≤ γℓ,

∥∥∥E(0)
2,1

∥∥∥
s
≤ γℓ,

∥∥∥(E(0)
1,2;E

(0)
2,2)
∥∥∥
s
≤ ℓ, E(0)

1,2 ≥ 0 and E
(0)
2,2 ≥ 0 entry-

wise, and ∥N(0)
−S∥∞ ≤ U and ∥N(0)

S ∥∞ ≤ 2U ≤ 1/(16∥(A∗)†∥∞). Furthermore, the parameters
satisfy that for any i ∈ S,

η

(
1 + 2riRi

1

(1− ℓ)2
βℓ2

1− βℓ− ℓ
+ ri

2C1

n

(
α+ 2ρ+

C1

n
+

2C1

n

βℓ(1− βℓ)

(1− ℓ)2(1− βℓ− ℓ)

))
≤ ℓ

(39)

riRi

(
2− 2

1

(1− ℓ)2
βℓ2

1− βℓ− ℓ

)
− ri

(
2C1

n

(
α+ 2ρ+

C1

n

1

1− ℓ
+

2C1

n

βℓ(1− βℓ)

(1− ℓ)2(1− βℓ− ℓ)

))
≥ 1− ℓ

(40)

h1 ≤ ℓ,

(
rR

(1− ℓ)2
+ 1

)
(ϵ+ h1) + (ϵ+ h2) ≤ (γ − 1)ℓ (41)

ϵ+ h2 ≤ (1− ϵ)(γ − 1)ℓ (42)

h1 + ℓ ≤ (β − 1)ℓ, h2 +

(
rR

(1− ℓ)2
+ 1

)
ℓ ≤ (β − 1)ℓ (43)

3∥(A∗)†∥∞ (3U + Cν) ≤ ρ < α. (44)

If we have adversarial noise (Assumption (N1)), assume

ϵ′ + Ua ≤ (1− ϵ)U, and 3∥(A∗)†∥∞ (2U + Ua + Cν) ≤ ρ < α < 1. (45)

If we have unbiased noise (Assumption (N2)), assume

ϵ′ + Un ≤ (1− ϵ)U. (46)

Finally, let N = poly (n,m, 1/δ, 1/ϵ) sufficiently large.

Then with probability at least 1− δ, after 2 ln(ϵ/(γℓ))
ln(1−η) +

ln(ϵ′/U)
ln(1−η) iterations, the output of Algorithm

2 is Â = A∗(Σ̂+ Ê) + N̂ satisfying

(1− ℓ)I ⪯ Σ̂ ⪯ uI, ∥Ê1,1∥s ≤ (γ − 1)ℓ, ∥Ê2,1∥s ≤ (1− ϵ)(γ − 1)ℓ, ∥(Ê1,2; Ê2,2)∥s ≤ ℓ,

and Ê1,2 ≥ 0 and Ê2,2 ≥ 0 entry-wise. Furthermore, ∥N̂−S∥∞ ≤ U and ∥N̂S∥∞ ≤ (1− ϵ)U.

Proof of Lemma 19. It follows from Lemma 22 and the conditions (41) and (42).

To prove Lemma 22, we will first consider how E changes after one update step, and then derive the
recurrence for all steps in Lemma 22.
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C.1.1 One update step of E

In this subsection, we focus on one update step, bounding the change of E. So through out this
subsection we will focus on a particular iteration t and omit the superscript (t), while in the next
subsection we will put back the superscript.

For analysis, denote A(t) as

A = A∗(Σ+E) +N

where Σ is a diagonal matrix, E is an off-diagonal matrix, and N is the component of A that lies
outside the span of A∗ (e.g., the noise caused by the noise in the sample).

Recall the following notations:

Z = (Σ+E)
−1

,

V = Z−Σ−1 = Σ−1
∞∑
k=1

(−EΣ−1)k,

ξ = −A†NZx∗ +A†ν.

Consider the update term Ê
[
(y − y′)(x− x′)⊤

]
and denote it as

∆ = Ê
[
(y − y′)(x− x′)⊤

]
= A∗(Σ̃+ Ẽ) + Ñ

where Σ̃ is a diagonal matrix, Ẽ is an off-diagonal matrix, and N is the component of ∆ that lies
outside the span of A∗.

Since we now use empirical average, we will have sampling noise. Denote it as

Ns = Ê[(y − y′)(x− x′)⊤]− E[(y − y′)(x− x′)⊤].

Then by definition, for y = A∗x∗ + ν and y′ = A∗(x′)∗ + ν′, we have

Ê[(y − y′)(x− x′)⊤] = E[(y − y′)(x− x′)⊤] +Ns

= A∗ E
[
(x∗ − (x′)∗)(x− x′)⊤

]︸ ︷︷ ︸
Σ̃+Ẽ

+E
[
(ν − ν′)(x− x′)⊤

]
+Ns︸ ︷︷ ︸

Ñ

.

Recall the definition of E1,1, i.e., it is the submatrix of E indexed by S × S. Define Ẽ1,1 similarly,
i.e., it is the submatrix of Ẽ indexed by S × S. Define Ẽ1,2, Ẽ2,1 and Ẽ2,2 accordingly. So in the
special case when S = [s] where s = |S|,

Ẽ =

[
Ẽ1,1 Ẽ1,2

Ẽ2,1 Ẽ2,2

]
.

We also use the notation M+ or M− to denote the positive or negative part of a matrix M.

Lemma 20 (Update Ẽ1,1). Let Ẽ1,1 be defined as above. If ∥ξ∥∞ ≤ ρ < α < 1 and Σ ⪰ (1− ℓ)I,
then
(1). Negative entries:

∥Ẽ−
1,1∥s ≤

4C2
1∥Z∥s(∥Z∥s + 1)

n2(α− ρ)
+

8C1(C1 + 1)ρ∥Z∥s
n(α− ρ)

.

(2) Positive entries:

∥Ẽ+
1,1∥s ≤

12C1(C1 + 1)∥Z∥s
n2(α− ρ)

(∥Z∥s + nρ) + 2max
j∈[n]
{E[(x∗

j )
2]}
(

1

(1− ℓ)2
∥E−

1,1∥s +
∥E∥2s

(1− ℓ)2(1− ℓ− ∥E∥s)

)
.

Proof of Lemma 20. (1) By Lemma 13, we have

∥Ẽ−
1,1∥s ≤ max

{
4C2

1∥Z∥s
n2(α− ρ)

∥Z∥s +
4C2

1∥Z∥s
n2(α− ρ)

nρ,
8C1ρ

n(α− ρ)
(C1 + 1)∥Z∥s +

2C2
1

n2
∥Z∥s

}
.
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Observe that for α < 1,

4C2
1∥Z∥s(∥Z∥s + 1)

n2(α− ρ)
≥ max

{
4C2

1∥Z∥2s
n2(α− ρ)

,
2C2

1

n2
∥Z∥s

}
.

Moreover,

8C1ρ

n(α− ρ)
(C1 + 1)∥Z∥s ≥

4C2
1∥Z∥s

n2(α− ρ)
nρ.

Therefore,

∥Ẽ−
1,1∥s ≤

4C2
1∥Z∥s

n2(α− ρ)
+

8C1(C1 + 1)ρ∥Z∥s
n(α− ρ)

.

(2) By Lemma 13, when Zi,j < 0,

Ẽj,i ≤
4C2

1∥Zi∥1
n2(α− ρ)

(|Zi,j |+ ρ) .

When Zi,j ≥ 0,

Ẽj,i ≤
8C1ρ

n(α− ρ)

(
C1∥Zi∥1

n
+ Zi,j

)
+ 2E[(x∗

j )
2]Zi,j

Consider a fixed i. Let G = {j ∈ S,Zi,j ≥ 0} and let Gc = S −G. We know that

∥[Ẽ+
1,1]i∥1 =

∑
j∈[n]

[Ẽ+
1,1]j,i

≤
∑
j∈Gc

4C2
1∥Zi∥1

n2(α− ρ)
(|Zi,j |+ ρ)

+
∑
j∈G

(
8C1ρ

n(α− ρ)

(
C1∥Zi∥1

n
+ Zi,j

)
+ 2E[(x∗

j )
2]Zi,j

)

≤ 4C2
1∥Z∥s

n2(α− ρ)
(∥Z∥s + nρ) +

8C1(C1 + 1)ρ

n(α− ρ)
∥Z∥s +

∑
j∈G

2E[(x∗
j )

2]Zi,j

≤ 4C2
1∥Z∥2s

n2(α− ρ)
+

4C2
1∥Z∥s

n2(α− ρ)
nρ+

8C1(C1 + 1)ρ

n(α− ρ)
∥Z∥s +

∑
j∈S

2E[(x∗
j )

2]Zi,j

≤ 12C1(C1 + 1)∥Z∥s
n2(α− ρ)

(∥Z∥s + nρ) +
∑
j∈G

2E[(x∗
j )

2]Zi,j .

A similar bound holds for ∥[Ẽ+
1,1]

i∥1.

By the definition of Z, we know that

Z = (Σ+E)−1

= Σ−1
∞∑
k=0

(−EΣ−1)k

= Σ−1 −Σ−1EΣ−1 +Σ−1
∞∑
k=2

(−EΣ−1)k.

Therefore, we know that for i ̸= j,

Zi,j ≤ −[Σ−1EΣ−1]i,j + |
∞∑
k=2

Σ−1[(−EΣ−1)k]i,j |.
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This implies that∑
j∈G

Zi,j ≤
∑
j∈G

(
−[Σ−1EΣ−1]i,j +

∞∑
k=2

∣∣Σ−1[(−EΣ−1)k]i,j
∣∣)

≤ 1

(1− ℓ)2
∥E−

1,1∥s +
1

1− ℓ

∥E∥2
s

(1−ℓ)2

1− ∥E∥s

1−ℓ

≤ 1

(1− ℓ)2
∥E−

1,1∥s +
∥E∥2s

(1− ℓ)2(1− ℓ− ∥E∥s)
.

Putting together, we complete the proof.

Lemma 21 (Update Ẽ2,1). Let Ẽ2,1 be defined as above, and suppose ∥ξ∥∞ ≤ ρ < α < 1,
Σ ⪰ (1− ℓ)I and E1,2 ≥ 0, then we have

∥Ẽ2,1∥s ≤
12C1(C1 + 1)∥Z∥s

n2(α− ρ)
(∥Z∥s + nρ) + 2max

j∈[n]
{E[(x∗

j )
2]}
(

∥E∥2s
(1− ℓ)2(1− ℓ− ∥E∥s)

)
.

Proof of Lemma 21. The proof is almost the same as that of Lemma 20, combined with the fact that
E1,2 ≥ 0 entry-wise.

C.1.2 Recurrence

Recall that
A = A∗(Σ+E) +N

and recall that E1,1 is the submatrix indexed by S × S, and E1,2,E2,1,E2,2 are defined according.
Recall that MS denote the submatrix of M formed by columns indexed by S, and let M−S denote
the submatrix formed by the other columns.
Lemma 22 (Recurrence). Suppose the conditions in Lemma 19 hold. Then with probability at least
1− δ, after 2 ln(ϵ/(γℓ))

ln(1−η) iterations,

(1− ℓ)I ⪯ Σ(t),

∥(E(t)
1,1)

−∥s ≤ ϵ+ h1,

∥(E(t)
1,1)

+∥s ≤
rR

(1− ℓ)2
(ϵ+ h1) + h2 + ϵ,

∥(E(t)
2,1)∥s ≤ ϵ+ h2.

Also, after
ln(ϵ′/U)
ln(1−η) iterations, for both adversarial and unbiased noise,∥∥∥N(t)

−S

∥∥∥
∞
≤ U,

∥∥∥N(t)
S

∥∥∥
∞
≤ (1− ϵ)U.

Proof of Lemma 22. We first prove the following claims by induction.
(1) (1− ℓ)I ⪯ Σ(t),
(2)

∥(E−
1,1)

(t)∥s ≤ γℓ

∥(E+
1,1)

(t)∥s ≤
rR

(1− ℓ)2
γℓ+ h2

∥E(t)
2,1∥s ≤ γℓ

∥E(t)
1,2∥s ≤ ℓ

∥E(t)
2,2∥s ≤ ℓ,
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(3) ∥E(t)∥s ≤ βℓ,
(4) for adversarial noise,

∥∥∥N(t)
S

∥∥∥
∞
≤ U +Ua, and ∥ξ(t)∥∞ ≤ ρ; or for unbiased noise,

∥∥∥N(t)
S

∥∥∥
∞
≤

U + Uu.

The basis case for t = 0 is trivial by assumptions. Now assume they are true for iteration t and show
that they are true for iteration t+ 1.

(1) By the update of Σ, we have

Σ(t+1) = (1− η)Σ(t) + ηrΣ̃(t).

To lower bound Σ
(t+1)
i,i , we will consider two cases, Σ(t)

i,i ≥ 1 and Σ
(t)
i,i ≤ 1.

For Σ(t)
i,i ≥ 1, by Lemma 12,

Σ̃i,i ≥ E
[
(x∗

i )
2
] (

2Σ−1
i,i − 2 |Vi,i|

)
− 2C1

n

(
α+ 2ρ+

C1

n
Σ−1

i,i +
2C1

n

∥∥∥[V]
i
∥∥∥
1

)
≥ −2Ri |Vi,i| −

(
2C1

n

(
α+ 2ρ+

C1

n
Σ−1

i,i +
2C1

n

∥∥∥[V]
i
∥∥∥
1

))
.

Hence,

Σ
(t+1)
i,i ≥ (1− η)Σ

(t)
i,i − η

(
2riRi

∣∣∣V(t)
i,i

∣∣∣+ ri

(
2C1

n

(
α+ 2ρ+

C1

n
(Σ

(t)
i,i )

−1 +
2C1

n

∥∥∥∥[V(t)
]i∥∥∥∥

1

)))
≥ 1− η

(
1 + 2riRi

∣∣∣V(t)
i,i

∣∣∣+ ri
2C1

n

(
α+ 2ρ+

C1

n
+

2C1

n

∥∥∥∥[V(t)
]i∥∥∥∥

1

))
≥ 1− η

(
1 + 2riRi

1

(1− ℓ)2
βℓ2

1− βℓ− ℓ
+ ri

2C1

n

(
α+ 2ρ+

C1

n
+

2C1

n

βℓ(1− βℓ)

(1− ℓ)2(1− βℓ− ℓ)

))
.

where we use the bound on V(t). By condition (39), the claim follows.

For Σ(t)
i,i ≤ 1, again by Lemma 12,

Σ̃
(t)
i,i ≥ E

[
(x∗

i )
2
] (

2− 2
∣∣∣V(t)

i,i

∣∣∣)− (2C1

n

(
α+ 2ρ+

C1

n
(Σ

(t)
i,i )

−1 +
2C1

n

∥∥∥∥[V(t)
]i∥∥∥∥

1

))
.

Hence,

Σ
(t+1)
i,i = (1− η)Σ

(t)
i,i + ηrΣ̃

(t)
i,i

≥ (1− η)(1− ℓ)

+ η

(
riRi

(
2− 2

∣∣∣V(t)
i,i

∣∣∣)− ri

(
2C1

n

(
α+ 2ρ+

C1

n
(Σ

(t)
i,i )

−1 +
2C1

n

∥∥∥∥[V(t)
]i∥∥∥∥

1

)))
≥ (1− η)(1− ℓ) + ηriRi

(
2− 2

1

(1− ℓ)2
βℓ2

1− βℓ− ℓ

)
− ηri

(
2C1

n

(
α+ 2ρ+

C1

n

1

1− ℓ
+

2C1

n

βℓ(1− βℓ)

(1− ℓ)2(1− βℓ− ℓ)

))
.

By condition (40), the claim follows.

(2) By Lemma 20,

∥(Ẽ(t+1)
1,1 )−∥s ≤

8C1(C1 + 1)ρ∥Z(t)∥s
n(α− ρ)

+
4C2

1∥Z(t)∥s(∥Z(t)∥s + 1)

n2(α− ρ)
,

∥(Ẽ(t+1)
1,1 )+∥s ≤

R

(1− ℓ)2
∥(E−

1,1)
(t)∥s +

R∥E(t)∥2s
(1− ℓ)2(1− ℓ− ∥E(t)∥s)

+
12C1(C1 + 1)∥Z(t)∥s

n2(α− ρ)

(∥∥∥Z(t)
∥∥∥
s
+ nρ

)
.
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By the update rule, we have

∥(E(t+1)
1,1 )−∥s ≤ (1− η)∥(E(t)

1,1)
−∥s

+ rη
8C1(C1 + 1)ρ

(1− ℓ− βℓ)n(α− ρ)
+

4C2
1

(1− ℓ− βℓ)n2(α− ρ)

(
1

(1− ℓ− βℓ)
+ 1

)
rη,

≤ (1− η)∥(E(t)
1,1)

−∥s + ηh1 (47)

∥(E(t+1)
1,1 )+∥s ≤ (1− η)∥(E(t)

1,1)
+∥s + rη

R

(1− ℓ)2
∥(E(t)

1,1)
−∥s

+ rη
Rβ2ℓ2

(1− ℓ)2(1− ℓ− βℓ)

+
12C1(C1 + 1)

n2(α− ρ)(1− ℓ− βℓ)

(
1

1− ℓ− βℓ
+ nρ

)
rη

≤ (1− η)∥(E(t)
1,1)

+∥s + rη
R

(1− ℓ)2
∥(E(t)

1,1)
−∥s + ηh2 (48)

where we use
∥∥E(t)

∥∥
s
≤ βℓ and ∥Z(t)∥s ≤ 1

1−ℓ−βℓ .

The claim on ∥(E(t+1)
1,1 )−∥s follows from (47) and the condition (41).

For ∥(E(t+1)
1,1 )+∥s, by induction (48) becomes

∥(E(t+1)
1,1 )+∥s ≤ (1− η)∥(E(t)

1,1)
+∥s + rη

R

(1− ℓ)2
γℓ+ ηh2 ≤

rR

(1− ℓ)2
γℓ+ h2.

Now we consider ∥(E(t+1)
2,1 )∥s. By Lemma 21,

∥(E(t+1)
2,1 )∥s ≤ (1− η)∥(E(t)

2,1)∥s

+ rη
Rβ2ℓ2

(1− ℓ)2(1− ℓ− βℓ)

+
12C1(C1 + 1)

n2(α− ρ)(1− ℓ− βℓ)

(
1

1− ℓ− βℓ
+ nρ

)
rη

= (1− η)∥(E(t)
2,1)∥s + ηh2 (49)

≤ γℓ

where the last line follows by condition (42) and induction.

Finally, clearly we have
∥∥∥E(t+1)

1,2

∥∥∥
s
≤ ℓ and

∥∥∥E(t+1)
2,2

∥∥∥
s
≤ ℓ, since they are not updated.

(3) Note that (47) (48) hold for all iterations up to t+ 1. Then by Lemma 28, we have

∥(E(t+1)
1,1 )−∥s + ∥(E(t+1)

1,1 )+∥s

≤ max

{
∥(E(0)

1,1)
−∥s + ∥(E(0)

1,1)
+∥s, ∥(E(0)

1,1)
+∥s + h1, h2 +

(
rR

(1− ℓ)2
+ 1

)
∥(E(0)

1,1)
−∥s, h2 +

(
rR

(1− ℓ)2
+ 1

)
h1

}
.

Since h1 ≤ ℓ and h2 ≤ ℓ by (41)(42), and ∥(E(0)
1,1)

−∥s + ∥(E(0)
1,1)

+∥s ≤ ℓ by assumption, we have

∥(E(t+1)
1,1 )−∥s + ∥(E(t+1)

1,1 )+∥s ≤ max

{
ℓ+ h1, h2 +

(
rR

(1− ℓ)2
+ 1

)
ℓ

}
. (50)

Then we have by condition (43),

∥(E(t+1)
1,1 )−∥s + ∥(E(t+1)

1,1 )+∥s ≤ (β − 1)ℓ, ∥E(t+1)∥s ≤ βℓ.
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(4) Finally, we consider the noise. We first consider the adversarial noise. Set the sample size N to
be large enough, so that by Lemma 14, we have∣∣∣Ñ(t)

i,j

∣∣∣ ≤ 4CνC1

(1− 2ℓ)2n(α− ρ)
+
∣∣∣[Ñ(t)

s ]i,j

∣∣∣ ≤ 8CνC1

n(α− ρ)

and thus ∥∥∥N(t+1)
∥∥∥
∞
≤ (1− η)

∥∥∥N(t)
∥∥∥
∞

+ η
8rCνC1

α− ρ
. (51)

Then for any t ≥ 0,∥∥∥N(t)
∥∥∥
∞
≤
∥∥∥N(0)

∥∥∥
∞

+
8rCνC1

α− ρ
≤ U +

8rCνC1

α− ρ
≤ 2U + Ua

where the last inequality is by the definition of Ua. On the other hand, by Lemma 16, we have

∥ξ(t)∥∞ ≤ 3∥(A∗)†∥∞(∥N(t)∥∞ + Cν)

≤ 3∥(A∗)†∥∞
(
2U +

8rCνC1

α− ρ
+ Cν

)
≤ ρ

where the last inequality is due to condition (45).

We now consider the unbiased noise, where the proof is similar. Set the sample size N to be large
enough, so that by Lemma 14, we have∣∣∣Ñ(t)

i,j

∣∣∣ ≤ 2C1Cνρ
′(1 + ∥A†N(t)∥∞)

(1− 2ℓ)n(α− ρ′)
+
∣∣∣[Ns]i,j

∣∣∣
≤

8C1C
2
ν

∥∥(A∗)†
∥∥
∞

(1− 2ℓ)n(α− 2Cν∥(A∗)†∥∞)
+
∣∣∣[Ns]i,j

∣∣∣
≤

10C1C
2
ν

∥∥(A∗)†
∥∥
∞

(1− 2ℓ)n(α− 2Cν∥(A∗)†∥∞)
,

and thus ∥∥∥N(t+1)
S

∥∥∥
∞
≤ (1− η)

∥∥∥N(t)
S

∥∥∥
∞

+ η
10rC1C

2
ν

∥∥(A∗)†
∥∥
∞

(1− 2ℓ)(α− 2Cν∥(A∗)†∥∞)
. (52)

Then for any t ≥ 0,∥∥∥N(t)
S

∥∥∥
∞
≤
∥∥∥NS

(0)
∥∥∥
∞

+
10rC1C

2
ν

∥∥(A∗)†
∥∥
∞

(1− 2ℓ)(α− 2Cν∥(A∗)†∥∞)
≤ 2U +

10rC1C
2
ν

∥∥(A∗)†
∥∥
∞

(1− 2ℓ)(α− 2Cν∥(A∗)†∥∞)
≤ 2U + Un

where the last inequality is by the definition of Un. This completes the proof for the claims.

Now, after proving the claims, we are ready to prove the last statement of the lemma. First, by (47)
and Lemma 29, we have that after ln(ϵ/(γℓ))

ln(1−η) iterations,

∥(E(t)
1,1)

−∥s ≤ ϵ+ h1.

Now (48) becomes

∥(E(t+1)
1,1 )+∥s ≤ (1− η)∥(E(t)

1,1)
+∥s + rη

R

(1− ℓ)2
(ϵ+ h1) + ηh2 (53)

After an additional ln(ϵ/(γℓ))
ln(1−η) iterations, by Lemma 29,

∥(E(t)
1,1)

+∥s ≤
rR

(1− ℓ)2
(ϵ+ h1) + h2 + ϵ
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Similarly, Lemma 29 and (49), after ln(ϵ/(γℓ))
ln(1−η) iterations,

∥(E(t)
2,1)∥s ≤ ϵ+ h2.∥∥∥N(t)

−S

∥∥∥
∞

does not change since it is not updated. Now consider
∥∥∥N(t)

S

∥∥∥
∞

.

For the adversarial noise, by (51) and Lemma 29, after
ln(ϵ′/U)
ln(1−η) iterations,∥∥∥N(t)

S

∥∥∥
∞
≤ ϵ′ +

8rCνC1

α− ρ
≤ (1− ϵ)U

where the last inequality is due to condition (45).

For the unbiased noise, by (52) and Lemma 29, after
ln(ϵ′/U)
ln(1−η) iterations,∥∥∥N(t)

S

∥∥∥
∞
≤ ϵ′ +

10rC1C
2
ν

∥∥(A∗)†
∥∥
∞

(1− 2ℓ)(α− 2Cν∥(A∗)†∥∞)
≤ (1− ϵ)U

where the last inequality is due to condition (46).

This completes the proof.

C.2 Equilibration: Rescale

The input of of Algorithm 3 can be written as A(0) = A∗(Σ(0) +E(0)) +N(0). The output Â can
be written as Â = (A∗D)(Σ̂ + Ê) + N̂ where Σ̂ is diagonal, and Ê is off diagonal, and D is a
diagonal matrix with Di,i =

1
1−ϵ for i ∈ S and the rest being 1. Recall that for a matrix M, let M1,1

denote the submatrix of M indexed by S × S, and define M1,2,M2,1 and M2,2 accordingly. Also
recall that MS denote the submatrix of M formed by columns indexed by S, and let M−S denote
the submatrix formed by the other columns.
Lemma 23 (Main: Rescale). Let A(0) = A∗(Σ(0)+E(0))+N(0) satisfies the condition in Lemma
19 and ϵ be defined as in Lemma 19. Then the output of Algorithm 3 is Â = (A∗D)(Σ̂ + Ê) + N̂
satisfying

(1− ℓ)I ⪯ Σ̂, ∥Ê1,1∥s ≤ (γ − 1)ℓ, ∥Ê2,1∥s ≤ (γ − 1)ℓ, ∥(Ê1,2, Ê2,2)∥s ≤ ℓ, ∥N̂S∥∞ ≤ U, ∥N̂−S∥∞ ≤ U.

Moreover, Ê1,2 ≥ 0 and Ê2,2 ≥ 0 entry-wise.

Proof of Lemma 23. Note that Ã = A∗(Σ̃+ Ẽ) + Ñ for a diagonal matrix Σ̃, off-diagonal matrix
Ẽ and error matrix Ñ. By lemma 19, we have Σ̃ ⪰ (1− ℓ)I, error matrix ∥ÑS∥∞ ≤ (1− ϵ)U and

∥Ẽ1,1∥s ≤ (γ − 1)ℓ, ∥Ẽ2,1∥s ≤ (1− ϵ)(γ − 1)ℓ, ∥(Ẽ1,2; Ẽ2,2)∥s ≤ ℓ

and Ẽ1,2 ≥ 0 and Ẽ2,2 ≥ 0 entry-wise.

Therefore, by the rescaling rule:

Â = ÃD = A∗(Σ̃+ Ẽ)D+ ÑD

= A∗D(Σ̃+D−1ẼD) + ÑD.

Therefore, Σ̂ = Σ̃ ⪰ (1− ℓ)I, ∥N̂S∥∞ ≤ 1
1−ϵ∥ÑS∥∞ ≤ U . ∥N̂−S∥∞ = ∥Ñ−S∥∞ ≤ U since it

is not updated.

For the Ê term, denote D1 = Diag
(

1
1−ϵ , . . . ,

1
1−ϵ

)
∈ Rs×s. We know that

Ê1,1 = D−1
1 Ẽ1,1D1 = Ẽ1,1

Ê2,1 = Ẽ2,1D1 =
1

1− ϵ
Ẽ2,1

Ê1,2 = D−1
1 Ẽ1,2 = (1− ϵ)Ẽ1,2

Ê2,2 = Ẽ2,2.
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This leads to

∥Ê1,1∥s ≤ (γ − 1)ℓ, ∥Ê2,1∥s ≤ (γ − 1)ℓ, ∥(Ê1,2, Ê2,2)∥s ≤ ℓ,

with Ê1,2, Ê2,2 ≥ 0. This completes the proof.

C.3 Equilibration: Main algorithm

Lemma 24 (Main: Equilibration). Suppose the conditions in Lemma 23 each time Algorithm 3.
Additionally, there exists constant 0 < b < 1, κ > 1 and u > 1 such that bκ > 1 such that the initial
λ ≥ maxi∈[n] E[(x∗

i )
2]/b, and the initial Σ ⪯ uI. Furthermore, for any λ ≥ mini∈[n] E[(x∗

i )
2]/κ,(

1

1− ℓ
+ h6

)2

bλ+ h2
5bκλ+ h3 ≤

(
1− 1

100

)
λ, (54)(

1

u
− h6

)2

(1− ϵ)bκλ− h2
5bκλ− h4 ≥

(
1 +

1

100

)
λ,

1

u
> h6 (55)

h3 ≤
1

200
min
i∈[n]

E[(x∗
i )

2], (56)

h4 ≤
1

200
min
i∈[n]

E[(x∗
i )

2], (57)

where

h3 =
C2

1

n2
h5

(
h5 +

2

1− ℓ

)
,

h4 =
C2

1

n2
h5

(
h5 +

2

1− ℓ

)
+

2(α+ ρ)C1

n(1− ℓ)
,

h5 =
(γ + 1)ℓ(1− (γ + 1)ℓ)

(1− ℓ)2(1− (γ + 2)ℓ)
,

h6 =
(γ + 1)ℓ2

(1− ℓ)2(1− (γ + 2)ℓ)
.

Finally, set N = poly(1/mini∈[n] E[(x∗
i )

2], n, 1/δ) large enough.

Then with probability at least 1 − δ, the following hold. During the execution of the algorithm, for
any j ∈ S,((

1

u
− h6

)2

− κh2
5 −

1

100

)
E[(x∗

j )
2]

(Dj,j)2
≤ mj ≤

((
1

1− ℓ
+ h6

)2

+ κh2
5 +

1

100

)
E[(x∗

j )
2]

(Dj,j)2
.

Furthermore, the output of Algorithm 4 is A = A∗D(Σ + E) + N where Σ is diagonal and
(1− ℓ)I ⪯ Σ, E is off diagonal and ∥E∥s ≤ γℓ, N satisfies ∥N∥∞ ≤ 2U , and

maxi∈[n]
1

D2
i,i
E[(x∗

i )
2]

minj∈[n]
1

D2
j,j

E[(x∗
j )

2]
≤ κ.

Proof of Lemma 24. We prove the lemma by induction. For notational convenience, let us introduce
a counter (p) denoting the number of times the inner while cycle has been executed, and denote
A as A(p). Recall that for a matrix M ∈ Rn×n and index set S ⊆ [n], let M1,1 denote the
submatrix indexed by S × S, and M1,2,M2,1 and M2,2 are defined accordingly. Also, let MS

denote the submatrix formed by the columns indexed by S, and M−S the submatrix formed by the
other columns.

Our inductive claims are as follows. At the beginning of each inner while cycle,

A(p) = A∗D(p)
(
Σ(p) +E(p)

)
+N(p)

where D(p) and Σ(p) are diagonal, E(p) are off diagonal satisfying
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(1) (1− ℓ)I ⪯ Σ(p),

(2) E
(p)
1,2 ≥ 0 and E

(p)
2,2 ≥ 0 entry-wise and ∥∥∥E(p)

1,1

∥∥∥
s
≤ γℓ,∥∥∥E(p)

2,1

∥∥∥
s
≤ γℓ,∥∥∥(E(p)

1,2;E
(p)
2,2)
∥∥∥
s
≤ ℓ,

(3) N
(p)
−S ≤ U and N

(p)
S ≤ 2U ,

(4) We have

(a) When E[(x∗
j )

2] < bλ(p), j /∈ S, then mj ≤ λ(p),

(b) When E[(x∗
j )

2] ≥ (1− ϵ)bκλ(p), j /∈ S, then mj > λ(p),

and consequently,

(c) ∀i ∈ S, bλ(p) ≤ E[(x∗
i )

2](
D

(p)
i,i

)2 ,

(d) ∀i ∈ [n],
E[(x∗

i )
2](

D
(p)
i,i

)2 ≤ bκλ(p).

The claims are trivially true at initialization, so we proceed to the induction. Assume the claim is
true at time p, we proceed to show it is true at time p+ 1.

First, consider (1), (2) and (3). By Lemma 23, after applying the rescaling algorithm, (1−ℓ)I ⪯ Σ(p)

and

∥E(p)
1,1∥s ≤ (γ − 1)ℓ, ∥E(p)

2,1∥s ≤ (γ − 1)ℓ, ∥(E(p)
1,2,E

(p)
2,2)∥s ≤ ℓ, ∥N(p)

S ∥∞ ≤ U, ∥N(p)
−S∥∞ ≤ U.

Moreover, E(p)
1,2 ≥ 0 and E

(p)
2,2 ≥ 0 entry-wise. Observe that when moving from time p to p + 1,

potentially the algorithm includes new elements in S. Then

∥E(p+1)
1,1 ∥s ≤ ∥E(p)

1,1∥s +max{∥E(p)
2,1∥s, ∥E

(p)
1,2∥s} ≤ (γ − 1)ℓ+ ℓ = γℓ

Where the last inequality used the fact that γ < 2. Similarly,

∥E(p+1)
2,1 ∥s ≤ ∥E(p)

2,1∥s + ∥E
(p)
2,2∥s ≤ (γ − 1)ℓ+ ℓ = γℓ.

Also, ∥(E(p+1)
1,2 ,E

(p+1)
2,2 )∥s ≤ ∥(E(p)

1,2,E
(p)
2,2)∥s ≤ ℓ, and (E

(p+1)
1,2 ,E

(p+1)
2,2 ) ≥ 0 entry-wise. Further-

more, ∥N(p+1)
−S ∥∞ ≤ ∥N(p)

−S∥∞ ≤ U and

∥N(p+1)
S ∥∞ ≤ ∥N(p)

S ∥∞ + ∥N(p)
−S∥∞ ≤ 2U.

Hence, (1), (2) and (3) are also true at time (p+ 1).

Finally, we proceed to (4). Since (a)(b) are true at time p, (c)(d) are true at time p+1. 6 Furthermore,
when λ ≤ mini∈[n] E[(x∗

i )
2]/κ, it is guaranteed that all [n] ⊆ S, so we only need to prove that when

λ ≥ mini∈[n] E[(x∗
i )

2]/κ, (a)(b) are also true at time p+ 1.

To prove (a)(b) are true at time p + 1, we will use Lemma 25. Note that since A has been scaled,
so A∗D should be regarded as the ground truth matrix A∗ in Lemma 25. We first make sure its
assumption is satisfied. First, ∥N∥∞ ≤ 3U and

∥∥(A∗D)†
∥∥
∞ ≤

∥∥(A∗)†
∥∥
∞. By Lemma 16 and

condition (44), the assumption in Lemma 25 is satisfied.

We are now ready to prove (a). By Lemma 25,

E[x2
j ] ≤

(
Σ−1

j,j + |Vj,j |
)2 E[(x∗

j )
2]

D
(p+1)
j,j

+ ∥[V]j∥22 max
k∈[n]

E[(x∗
k)

2]

D
(p+1)
k,k

+ ∥[V]j∥1
(
∥[V]j∥1 + 2Σ−1

j,j

) C2
1

n2
.

6Note that in (b), the factor (1− ϵ) is needed to ensure (d) is true at time p+ 1.
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By Lemma 15, |Vj,j | ≤ h6, ∥[V]j∥22 ≤ ∥[V]j∥21 ≤ h2
5, so

E[x2
j ] ≤

(
1

1− ℓ
+ h6

)2 E[(x∗
j )

2]

(D
(p+1)
j,j )2

+ h2
5 max
k∈[n]

E[(x∗
k)

2]

(D
(p+1)
k,k )2

+ h3.

By (d), maxk∈[n]
E[(x∗

k)
2]

(D
(p+1)
k,k )2

≤ bκλ, so for any j /∈ S with E[(x∗
j )

2] =
E[(x∗

j )
2]

(D
(p+1)
j,j )2

< bλ, we have

E[x2
j ] ≤

(
1

1− ℓ
+ h6

)2

bλ+ h2
5bκλ+ h3.

By using large enough sample, with high probability, the empirical estimation

Ê[x2
j ] ≤ E[x2

j ] +
1

100
λ ≤ λ

where the last step is by condition (54).

As for (b), by Lemma 25 we have

E[x2
j ] ≥

(
Σ−1

j,j − |Vj,j |
)2 E[(x∗

j )
2]

(D
(p+1)
j,j )2

− ∥[V]j∥22 max
k∈[n]

E[(x∗
k)

2]

(D
(p+1)
k,k )2

−
(
C2

1

n2
∥[V]j∥1(∥[V]j∥1 + 2Σ−1

j,j ) +
2(α+ ρ)C1

n
Σ−1

j,j

)

≥
(
1

u
− h6

)2 E[(x∗
j )

2]

(D
(p+1)
j,j )2

− h2
5 max
k∈[n]

E[(x∗
k)

2]

(D
(p+1)
k,k )2

− h4.

The last step uses that Σ−1
j,j ≤ u, which is by the initial condition assumed and that it is not updated

for j ̸∈ S. Putting in the bound that E[(x∗
k)

2]

(D
(p+1)
k,k )2

≤ bκλ, then for any j /∈ S with E[(x∗
j )

2] =

E[(x∗
j )

2]

(D
(p+1)
j,j )2

≥ (1− ϵ)bκλ, we have

E[x2
j ] ≥

(
1

u
− h6

)2

(1− ϵ)bκλ− h2
5bκλ− h4.

Again, use large enough sample to ensure that with high probability

Ẽ[x2
j ] ≥ E[x2

j ]−
1

100
λ ≥ λ

where the last step follows from condition (55). This completes the proof of the induction.

We now prove the statements of the lemma. The statement about the output follows from the above
claims. What is left is to prove that mj(j ∈ S) approximates E[(x∗

j )
2] well. Since mj for j ∈ S is

updated along with Dj,j , we only need to check the right after adding j to S, the statement holds.
Suppose the time point is p, we have

E[x2
j ] ≤

(
1

1− ℓ
+ h6

)2 E[(x∗
j )

2]

(D
(p)
j,j )

2
+ h2

5 max
k∈[n]

E[(x∗
k)

2]

(D
(p)
k,k)

2
+ h3.

Since j is in S, by the claims (c)(d) we have

max
k∈[n]

E[(x∗
k)

2]

(D
(p)
k,k)

2
≤ bκλ(p) ≤ κ

E[(x∗
j )

2]

(D
(p)
j,j )

2
.

Since N is large enough so that

E[x2
j ] ≤ E[(x∗

j )
2]

(
1 +

1

200

)
.

Combined these with the condition (56), we have

mj ≤

((
1

1− ℓ
+ h6

)2

+ κh2
5 +

1

100

)
E[(x∗

j )
2]

(Dj,j)2
.

The upper bound on mj can be bounded similarly. This completes the proof of the lemma.
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The following is the lemma used in the proof of Lemma 24.

Lemma 25 (Estimate of feature weight). Suppose |ξi| ≤ ρ < α for any example and every i ∈ [n],
and suppose Σ ⪰ 1

2I. Then

E[x2
i ] ≥

(
Σ−1

i,i − |Vi,i|
)2 E[(x∗

i )
2]− ∥[V]i∥22 max

j∈[n]
E[(x∗

j )
2]

−
(
C2

1

n2
∥[V]i∥1(∥[V]i∥1 + 2Σ−1

i,i ) +
2(α+ ρ)C1

n
Σ−1

i,i

)
E[x2

i ] ≤
(
Σ−1

i,i + |Vi,i|
)2 E[(x∗

i )
2] + ∥[V]i∥22 max

j∈[n]
E[(x∗

j )
2] + ∥[V]i∥1

(
∥[V]i∥1 + 2Σ−1

i,i

) C2
1

n2
.

Proof of Lemma 25. By the decoding rule,

xi =
[
ϕα(A

†[A∗x∗ + ν])
]
i

=
[
ϕα

((
Σ−1 +V

)
x∗ + ξ

)]
i
.

Let [V]i = v and Σ−1
i,i = σ, then we can rewrite above as

xi = ϕα(σx
∗
i + ⟨v, x∗⟩+ ξi)

which implies that

σx∗
i + ⟨v, x∗⟩ − ρ− α ≤ xi ≤ |σx∗

i + ⟨v, x∗⟩| . (58)

First, consider the lower bound.

E[x2
i ] ≥ E [(σx∗

i + ⟨v, x∗⟩ − ρ− α)ϕα(σx
∗
i + ⟨v, x∗⟩+ ξi)]

The following simple lemma is useful.

Claim 26. Let χ be a variable such that |χ| ≤ α, then for every w ∈ Rn, k ∈ [n],

E[x∗
kϕα(⟨w, x∗⟩+ χ)] ≤ |wk|E[(x∗

k)
2] +

C2
1

n2

∑
j ̸=k

|wj | (59)

≤ |wk|E[(x∗
k)

2] +
C2

1

n2
∥w∥1. (60)

Proof. The proof is a direct observation that when |χ| < α,

ϕα(⟨w, x⟩+ χ) ≤ |⟨w, x⟩| ≤ ⟨|w|, x⟩

where |w| is the entry wise absolute value.

Therefore, we can obtain the following bounds.

(1). By (16) in Lemma 12, we have

E[x∗
iϕα(σx

∗
i + ⟨v, x∗⟩+ ξi)] ≥ Σ−1

i,i E
[
(x∗

i )
2
]
− (α+ ρ)C1

n
− E

[
(x∗

i )
2
]
|Vi,i| −

C2
1

n2

∥∥∥[V]
i
∥∥∥
1
,

(2). By (60) in the above claim,

E[x∗
jϕα(σx

∗
i + ⟨v, x∗⟩+ ξi)] ≤ |vj |E[(x∗

j )
2] +

C2
1

n2
(∥v∥1 + σ),

(3). By (58), for j ̸= i,

E[ϕα(σx
∗
i + ⟨v, x∗⟩+ ξi)] ≤ E[|σx∗

i + ⟨v, x∗⟩|] ≤ (σ + ∥v∥1)C1

n
.
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Putting together, we can obtain

E[x2
i ] ≥

(
Σ−1

i,i − |Vi,i|
)2 E[(x∗

i )
2]− ∥[V]i∥22 max

j∈[n]
E[(x∗

j )
2]

−
(
C2

1

n2
∥[V]i∥1(∥[V]i∥1 + 2Σ−1

i,i ) +
2(α+ ρ)C1

n
Σ−1

i,i

)
.

Second, we proceed to the upper bound. Similarly as the lower bound, by (58), we have

E[x2
i ] ≤ E

(|vi|+ σ)x∗
i +

∑
j ̸=i

|vj |x∗
j

ϕα(σx
∗
i + ⟨v, x∗⟩+ ξi)


= (|vi|+ σ)E[x∗

iϕα(σx
∗
i + ⟨v, x∗⟩+ ξi)] +

∑
j ̸=i

|vj |E[x∗
jϕα(σx

∗
i + ⟨v, x∗⟩+ ξi)].

For the first summand, same as in (2), by (60) in the above claim we get

E[x∗
iϕα(σx

∗
i + ⟨v, x∗⟩+ ξi)] ≤ (σ + |vi|)E[(x∗

i )
2] +

C2
1

n2
∥v∥1,

E[x∗
jϕα(σx

∗
i + ⟨v, x∗⟩+ ξi)] ≤ |vj |E[(x∗

j )
2] +

C2
1

n2
(∥v∥1 + σ).

Therefore, we get

E[x2
i ] ≤

(
Σ−1

i,i + |Vi,i|
)2 E[(x∗

i )
2] + ∥[V]i∥1(∥[V]i∥1 + 2Σ−1

i,i )
C2

1

n2
+ ∥[V]i∥22 max

j∈[n]
E[(x∗

j )
2].

which completes the proof.

C.4 Main theorem

Theorem 18 (Main: Equilibration). If there exists an absolute constant G such that Assumption
(A1)-(A3) and (N1) are satisfied with l = 1/50, C3

1 ≤ Gc22n, max
{
Cν , ∥N(0)∥∞

}
≤ Gc42

C5
1n∥(A∗)†∥∞

,

and additionally Σ(0) ⪯ (1 − ℓ)I, and E ≥ 0 entry-wise, then there exist α, η, T, λ such that
for sufficiently small ϵ > 0 and sufficiently large N = poly(n,m, 1/ϵ, 1/δ) the following hold with
probability at least 1−δ: Algorithm 4 outputs a solution A = A∗D(Σ+E)+N where Σ ⪰ (1−ℓ)I
is diagonal, ∥E∥s ≤ γℓ is off-diagonal, ∥N∥∞ ≤ 2∥N(0)∥∞, and D is diagonal and satisfies

maxi∈[n]
1

D2
i,i
E[(x∗

i )
2]

minj∈[n]
1

D2
j,j

E[(x∗
j )

2]
≤ 2.

If Assumption (A1)-(A3) and (N2) are satisfied with the same parameters except

max
{
Cν , ∥N(0)∥∞

}
≤ min

{√
Gc42
C5

1n
1

∥(A∗)†∥∞
,

Gc22
C3

1∥(A∗)†∥∞

}
, then the same guarantees

hold.

Proof of Theorem 18. The theorem follows from Lemma 24 (taking union bound over all the itera-
tions and setting a proper δ), if the conditions are satisfied. So in the following, we first specify the
parameters and then verify the conditions in Lemma 19 and Lemma 24.

Recall that ℓ = 1/50. Define u = 1 + ℓ, γ = 3/2, β = 4, κ = 2, b = 3/4, and let ϵ < 1/1000.

Conditions in Lemma 19. For (39), we need to compute riRi and the the third term. Note that
by the induction in Lemma 24, the mj is an good approximation of E[(x∗

j )
2]/(Dj,j)

2. Furthermore,
when Lemma 19 is applied in Lemma 24, it is applied on the ground-truth matrix (A∗)′ = A∗D
and (x∗

j )
′ = x∗

j/Dj,j , so mj is a good approximation of E[((x∗
j )

′)2]. Then

riRi =
3E[((x∗

i )
′)2]

5mi
≤ 3

5
((

1
u − h6

)2 − κh2
5 − 1

100

) .
43



For the third term, first note that C3
1 ≤ Gc22n, and thus C2

1 ≤ Gc2n by C1 > c2. Furthermore,
ri = O(1/mi) = O(n/c2) for i ∈ S. Plugging in the parameters, we know that the third term is
less than 1/1000 when G is sufficiently small. Then (39) can be verified by plugging the parameters.

Similarly, for (40), we can compute riRi and let G small enough so that the second term is less than
1/1000, and then verify the condition.

For (41) (42) and (43), we need to bound h1 and h2, which in turn relies on r and rR. Since for i ∈ S,
ri = O(n/c2), r = O(n/c2). Then similar to the argument as above, h1 < 2/10000 when G is
sufficiently small. when Lemma 19 is applied in Lemma 24, it is applied on the ground-truth matrix
(A∗)′ = A∗D and (x∗

j )
′ = x∗

j/Dj,j . By the induction claims there, maxj∈[n] E[((x∗
j )

′)2] differ
from minj∈S E[((x∗

j )
′)2] by a factor of at most κ, so rR ≤ 3κ

5 . So the first term can be computed.
The second term is less than 1/10000 when G is small enough. Then h2 can be computed. And the
conditions can be verified.

Condition (44) is true since max {Cν , ∥N∥∞} = O(
c22

C3
1∥(A∗)†∥∞

). Condition (45) is true by setting

ϵ′ < U/8 and by Ua < U/8 and U = ∥N∥∞ ≤ O(
c22

C3
1∥(A∗)†∥∞

). Similarly, condition (45) is true
by setting ϵ′ < U/8 and by Un < U/8 and ∥N∥∞ is sufficiently small.

Conditions in Lemma 24. First, consider (56) and (57). As mentioned above, since C3
1 = O(c22n)

and C2
1 = O(c2n), then h3 and h4 can be made sufficiently small to satisfy the conditions. (54) and

(55) can be verified by plugging (56) and (57) and the assumption that λ ≥ mini∈[n] E[(x∗
i )

2]/κ.

This completes the proof.

D Auxiliary lemmas for solving recurrence

The following lemmas are used when solving recurrence in our analysis.

Lemma 27 (Coupling update rule). Let {at}∞t=0, {bt}∞t=0 be sequences of non-negative numbers
such that for fixed values h ≥ 0, η ∈ [0, 1], R > 4r > 0:

at+1 ≤ (1− η)at + ηrbt + ηh

bt+1 ≤ (1− η)bt +
η

R
at + ηh

Then the following two properties holds:

1.

∀t ≥ 0, at + bt ≤ a0 + b0 +
Rr + 2R+ 1

R− r
h

2. For all ϵ > 0, when t ≥ ln a0+b0
8ηϵ , we have:

at ≤
R(r + 1)

R− r
h+ ϵ, bt ≤

R+ 1

R− r
h+ ϵ

Proof of Lemma 27. Observe that the update rule is equivalent to(
at+1 −

R(r + 1)

R− r
h

)
≤ (1− η)

(
at −

R(r + 1)

R− r
h

)
+ ηr

(
bt −

R+ 1

R− r
h

)
(
bt+1 −

R+ 1

R− r
h

)
≤ (1− η)

(
bt −

R+ 1

R− r
h

)
+

η

R

(
at −

R(r + 1)

R− r
h

)

Therefore, define ct = at − R(r+1)
R−r h and dt = bt − R+1

R−rh, we can rewrite above as:

ct+1 ≤ (1− η)ct + ηrdt

dt+1 ≤ (1− η)dt +
η

R
ct
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Since we just need to upper bound ct, dt. without lose of generality, we can assume that

ct+1 = (1− η)ct + ηrdt

dt+1 = (1− η)dt +
η

R
ct

Which implies that(
ct+1 +

√
R

r
dt+1

)
=

(
1− η + η

√
r

R

)(
ct +

√
R

r
dt

)
(
ct+1 −

√
R

r
dt+1

)
=

(
1− η − η

√
r

R

)(
ct −

√
R

r
dt

)

Which can be simplified to(
ct +

√
R

r
dt

)
=

(
1− η + η

√
r

R

)t
(
c0 +

√
R

r
d0

)
(
ct −

√
R

r
dt

)
=

(
1− η − η

√
r

R

)t
(
c0 −

√
R

r
d0

)

Therefore, we can solve

ct =
1

2

[(
1− η + η

√
r

R

)t

+

(
1− η − η

√
r

R

)t
]
c0+

1

2

√
R

r

[(
1− η + η

√
r

R

)t

−
(
1− η − η

√
r

R

)t
]
d0

dt =
1

2

√
r

R

[(
1− η + η

√
r

R

)t

−
(
1− η − η

√
r

R

)t
]
c0+

1

2

[(
1− η + η

√
r

R

)t

+

(
1− η − η

√
r

R

)t
]
d0

Observe that for every t ≥ 0, a ≥ b ≥ 0, at − bt ≤ (a− b)tat−1

Which implies:(
1− η + η

√
r

R

)t

−
(
1− η − η

√
r

R

)t

≤ 2tη

√
r

R

(
1− η + η

√
r

R

)t−1

Therefore, when c0, d0 ≥ 0,

ct ≤
(
1− η + η

√
r

R

)t

c0 + tη

(
1− η + η

√
r

R

)t−1

d0

Moreover,

dt ≤
r

R
η

(
1− η + η

√
r

R

)t

c0 +

(
1− η + η

√
r

R

)t

d0

Taking the optimal t, we obtain ct + dt ≤ c0 + d0, which implies that

at + bt ≤ a0 + b0 +
Rr + 2R+ 1

R− r
h

On the other hand, when t ≥ ln c0+d0

8ηϵ , ct, dt ≤ ϵ, which implies that

at ≤
R(r + 1)

R− r
h+ ϵ, bt ≤

R+ 1

R− r
h+ ϵ.
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Lemma 28 (Simple coupling). Let {at}∞t=0, {bt}∞t=0 be sequences of non-negative numbers such
that for fixed values h1, h2 ≥ 0, η ∈ [0, 1], r > 0:

at+1 ≤ (1− η)at + ηh1

bt+1 ≤ (1− η)bt + ηsat + ηh2

Then
at ≤ ua := max {a0, h1} ,
bt ≤ max {b0, h2 + sua} .

Proof. We have
(at+1 − h1) ≤ (1− η)(at − h1)

(bt+1 − h2) ≤ (1− η)(bt − h2) + ηsat

Solving the first one gives
at ≤ ua := max {a0, h1} .

Then
(bt+1 − h2) ≤ (1− η)(bt − h2) + ηsua

leads to
bt ≤ max {b0, h2 + sua} .

Lemma 29 (Simple recursion). Let {at}∞t=0 be a sequences of non-negative numbers such that for
fixed values h ≥ 0, η ∈ [0, 1],

at+1 ≤ (1− η)at + ηh.
Then,

at ≤ (1− η)ta0 + h,

and thus for t ≥ ln(ϵ/a0)
ln(1−η) , we have

at ≤ ϵ+ h.

Proof. We will prove by induction that at ≤ (1 − η)ta0 + h, which implies the statement of the
lemma. The base case is trivial, so we proceed to the induction:

at+1 ≤ (1− η)
(
(1− η)ta0 + h

)
+ ηh ≤ (1− η)t+1a0 + h

as we need.

E Detailed discussion about related work

E.1 Non-negative matrix factorization

The area of non-negative matrix factorization (henceforth NMF) has a rich empirical history, starting
with the work of [LS99]. In that paper, the authors propose two algorithms based on alternating
minimization, one in KL divergence norm, and the other in Frobenius norm. They observe that
these heuristics work quite well in practice, but no theoretical understanding of it is provided.

On the theoretical side, [AGKM12] provide a fixed-parameter tractable algorithm for NMF: namely
when if the matrix A ∈ Rm×nand X ∈ Rn×N , they provide an algorithm that runs in time (mN)n.
This is prohibitive unless n is extremely small. Furthermore, the algorithm is based on routines from
algebraic geometry, so its tolerance to noise is fairly weak. More precisely, if there are matrices A∗,
X∗, s.t.

∥Y −A∗X∗∥F ≤ ϵY
their algorithm produces matrices A,X, s.t.

∥Y −A∗X∗∥F ≤ O(ϵ1/2n1/4)Y

They further provide matching hardness results: namely they show there is no algorithm running
in time (mN)o(n) unless there is a sub-exponential running time algorithm for 3-SAT. They also
study the problem under separability assumptions about the feature matrix. [BGKP16] studies the
problem under heavy noise setting, but also needs assumptions related to separability, such as the
existence of dominant features. Also, their noise model is different from ours.
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E.2 Topic modeling

A closely related problem is topic modeling. Topic models are a generative model for text data, using
the common bag-of-words assumption. In this case, the columns of the matrix A∗ (which have norm
1) can naturally be interpreted as topics, with the entries being the emmision probabilities of words in
that topic. The vectors x∗ in this case also will have norm 1, and can be viewed as distributions over
topics. In this way, y∗ = A∗x∗ can be viewed as the vector describing the emission probabilities of
words in a given document: first a topic i is selected according to the distribution x∗, then a word
is selected from topic i according to the distribution in column [A∗]i. There also exist work that
assume x∗

i ∈ [0, 1] and are independent (e.g., [ZX12]), which is closely related to our model.

The distinction from NMF is that when documents are fairly short, the empirical frequencies of the
words in the document might be very far from y∗. For this reason, typicall the algorithms with prov-
able guarantees look at the empirical covariance matrix of the words, which will concentrate to the
true one when the number of documents grows, even if the documents are very short. This, however,
results in algorithms that scale quadratically in the vocabulary size, which often is prohibitive in
practice. Also note that since x∗ is assumed to have norm 1 in topic modeling, it does not satisfy
our assumption (A2). However, there also exist work on topic modeling [ZX12] that do not restrict
x∗ is assumed to have norm 1 and can satisfying our assumption.

There is a rich body of empirical work on topic models, starting from the seminal work on LDA due
to [BNJ03]. Typically in empirical papers the matrices A∗, as well as the vectors x∗ are learned
using variational inference, which can be interpreted as a kind of alternating minimization in KL
divergence norm, and in the limit of infinite-length documents converges to the [LS99] updates
([AR15]).

From the theoretical side, there was a sequence of works by [AGM12],[AGH+13], as well as
[AHJK13], [DRIS13], [DRIS14] and [BBK14]. All of these works are based on either spectral or
combinatorial (overlapping clustering) approaches, and need certain “non-overlapping” assumptions
on the topics. For example, [AGM12] and [AGH+13] assume that the topic-word matrix contains
“anchor words”. This means that each topic has a word which appears in that topic, and no other.
[AHJK13] on the other hand work with a certain expansion assumption on the word-topic graph,
which says that if one takes a subset S of topics, the number of words in the support of these topics
should be at least |S|+ smax, where smax is the maximum support size of any topic.

Finally, in the paper [AR15] a version of the standard variational inference updates is analyzed in
the limit of infinite length documents. The algorithm there also involves a step of “decoding”, which
recovers correctly the support of a given sample, and a “gradient descent” step, which updates A∗ in
the direction of the gradient of a KL-divergence based objective function. However, [AR15] requires
quite strong assumptions on both the warm start, and the amount of “non-overlapping” of the topics
in the topic-word matrix.

E.3 ICA

In the problem of independent component analysis (henceforth ICA, also known as blind-source
separation), one is given samples y = A∗x∗ + η, where the distribution on the samples x∗ is
independent for each coordinate, the 4-th moment of x∗

i is strictly smaller than that of a Gaussian
and A∗ has full rank. The classic papers [Com94] and [FJK96] solved this problem in the noiseless
case, with an approach based on cumulants, and [AGMS12] solved it in another special case, when
the noise η is Gaussian (albeit with an unknown covariance matrix).

Our approach is significantly more robust to noise than these prior approaches, since it can handle
both adversarial noise and zero mean noise. This is extremely important in practice, as often the
nature of the noise may not be precisely known, let alone exactly Gaussian.

E.4 Non-convex optimization via gradient descent

The framework of having a “decoding” for the samples, along with performing a gradient descent-
like update for the model parameters has proven successful for dictionary learning as well, which is
the problem of recovering the matrix A∗ from samples y = A∗x∗+η, where the matrix A∗ ∈ Rm×n

is typically long (i.e. n≫ m) and x∗ is sparse. (No non-negativity constraints are imposed on either
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A or x∗.) In this scenario, the columns of A∗ are thought of as a dictionary, and each sample y is
generated as a (noisy) sparse combination of the columns of the dictionary.

The original empirical work which proposed an algorithm like this (in fact, it suggested that the V1
layer processes visual signals in the same manner) was due to [OF97]. In fact, it is suggest that
similar families of algorithms based on “decoding” and gradient-descent are neurally plausible as
mechanisms for a variety of tasks like clustering, dimension-reduction, NMF, etc. ([PC15a, PC15b,
HPC14, PC14])

A theoretical analysis of it came latter due to [AGMM15]. They showed that with a suitable warm
start, the gradient calculated from the “decoding” of the samples is sufficiently correlated with the
gradient calculated with the correct value x∗, therefore allowing them to show the algorithm con-
verges to a matrix A close to the ground truth A∗. However, the assumption made in [AGMM15] is
that the columns of A∗ are incoherent, which means that they have l2 norm bounded by 1, and inner
products bounded by O( 1√

m
). 7

The above techniques are not directly applicable to our case, as we don’t wish to have any as-
sumptions on the matrix A∗. Additionally, the incoherence assumptions on the matrix A∗ used in
[AGMM15], in the case when A∗ needs to be non-negative and has l1 column-wise norm would
effectively imply that the columns of A∗ have very small overlap.

7This is satisfied when the columns are random unit vectors, and intuitively says the columns of the dictio-
nary are not too correlated.
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