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Abstract

Neuroscience experiments often require training animals to perform tasks designed
to elicit various sensory, cognitive, and motor behaviors. Training typically involves
a series of gradual adjustments of stimulus conditions and rewards in order to bring
about learning. However, training protocols are usually hand-designed, relying
on a combination of intuition, guesswork, and trial-and-error, and often require
weeks or months to achieve a desired level of task performance. Here we combine
ideas from reinforcement learning and adaptive optimal experimental design to
formulate methods for adaptive optimal training of animal behavior. Our work
addresses two intriguing problems at once: first, it seeks to infer the learning rules
underlying an animal’s behavioral changes during training; second, it seeks to
exploit these rules to select stimuli that will maximize the rate of learning toward a
desired objective. We develop and test these methods using data collected from rats
during training on a two-interval sensory discrimination task. We show that we can
accurately infer the parameters of a policy-gradient-based learning algorithm that
describes how the animal’s internal model of the task evolves over the course of
training. We then formulate a theory for optimal training, which involves selecting
sequences of stimuli that will drive the animal’s internal policy toward a desired
location in the parameter space. Simulations show that our method can in theory
provide a substantial speedup over standard training methods. We feel these results
will hold considerable theoretical and practical implications both for researchers in
reinforcement learning and for experimentalists seeking to train animals.

1 Introduction

An important first step in many neuroscience experiments is to train animals to perform a particular
sensory, cognitive, or motor task. In many cases this training process is slow (requiring weeks to
months) or difficult (resulting in animals that do not successfully learn the task). This increases the
cost of research and the time taken for experiments to begin, and poorly trained animals—for example,
animals that incorrectly base their decisions on trial history instead of the current stimulus—may
introduce variability in experimental outcomes, reducing interpretability and increasing the risk of
false conclusions.

In this paper, we present a principled theory for the design of normatively optimal adaptive training
methods. The core innovation is a synthesis of ideas from reinforcement learning and adaptive
experimental design: we seek to reverse engineer an animal’s internal learning rule from its observed
behavior in order to select stimuli that will drive learning as quickly as possible toward a desired
objective. Our approach involves estimating a model of the animal’s internal state as it evolves over
training sessions, including both the current policy governing behavior and the learning rule used to
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Figure 1: (A) Stimulus space for a 2AFC discrimination task, with optimal separatrix between
correct “left” and “right” choices shown in red. Filled circles indicate a “reduced” set of stimuli
(consisting of those closest to the decision boundary) which have been used in several prominent
studies [3, 6, 9]. (B) Schematic of active training paradigm. We infer the animal’s current weights
wt and its learning rule (“RewardMax”), parametrized by φ, and use them to determine an optimal
stimulus xt for the current trial (“AlignMax”), where optimality is determined by the expected weight
change towards the target weights wgoal.

modify this policy in response to feedback. We model the animal as using a policy-gradient based
learning rule [15], and show that parameters of this learning model can be successfully inferred from
a behavioral time series dataset collected during the early stages of training. We then use the inferred
learning rule to compute an optimal sequence of stimuli, selected adaptively on a trial-by-trial basis,
that will drive the animal’s internal model toward a desired state. Intuitively, optimal training involves
selecting stimuli that maximally align the predicted change in model parameters with the trained
behavioral goal, which is defined as a point in the space of model parameters. We expect this research
to provide both practical and theoretical benefits: the adaptive optimal training protocol promises a
significantly reduced training time required to achieve a desired level of performance, while providing
new scientific insights into how and what animals learn over the course of the training period.

2 Modeling animal decision-making behavior

Let us begin by defining the ingredients of a generic decision-making task. In each trial, the animal
is presented with a stimulus x from a bounded stimulus space X , and is required to make a choice
y among a finite set of available responses Y . There is a fixed reward map r : {X,Y } → R. It
is assumed that this behavior is governed by some internal model, or the psychometric function,
described by a set of parameters or weights w. We introduce the “y-bar” notation ȳ(x) to indicate the
correct choice for the given stimulus x, and let Xy denote the “stimulus group” for a given y, defined
as the set of all stimuli x that map to the same correct choice y = ȳ(x).

For concreteness, we consider a two-alternative forced-choice (2AFC) discrimination task where the
stimulus vector for each trial, x = (x1, x2), consists of a pair of scalar-valued stimuli that are to be
compared [6, 8, 9, 16]. The animal should report either x1 > x2 or x1 < x2, indicating its choice
with a left (y = L) or right (y = R) movement, respectively. This results in a binary response space,
Y = {L,R}. We define the reward function r(x, y) to be a Boolean function that indicates whether
a stimulus-response pair corresponds to a correct choice (which should therefore be rewarded) or not:

r(x, y) =

{
1 if {x1 > x2, y = L} or {x1 < x2, y = R};
0 otherwise.

(1)

Figure 1A shows an example 2-dimensional stimulus space for such a task, with circles representing
a discretized set of possible stimuli X , and the desired separatrix (the boundary separating the two
stimulus groups XL and XR) shown in red. In some settings, the experimenter may wish to focus on
some “reduced” set of stimuli, as indicated here by filled symbols [3, 6, 9].

We model the animal’s choice behavior as arising from a Bernoulli generalized linear model (GLM),
also known as the logistic regression model. The choice probabilities for the two possible stimuli at
trial t are given by

pR(xt,wt) =
1

1 + exp(−g(xt)>wt)
, pL(xt,wt) = 1− pR(xt,wt) (2)
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where g(x) = (1,x>)> is the input carrier vector, and w = (b,a>)> is the vector of parameters or
weights governing behavior. Here b describes the animal’s internal bias to choosing “right” (y = R),
and a = (a1, a2) captures the animal’s sensitivity to the stimulus.1

We may also incorporate the trial history as additional dimensions of the input governing the animal’s
behavior; humans and animals alike are known to exhibit history-dependent behavior in trial-based
tasks [1, 3, 5, 7]. Based on some preliminary observations from animal behavior (see Supplementary
Material for details), we encode the trial history as a compressed stimulus history, using a binary
variable εȳ(x) defined as εL = −1 and εR = +1. Taking into account the previous d trials, the input
carrier vector and the weight vector become:

g(xt)→ (1,x>t , εȳ(xt−1), · · · , εȳ(xt−d))
>, wt → (b,a>, h1, · · · , hd). (3)

The history dependence parameter hd describes the animal’s tendency to stick to the correct answer
from the previous trial (d trials back). Because varying number of history terms d gives a family of
psychometric models, determining the optimal d is a well-defined model selection problem.

3 Estimating time-varying psychometric function

In order to drive the animal’s performance toward a desired objective, we first need a framework to
describe, and accurately estimate, the time-varying model parameters of the animal behavior, which
is fundamentally non-stationary while training is in progress.

3.1 Constructing the random walk prior

We assume that the single-step weight change at each trial t follows a random walk, wt − wt−1 = ξt,
where ξt ∼ N (0, σ2

t ), for t = 1, · · · , N . Let w0 be some prior mean for the initial weight. We
assume σ2 = · · · = σN = σ, which is to believe that although the behavior is variable, the variability
of the behavior is a constant property of the animal. We can write this more concisely using a state-
space representation [2, 11], in terms of the vector of time-varying weights w = (w1, w2, · · · , wN )>

and its prior mean w0 = w01:

D(w −w0) = ξ ∼ N (0,Σ), (4)

where Σ = diag(σ2
1 , σ

2, · · · , σ2) is the N × N covariance matrix, and D is the sparse banded
matrix with first row of an identity matrix and subsequent rows computing first order differences.
Rearranging, the full random walk prior on the N -dimensional vector w is

w ∼ N (w0, C), where C−1 = D>Σ−1D. (5)

In many practical cases there are multiple weights in the model, say K weights. The full set of
parameters should now be arranged into an N ×K array of weights {wti}, where the two subscripts
consistently indicate the trial number (t = 1, · · · , N ) and the type of parameter (i = 1, · · · ,K),
respectively. This gives a matrix

W = {wti} = (w∗1, · · · ,w∗i, · · · ,w∗K) = (w1∗, · · · ,wt∗, · · · ,wN∗)
> (6)

where we denote the vector of all weights at trial t as wt∗ = (wt1, wt2, · · · , wtK)>, and the time
series of the i-th weight as w∗i = (w1i, w2i, · · · , wNi)>.

Let w = vec(W ) = (w>∗1, · · · ,w>∗K)> be the vectorization of W , a long vector with the columns
of W stacked together. Equation (5) still holds for this extended weight vector w, where the
extended D and Σ are written as block diagonal matrices D = diag(D1, D2, · · · , DK) and Σ =
diag(Σ1,Σ2, · · · ,ΣK), respectively, where Di is the weight-specific N ×N difference matrix and
Σi is the corresponding covariance matrix. Within a linear model one can freely renormalize the units
of the stimulus space in order to keep the sizes of all weights comparable, and keep all Σi’s equal.
We used a transformed stimulus space in which the center is at 0 and the standard deviation is 1.

1We use a convention in which a single-indexed tensor object is automatically represented as a column vector
(in boldface notation), and the operation (·, ·, · · · ) concatenates objects horizontally.
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3.2 Log likelihood

Let us denote the log likelihood of the observed data by L =
∑N
t=1 Lt, where Lt = log p(yt|xt,wt∗)

is the trial-specific log likelihood. Within the binomial model we have

Lt = (1− δyt,R) log(1− pR(xt,wt∗)) + δyt,R log pR(xt,wt∗). (7)

Abbreviating pR(xt,wt∗) = pt and pL(xt,wt∗) = 1− pt, the trial-specific derivatives are solved to
be ∂Lt/∂wt∗ = (δyt,R − pt) g(xt) ≡∆t and ∂2Lt/∂wt∗∂wt∗ = −pt(1− pt)g(xt)g(xt)

> ≡ Λt.
Extension to the full weight vector is straightforward because distinct trials do not interact. Working
out with the indices, we may write

∂L

∂w
= vec([∆1, · · · ,∆N ]>),

∂2L

∂w2
=


M11 M12 · · · M1K

M21 M22 M2K

...
. . .

...
MK1 MK2 · · · MKK

 (8)

where the (i, j)-th block of the full second derivative matrix is an N ×N diagonal matrix defined by
Mij = ∂2L/∂w∗i∂w∗j = diag((Λ1)ij , · · · , (Λt)ij , · · · , (ΛN )ij). After this point, we can simplify
our notation such that wt = wt∗. The weight-type-specific w∗i will no longer appear.

3.3 MAP estimate of w

The posterior distribution of w is a combination of the prior and the likelihood (Bayes’ rule):

log p(w|D) ∼
(

1

2
log
∣∣C−1

∣∣− 1

2
(w −w0)>C−1(w −w0)

)
+ L. (9)

We can perform a numerical maximization of the log posterior using Newton’s method (we used the
Matlab function fminunc), knowing its gradient j and the hessian H explicitly:

j =
∂(log p)

∂w
= −C−1(w −w0) +

∂L

∂w
, H =

∂2(log p)

∂w2
= −C−1 +

∂2L

∂w2
. (10)

The maximum a posteriori (MAP) estimate ŵ is where the gradient vanishes, j(ŵ) = 0. If we work
with a Laplace approximation, the posterior covariance is Cov = −H−1 evaluated at w = ŵ.

3.4 Hyperparameter optimization

The model hyperparameters consist of σ1, governing the variance of w1, the weights on the first trial
of a session, and σ, governing the variance of the trial-to-trial diffusive change of the weights. To set
these hyperparameters, we fixed σ1 to a large default value, and used maximum marginal likelihood
or “evidence optimization” over a fixed grid of σ [4, 11, 13]. The marginal likelihood is given by:

p(y|x, σ) =

∫
dwp(y|x,w)p(w|σ) =

p(y|x,w)p(w|σ)

p(w|x,y, σ)
≈ exp(L) · N (w|w0, C)

N (w|ŵ,−H−1)
, (11)

where ŵ is the MAP estimate of the entire vector of time-varying weights and H is the Hessian of the
log-posterior over w at its mode. This formula for marginal likelihood results from the well-known
Laplace approximation to the posterior [11, 12]. We found the estimate not to be insensitive to σ1 so
long as it is sufficiently large.

3.5 Application

We tested our method using a simulation, drawing binary responses from a stimulus-free GLM
yt ∼ logistic(wt), where wt was diffused as wt+1 ∼ N (wt, σ

2) with a fixed hyperparameter
σ. Given the time series of responses {yt}, our method captures the true σ through evidence
maximization, and provides a good estimate of the time-varying w = {wt} (Figure 2A). Whereas the
estimate of the weight wt is robust over independent realizations of the responses, the instantaneous
weight changes ∆w = wt+1−wt are not reproducible across realizations (Figure 2B). Therefore it is
difficult to analyze the trial-to-trial weight changes directly from real data, where only one realization
of the learning process is accessible.
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Figure 2: Estimating time-varying model parameters. (A-B) Simulation: (A) Our method captures
the true underlying variability σ by maximizing evidence. (B) Weight estimates are accurate and
robust over independent realizations of the responses, but weight changes across realizations are
not reproducible. (C-E) From the choice behavior of a rat under training, we could (C) estimate the
time-varying weights of its psychometric model, and (D) determine the characteristic variability by
evidence maximization. (E) The number of history terms to be included in the model was determined
by comparing the BIC, using the early/mid/late parts of the rat dataset. Because log-likelihood is
calculated up to a constant normalization, both log-evidence and BIC are shown in relative values.

We also applied our method to an actual experimental dataset from rats during the early training
period for a 2AFC discrimination task, as introduced in Section 2 (using classical training methods
[3], see Supplementary Material for detailed description). We estimated the time-varying weights
of the GLM (Figure 2C), and estimated the characteristic variability of the rat behavior σrat = 2−7

by maximizing marginal likelihood (Figure 2D). To determine the length d of the trial history
dependence, we fit models with varying d and used the Bayesian Information Criterion BIC(d) =
−2 logL(d) +K(d) logN (Figure 2E). We found that animal behavior exhibits long-range history
depedence at the beginning of training, but this dependence becomes shorter as training progresses.
Near the end of the dataset, the behavior of the rat is best described drat = 1 (single-trial history
dependence), and we use this value for the remainder of our analyses.

4 Incorporating learning

The fact that animals show improved performance, as training progresses, suggests that we need a
non-random component in our model that accounts for learning. We will first introduce a simple
model of weight change based on the ideas from reinforcement learning, then discuss how we can
incorporate the learning model into our time-varying estimate method.

A good candidate model for animal learning is the policy gradient update from reinforcement learning,
for example as in [15]. There are debates as to whether animals actually learn using policy-based
methods, but it is difficult to define a reasonable value function that is consistent with our preliminary
observations of rat behavior (e.g. win-stay/lose-switch). A recent experimental study supports the
use of policy-based models in human learning behavior [10].

4.1 RewardMax model of learning (policy gradient update)

Here we consider a simple model of learning, in which the learner attempts to update its policy (here
the weight parameters in the model) to maximize the expected reward. Given some fixed reward
function r(x, y), the expected reward at the next-upcoming trial t is defined as

ρ(wt) =
〈
〈r(xt, yt)〉p(yt|xt,wt)

〉
PX(xt)

(12)

where PX(xt) reflects the subject animal’s knowledge as to the probability that a given stimulus x
will be presented at trial t, which may be dynamically updated. One way to construct the empirical
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Figure 3: Estimating the learning model. (A-B) Simulated learner with σsim = αsim = 2−7. (A) The
four weight parameters of the simulated model are successfully recovered by our MAP estimate with
the learning effect incorporated, where (B) the learning rate α is accurately determined by evidence
maximization. (C) Evidence maximization analysis on the rat training dataset reveals σrat = 2−6

and αrat = 2−10. Displayed is a color plot of log evidence on the hyperparameter plane (in relative
values). The optimal set of hyperparameters is marked with a star.

PX is to accumulate the stimulus statistics up to some timescale τ ≥ 0; here we restrict to the simplest
limit τ = 0, where only the most recent stimulus is remembered. That is, PX(xt) = δ(xt − xt−1).
In practice ρ can be evaluated at wt = wt−1, the posterior mean from previous observations.

Under the GLM (2), the choice probability is p(y|x,w) = 1/(1 + exp(−εyg(x)>w)), where
εL = −1 and εR = +1, trial index suppressed. Therefore the expected reward can be written out
explicitly, as well as its gradient with respect to w:

∂ρ

∂w
=
∑
x∈X

PX(x) f(x) pR(x,w) pL(x,w) g(x) (13)

where we define the effective reward function f(x) ≡
∑
y∈Y εyr(x, y) for each stimulus. In the

spirit of the policy gradient update, we consider the RewardMax model of learning, which assumes
that the animal will try to climb up the gradient of the expected reward by

∆wt = α
∂ρ

∂w

∣∣∣∣
t

≡ v(wt,xt;φ), (14)

where ∆wt = (wt+1 − wt). In this simplest setting, the learning rate α is the only learning
hyperparameter φ = {α}. The model can be extended by incorporating more realistic aspects of
learning, such as the non-isotropic learning rate, the rate of weight decay (forgetting), or the skewness
between experienced and unexperienced rewards. For more discussion, see Supplementary Material.

4.2 Random walk prior with drift

Because our observation of a given learning process is stochastic and the estimate of the weight
change is not robust (Figure 2B), it is difficult to test the learning rule (14) on any individual dataset.
However, we can still assume that the learning rule underlies the observed weight changes as

〈∆w〉 = v(w,x;φ) (15)

where the average 〈·〉 is over hypothetical repetitions of the same learning process. This effect of
non-random learning can be incorporated into our random walk prior as a drift term, to make a fully
Bayesian model for an imperfect learner. The new weight update prior is written as D(w −w0) =
v + ξ, where v is the “drift velocity” and ξ ∼ N (0,Σ) is the noise. The modified prior is

w −D−1v ∼ N (w0, C), C−1 = D>Σ−1D. (16)

Equations (9-10) can be re-written with the additional term D−1v. For the RewardMax model
v = α∂ρ/∂w, in particular, the first and second derivatives of the modified log posterior can be
written out analytically. Details can be found in Supplementary Material.

4.3 Application

To test the model with drift, a simulated RewardMax learner was generated, based on the same task
structure as in the rat experiment. The two hyperparameters {σsim, αsim} were chosen such that the
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resulting time series data is qualitatively similar to the rat data. The simulated learning model can be
recovered by maximizing the evidence (11), now with the learning hyperparameter α as well as the
variability σ. The solution accurately reflects the true αsim, shown where σ is fixed at the true σsim

(Figures 3A-3B). Likewise, the learning model of a real rat was obtained by performing a grid search
on the full hyperparameter plane {σ, α}. We get σrat = 2−6 and αrat = 2−10 (Figure 3C). 2

Can we determine whether the rat’s behavior is in a regime where the effect of learning dominates the
effect of noise, or vice versa? The obtained values of σ and α depend on our choice of units which
is arbitrary; more precisely, α ∼ [w2] and σ ∼ [w] where [w] scales as the weight. Dimensional
analysis suggests a (dimensionless) order parameter β = α/σ2, where β � 1 would indicate a regime
where the effect of learning is larger than the effect of noise. Our estimate of the hyperparameters
gives βrat = αrat/σ

2
rat ≈ 4, which leaves us optimistic.

5 AlignMax: Adaptive optimal training

Whereas the goal of the learner/trainee is (presumably) to maximize the expected reward, the trainer’s
goal is to drive the behavior of the trainee as close as possible to some fixed model that corresponds
to a desirable, yet hypothetically achievable, performance. Here we propose a simple algorithm that
aims to align the expected model parameter change of the trainee 〈∆wt〉 = v(wt,xt;φ) towards a
fixed goal wgoal. We can summarize this in an AlignMax training formula

xt+1 = argmax
x

(wgoal −wt)
> 〈∆wt〉 . (17)

Looking at Equations (13), (14) and (17), it is worth noting that g(x) puts a heavier weight on more
distinguishable or “easier” stimuli (exploitation), while pLpR puts more weight on more difficult
stimuli, with more uncertainty (exploration); an exploitation-exploration tradeoff emerges naturally.

We tested the AlignMax training protocol3 using a simulated learner with fixed hyperparameters
αsim = 0.005 and σsim = 0, using wgoal = (b, a1, a2, h)goal = (0,−10, 10, 0) in the current
paradigm. We chose a noise-free learner for clear visualization, but the algorithm works as well
in the presence of noise (σ > 0, see Supplementary Material for a simulated noisy learner). As
expected, our AlignMax algorithm achieves a much faster training compared to the usual algorithm
where stimuli are presented randomly (Figure 4). The task performance was measured in terms of the
success rate, the expected reward (12), and the Kullback-Leibler (KL) divergence. The KL divergence
is defined as DKL =

∑
x∈X PX(x)

∑
y∈Y p̂y(x) log(p̂y(x)/py(x)) where p̂y(x) = r(x, y) is the

“correct” psychometric function, and a smaller value of DKL indicates a behavior that is closer to
the ideal. Both the expected reward and the KL divergence were evaluated using a uniform stimulus
distribution PX(x). The low success rate is a distinctive feature of the adaptive training algorithm,
which selects adversarial stimuli such that the “lazy flukes” are actively prevented (e.g. such that a
left-biased learner wouldn’t get thoughtless rewards from the left side). It is notable that the AlignMax
training eliminates the bias b and the history dependence h (the two stimulus-independent parameters)
much more quickly compared to the conventional (random) algorithm, as shown in Figure 4A.

Two general rules were observed from the optimal trainer. First, while the history dependence h is
non-zero, AlignMax alternates between different stimulus groups in order to suppress the win-stay
behavior; once h vanishes, AlignMax tries to neutralize the bias b by presenting more stimuli from the
“non-preferred” stimulus group yet being careful not to re-install the history dependence. For example,
it would give LLRLLR... for an R-biased trainee. This suggests that a pre-defined, non-adaptive
de-biasing algorithm may be problematic as it may reinforce an unwanted history dependence (see
Supp. Figure S1). Second, AlignMax exploits the full stimulus space by starting from some “easier”
stimuli in the early stage of training (farther away from the true separatrix x1 = x2), and presenting
progressively more difficult stimuli (closer to the separatrix) as the trainee performance improves.
This suggests that using the reduced stimulus space may be suboptimal for training purposes. Indeed,
training was faster on the full stimulus plane, than on the reduced set (Figures 4B-4C).

2Based on a 2000-trial subset of the rat dataset.
3When implementing the algorithm within the current task paradigm, because of the way we model the

history variable as part of the stimulus, it is important to allow the algorithm to choose up to d+1 future stimuli,
in this case as a pair {xt+1,xt+2} , in order to generate a desired pattern of trial history.
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Figure 4: AlignMax training (solid lines) compared to a random training (dashed lines), for a
simulated noise-free learner. (A) Weights evolving as training progresses, shown from a simulated
training on the full stimulus space shown in Figure 1A. (B-C) Performances measured in terms of
the success rate (moving average over 500 trials), the expected reward and the KL divergence. The
simulated learner was trained either (B) in the full stimulus space, or (C) in the reduced stimulus
space. The low success rate is a natural consequence of the active training algorithm, which tends to
select adversarial stimuli to facilitate learning.

6 Discussion

In this work, we have formulated a theory for designing an optimal training protocol of animal
behavior, which works adaptively to drive the current internal model of the animal toward a desired,
pre-defined objective state. To this end, we have first developed a method to accurately estimate the
time-varying parameters of the psychometric model directly from animal’s behavioral time series,
while characterizing the intrinsic variability σ and the learning rate α of the animal by empirical
Bayes. Interestingly, a dimensional analysis based on our estimate of the learning model suggests
that the rat indeed lives in a regime where the effect of learning is stronger than the effect of noise.

Our method to infer the learning model from data is different from many conventional approaches of
inverse reinforcement learning, which also seek to infer the underlying learning rules from externally
observable behavior, but usually rely on the stationarity of the policy or the value function. On the
contrary, our method works directly on the non-stationary behavior. Our technical contribution is
twofold: first, building on the existing framework for estimation of state-space vectors [2, 11, 14],
we provide a case in which parameters of a non-stationary model are successfully inferred from real
time-series data; second, we develop a natural extension of the existing Bayesian framework where
non-random model change (learning) is incorporated into the prior information.

The AlignMax optimal trainer provides important insights into the general principles of effective
training, including a balanced strategy to neutralize both the bias and the history dependence of the
animal, and a dynamic tradeoff between difficult and easy stimuli that makes efficient use of a broad
range of the stimulus space. There are, however, two potential issues that may be detrimental to the
practical success of the algorithm: First, the animal may suffer a loss of motivation due to the low
success rate, which is a natural consequence of the adaptive training algorithm. Second, as with any
model-based approach, mismatch of either the psychometric model (logistic, or any generalization
model) or the learning model (RewardMax) may result in poor performances of the training algorithm.
These issues are subject to tests on real training experiments. Otherwise, the algorithm is readily
applicable. We expect it to provide both a significant reduction in training time and a set of reliable
measures to evaluate the training progress, powered by direct access to the internal learning model of
the animal.
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Supplementary material

A Rat experiment: full description of the task

Each stimulus is a pair of two white-noise auditory signals with different amplitudes x = (x1, x2),
played sequentially in time. The amplitude range from 55 to 95dB with 10dB intervals. The training
box consists of three nosepokes – a center nosepoke, and two side nosepokes each with a reward port
in it – and a speaker (Figure S1). The rat is required to maintain a nosepoke in the center while the
stimuli are played. A trial starts as the center nosepoke lights up. The first stimulus is played 250ms
after the rat makes a nosepoke in the center. After some delay period (2s or 3s), the second stimulus
is played followed by a 1s post-stimulus delay. If the rat successfully maintained the nosepoke up to
this point, the “go” cue is played and the rat can proceed to the choice phase; if the rat failed to do so,
the trial is aborted (choice phase is skipped) and the next trial begins with a new pair of stimulus.

Once fully presented with the stimulus, the rat has to make a choice y by making a nosepoke in one
of the two sides, Y = {L,R}, either left or right. The rule of the game is to compare the amplitudes
of the first stimulus (x1) and the second stimulus (x2). If x2 > x1, the correct answer is to make a
nosepoke on the right side (y = R); otherwise, if x1 > x2, the correct choice is the left side (y = L).
A correct nosepoke is immediately rewarded with water through the reward port in the nosepoke
(r = 1), whereas an incorrect nosepoke is not rewarded (r = 0). This is followed by a 1s visual cue
feedback (where the correct side is indicated with a light), after which an incorrect trial is punished
with an additional 6s time-out period before moving on to the next trial. This task was adapted from
[3].

Trial Start Stimulus 1 Stimulus 2 ChoiceDelay

Time

Figure S1: Schematic of task paradigm, where the rat has to maintain a nosepoke while listening
to the auditory stimulus (a pair of two white-noise auditory signals with different amplitudes), then
make a choice by making a nosepoke in one of the two sides. The desired behavior is to choose left
when the second stimulus is lower than the first, and choose right when the second stimulus is higher
than the first.

In collecting this specific set of data, only the stimulus pairs with amplitude difference 10dB were
used, which corresponds to the reduced, narrow-band stimulus set (see Figure 1A in the main text)
as opposed to the full 2-dimensional stimulus space. There was a de-biasing algorithm, which was
turned on when the rat chose the same response, say y = L, in more than 7 out of 10 past trials. Once
on, the algorithm was to keep presenting stimulus from the opposite stimulus group, in this case XR,
until the rat finally switches to y = R and the de-biasing turns off.

The dataset consists of the choice behavior (stimulus-response pairs) of three rats during training
sessions. Data collection started immediately after pre-training, in which rats were introduced to the
sequence of events in the absence of auditory stimuli, and went on for 2 months. It includes 51 daily
sessions over 66 days, with roughly 100-200 completed (non-aborted) trials per session, although the
typical number of trials per session varies across rats.

B Observations from the rat behavior

Simple non-parametric statistics of the choice behavior revealed two preliminary observations central
to the rat behavior, common to all three rats. First, the behavior is non-stationary, changing over time
both in terms of the marginal choice probability (bias), and of the probability that it gets rewarded
(success rate). In particular, the success rate increases over the training period, although slowly,
suggesting that the rat is indeed learning about the task.

Second, there is a strong inter-trial history dependence. In particular, we find both win-stay and
lose-switch tendencies in the behavior of rats while training. Table 1 shows the empirical conditional
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Table 1: Single-step history dependence

P (yt = R|xt, xt−1, yt−1) ȳ(xt) = R ȳ(xt) = L

ȳ(xt−1) = R
yt−1 = R 0.77 0.73
yt−1 = L 0.58 0.55

ȳ(xt−1) = L
yt−1 = R 0.38 0.36
yt−1 = L 0.24 0.21

*all-trial mean: 0.486

probabilities P (yt = R|xt, xt−1, yt−1) obtained from all ∼ 104 trials of one rat. Note the difference
between the actual response y, and the correct response ȳ(x) for a given stimulus x: for example, the
second row is when the correct answer for the previous trial was to go to the right (ȳ(xt−1) = R),
but the rat actually went to the left (yt−1 = L).

Modeling the history dependence: In general, there are two different types of trial history the
animal might remember: the reward history (whether it was rewarded or not in the previous trials)
and the choice history (whether it chose a particular response). The reward-history dependence is
usually manifest in the form of win-stay and lose-switch, or in the tendency to stick to the choice
that was previously associated to a reward. The choice-history dependence is sometimes called the
perseverance in the animal behavior literature, which is to be distinguished from the bias. While the
bias describes an overall preference to a certain choice, the perseverance is the tendency to make the
same choice as in the previous trial.

In this work we only model the reward-history dependence of the animal, because the rat in our
dataset seems to have a strong reward-history dependence but almost no choice-history dependence
(Table 1). We note that in fact, win-stay is stronger than lose-switch in the rat behavior, suggesting
some skewness in the learning model. Also, win-stay is more symmetric compared to lose-switch,
which seems to work on some internal bias: for example, the switch rate was higher when the rat lost
by choosing R instead of the correct L (third row in Table 1) than when it lost by choosing L instead
of correct R (second row in Table 1). Nevertheless, we will assume for simplicity that win-stay
and lose-switch tendencies are equally strong, such that the two are completely equivalent within
the binary response space, and therefore can be modeled using a single reward-history dependence
parameter as defined below.

The reward-history dependence can be incorporated to the model explicitly, by taking the compressed
stimulus history as additional dimensions of the stimulus. Based on our preliminary observations
from rat behavior (win-stay, lose-switch), as also introduced in the main text, we encode the trial
history as a compressed stimulus history, using a binary variable εȳ(x) defined as εL = −1 and
εR = +1. For example, to take into account the history up to d trials back, we do

g(xt)→ g(xt,xt−1, · · · ,xt−d) = (1,xTt , εȳ(xt−1), · · · , εȳ(xt−d))
T ,

wt → (b,aT , h1, · · · , hd)
for d = 0, 1, 2, · · · . The reward-history dependence hd describes the animal’s tendency to stick to
the correct answer from the corresponding previous trial (d trials back).

C Extended learning hyperparameters

We can introduce a variety of extensions to the RewardMax learning model, in order to to make it
more realistic.

• First, we could let α to be a tensor A (written as a K×K matrix), to allow different learning
rates for different parameters (non-isotropic learning). In practice we restrict A to be a
diagonal matrix.

• Second, in order to model gradual “forgetting”, we may introduce a decay rate η ≤ 1 and
replace the difference operator as ∆→ ∆η . The new difference operator ∆η is defined such
that ∆ηwt = wt − ηwt−1. In the full vector notation, the change is in the difference matrix
D → Dη, modified with decay rates Dη = δtt′ − ηδt−1,t′ in the single-weight case (and
concatenated appropriately for multiple weights).
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• Finally, in order to account for the fact that animals may remember chosen rewards (“I
got rewarded here”) most strongly than the unchosen/forgone rewards (“I would have been
rewarded there”), we introduce a skewness parameter κ ≤ 1. This modifies the effective
reward function at each trial such that

ft(x) =
∑
y∈Y

κyεyr(x, y); κy =

{
1 if y = yt (chosen)
κ if y 6= yt (unchosen) (S1)

where yt is the actual response made by the animal in that trial.

The full set of learning hyperparameters would thus be φ = {A, η, κ}. The simplest (most symmetric)
model is achieved when A = αI , η = 1, κ = 1. This simplest model is also the one we used in the
main text.

D Derivatives of the log posterior with drift prior

From our definitions of the expected reward ρ(w) and logistic choice probabilities py(x,w), the first
three gradients of the expected reward can be written as

∂ρ

∂w
=
∑
x∈X

PX(x)f(x)c1(x,w) · g(x), c1 = pRpL = pR(1− pR) (S2)

∂2ρ

∂w2
=
∑
x∈X

PX(x)f(x)c2(x,w) · g ⊗ g, c2 = pR(1− pR)(1− 2pR); (S3)

∂3ρ

∂w3
=
∑
x∈X

PX(x)f(x)c3(x,w) · g ⊗ g ⊗ g, c3 = pR(1− pR)(1− 6pR + 6p2
R), (S4)

where the coefficients are ck(x,w) = (∂/∂w)kpR(x,w), the k-th partial derivative of pR with
respect to the weight vector. The direct sum operator⊗ gives tensor products, in this case (g⊗g)jk =
gjgk and (g ⊗ g ⊗ g)jkl = gjgkgl. Putting back the trial index t, the first and second derivatives of
the drift velocity vt∗ = α∂ρt/∂wt∗ are

∂vt∗
∂wt′∗

= αδtt′
∂2ρt
∂w2

t∗
,

∂2vt∗
∂wt′∗∂wt′′∗

= αδtt′δtt′′
∂3ρt
∂w3

t∗
. (S5)

Similarly as before, we can concatenate over trials to work in terms of the full vectors v =
vec((v1∗, · · · ,vN∗)T ) and w = vec((w1∗, · · · ,wN∗)

T ). Using the fact that distinct trials do
not interact, at least when τ = 0, the concatenation is analogous to what we did to obtain the
derivatives of the log-likelihood in the main text. The first derivative is constructed as a block matrix

∂v

∂w
=


S11 S12 · · · S1K

S21 S22 S2K

...
. . .

...
SK1 SK2 · · · SKK

 (S6)

where

Sij = diag

((
∂v1∗

∂w1∗

)
ij

, · · · ,
(
∂vt∗
∂wt∗

)
ij

, · · · ,
(
∂vN∗
∂wN∗

)
ij

)
. (S7)

Similarly, the second derivative is constructed as a 3D block tensor

∂2v

∂w2
= [Tijk], Tijk = diag3

(
· · · ,

(
∂2vt∗
∂w2

t∗

)
ijk

, · · ·

)
(S8)

where diag3 is a notation for a “volume” diagonal tensor, with nonzero value only when all three
indices are equal to one another.

Finally, we are ready to write down the derivatives of the modified log posterior,

log p(w|D) ∼
(

1

2
log
∣∣C−1

∣∣− 1

2
(w −D−1v −w0)TC−1(w −D−1v −w0)

)
+ L. (S9)
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The first derivative (gradient):

j = −(w −D−1v −w0)TC−1

(
I −D−1 ∂v

∂w

)
+
∂L

∂w
, (S10)

the second derivative (Hessian):

H = −
(
I −D−1 ∂v

∂w

)T
C−1

(
I −D−1 ∂v

∂w

)
+ (w −D−1v −w0)TC−1

(
D−1 ∂

2v

∂w2

)
+
∂2L

∂w2
, (S11)

where ∂v/∂w is a matrix defined by (∂v/∂w)jk = ∂vj/∂wk, and similarly ∂2v/∂w2 is a tensor
(∂2v/∂w2)jkl = ∂vj/∂wk∂wl.

E The inner working of AlignMax optimal trainer

Here we provide a more detailed picture of how the AlignMax optimal trainer works, which demon-
strates how a principled pattern in the input statistics can drive decreases in the bias and the history
dependence parameters, both of which are targeted at zero for ideal performance. Figure S2 shows
the sequence of simulated learning for a noiseless learner (as in Figure 4 in the main text), as well as
for a noisy learner. Importantly, on average, a noisy leaner can be trained as efficiently as a noiseless
learner.
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Figure S2: A closer look at the stimulus sequences chosen by the AlignMax optimal training protocol.
(A-B) shows the result from the simulation on a noiseless learner, σ = 0 and α = 0.005, same as the
one shown in Figure 4 in the main text. (A) While the history dependence h is non-zero, AlignMax
alternates between different stimulus groups in order to suppress the win-stay behavior; once h
vanishes, AlignMax tries to neutralize the bias b by presenting more stimuli from the “non-preferred”
stimulus group yet being careful not to re-introduce the history dependence. (B) AlignMax exploits
the full stimulus space by starting from some “easier” stimuli in the early stage of training (farther
away from the true separatrix x1 = x2), and presenting progressively more difficult stimuli (closer to
the separatrix) as the trainee performance improves. (C-D) shows an analogous set of results for a
noisy learner, with σ = 2−7, averaged over 10 independent realizations with the same hyperparameter
values and the same initialization. It shows that on average, a noisy learner can be trained as well
as a noiseless learner using the same optimal training protocol, although the weight evolution in
individual runs may fluctuate (single-run data not shown).
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