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Abstract

Matrix completion is a basic machine learning problem that has wide applications, especially in collaborative
filtering and recommender systems. Simple non-convex optimization algorithms are popular and effective in practice.
Despite recent progress in proving various non-convex algorithms converge from a good initial point, it remains unclear
why random or arbitrary initialization suffices in practice. We prove that the commonly used non-convex objective
function for positive semidefinite matrix completion has no spurious local minima – all local minima must also be
global. Therefore, many popular optimization algorithms such as (stochastic) gradient descent can provably solve
positive semidefinite matrix completion with arbitrary initialization in polynomial time. The result can be generalized
to the setting when the observed entries contain noise. We believe that our main proof strategy can be useful for
understanding geometric properties of other statistical problems involving partial or noisy observations.

1 Introduction
Matrix completion is the problem of recovering a low rank matrix from partially observed entries. It has been widely
used in collaborative filtering and recommender systems [Kor09, RS05], dimension reduction [CLMW11] and multi-
class learning [AFSU07]. There has been extensive work on designing efficient algorithms for matrix completion with
guarantees. One earlier line of results (see [Rec11, CT10, CR09] and the references therein) rely on convex relaxations.
These algorithms achieve strong statistical guarantees, but are quite computationally expensive in practice.

More recently, there has been growing interest in analyzing non-convex algorithms for matrix completion [KMO10,
JNS13, Har14, HW14, SL15, ZWL15, CW15]. Let M ∈ Rd×d be the target matrix with rank r � d that we aim to
recover, and let Ω = {(i, j) : Mi,j is observed} be the set of observed entries. These methods are instantiations of
optimization algorithms applied to the objective1,

f(X) =
1

2

∑
(i,j)∈Ω

[
Mi,j − (XX>)i,j

]2
, (1.1)

These algorithms are much faster than the convex relaxation algorithms, which is crucial for their empirical success in
large-scale collaborative filtering applications [Kor09].

All of the theoretical analysis for the nonconvex procedures require careful initialization schemes: the initial point
should already be close to optimum. In fact, Sun and Luo [SL15] showed that after this initialization the problem is
effectively strongly-convex, hence many different optimization procedures can be analyzed by standard techniques
from convex optimization.

However, in practice people typically use a random initialization, which still leads to robust and fast convergence.
Why can these practical algorithms find the optimal solution in spite of the non-convexity? In this work we investigate
this question and show that the matrix completion objective has no spurious local minima. More precisely, we show
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1In this paper, we focus on the symmetric case when the true M has a symmetric decomposition M = ZZT . Some of previous papers work on
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that any local minimum X of objective function f(·) is also a global minimum with f(X) = 0, and recovers the correct
low rank matrix M .

Our characterization of the structure in the objective function implies that (stochastic) gradient descent from arbitrary
starting point converge to a global minimum. This is because gradient descent converges to a local minimum [GHJY15,
LSJR16], and every local minimum is also a global minimum.

1.1 Main results
Assume the target matrix M is symmetric and each entry of M is observed with probability p independently 2. We
assume M = ZZ> for some matrix Z ∈ Rd×r.

There are two known issues with matrix completion. First, the choice of Z is not unique since M = (ZR)(ZR)>

for any orthonormal matrix Z. Our goal is to find one of these equivalent solutions.
Another issue is that matrix completion is impossible when M is “aligned” with standard basis. For example, when

M is the identity matrix in its first r × r block, we will very likely be observing only 0 entries. To address this issue,
we make the following standard assumption:

Assumption 1. For any row Zi of Z, we have

‖Zi‖ 6 µ/
√
d · ‖Z‖F .

Moreover, Z has a bounded condition number σmax(Z)/σmin(Z) = κ.

Throughout this paper we think of µ and κ as small constants, and the sample complexity depends polynomially on
these two parameters. Also note that this assumption is independent of the choice of Z: all Z such that ZZT = M
have the same row norms and Frobenius norm.

This assumption is similar to the “incoherence” assumption [CR09]. Our assumption is the same as the one used in
analyzing non-convex algorithms [KMO10, SL15].

We enforce X to also satisfy this assumption by a regularizer

f(X) =
1

2

∑
(i,j)∈Ω

[
Mi,j − (XX>)i,j

]2
+R(X), (1.2)

where R(X) is a function that penalizes X when one of its rows is too large. See Section 4 and Section 5 for the precise
definition. Our main result shows that in this setting, the regularized objective function has no spurious local minimum:

Theorem 1.1. [Informal] All local minimum of the regularized objective (1.1) satisfy XXT = ZZT = M when
p > poly(κ, r, µ, log d)/d.

Combined with the results in [GHJY15, LSJR16] (see more discussions in Section 1.2), we have,

Theorem 1.2 (Informal). With high probability, stochastic gradient descent on the regularized objective (1.1) will
converge to a solution X such that XXT = ZZT = M in polynomial time from any starting point. Gradient descent
will converge to such a point with probability 1 from a random starting point.

Our results are also robust to noise. Even if each entry is corrupted with Gaussian noise of standard deviation
µ2‖Z‖2F /d (comparable to the magnitude of the entry itself!), we can still guarantee that all the local minima satisfy
‖XXT −ZZT ‖F 6 ε when p is large enough. See the discussion in Appendix B for results on noisy matrix completion.

Our main technique is to show that every point that satisfies the first and second order necessary conditions for
optimality must be a desired solution. To achieve this we use new ideas to analyze the effect of the regularizer and show
how it is useful in modifying the first and second order conditions to exclude any spurious local minimum.

2The entries (i, j) and (j, i) are the same. With probability p we observe both entries and otherwise we observe neither.
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1.2 Related Work
Matrix Completion. The earlier theoretical works on matrix completion analyzed the nuclear norm heuristic [Rec11,
CT10, CR09]. This line of work has the cleanest and strongest theoretical guarantees; [CT10, Rec11] showed that if
|Ω| & drµ2 log2 d the nuclear norm convex relaxation recovers the exact underlying low rank matrix. The solution
can be computed via the solving a convex program in polynomial time. However the primary disadvantage of nuclear
norm methods is their computational and memory requirements. The fastest known algorithms have running time
O(d3) and require O(d2) memory, which are both prohibitive for moderate to large values of d. These concerns
led to the development of the low-rank factorization paradigm of [BM03]; Burer and Monteiro proposed factorizing
the optimization variable M̂ = XXT , and optimizing over X ∈ Rd×r instead of M̂ ∈ Rd×d . This approach only
requires O(dr) memory, and a single gradient iteration takes time O(r|Ω|), so has much lower memory requirement and
computational complexity than the nuclear norm relaxation. On the other hand, the factorization causes the optimization
problem to be non-convex in X , which leads to theoretical difficulties in analyzing algorithms. Under incoherence
and sufficient sample size assumptions, [KMO10] showed that well-initialized gradient descent recovers M . Similary,
[HW14, Har14, JNS13] showed that well-initialized alternating least squares or block coordinate descent converges
to M , and [CW15] showed that well-initialized gradient descent converges to M . [SL15, ZWL15] provided a more
unified analysis by showing that with careful initialization many algorithms, including gradient descent and alternating
least squres, succeed. [SL15] accomplished this by showing an analog of strong convexity in the neighborhood of the
solution M .

Non-convex Optimization. Recently, a line of work analyzes non-convex optimization by separating the problem
into two aspects: the geometric aspect which shows the function has no spurious local minimum and the algorithmic
aspect which designs efficient algorithms can converge to local minimum that satisfy first and (relaxed versions) of
second order necessary conditions.

Our result is the first that explains the geometry of the matrix completion objective. Similar geometric results
are only known for a few problems: phase retrieval/synchronization, orthogonal tensor decomposition, dictionary
learning [GHJY15, SQW15, BBV16]. The matrix completion objective requires different tools due to the sampling
of the observed entries, as well as carefully managing the regularizer to restrict the geometry. Parallel to our work
Bhojanapalli et al.[BNS16] showed similar results for matrix sensing, which is closely related to matrix completion.
Loh and Wainwright [LW15] showed that for many statistical settings that involve missing/noisy data and non-convex
regularizers, any stationary point of the non-convex objective is close to global optima; furthermore, there is a unique
stationary point that is the global minimum under stronger assumptions [LW14].

On the algorithmic side, it is known that second order algorithms like cubic regularization [NP06] and trust-region
[SQW15] algorithms converge to local minima that approximately satisfy first and second order conditions. Gradient
descent is also known to converge to local minima [LSJR16] from a random starting point. Stochastic gradient descent
can converge to a local minimum in polynomial time from any starting point [Pem90, GHJY15]. All of these results
can be applied to our setting, implying various heuristics used in practice are guaranteed to solve matrix completion.

2 Preliminaries

2.1 Notations
For Ω ⊂ [d]× [d], let PΩ be the linear operator that maps a matrix A to PΩ(A), where PΩ(A) has the same values as A
on Ω, and 0 outside of Ω.

We will use the following matrix norms: ‖ · ‖F the frobenius norm, ‖ · ‖ spectral norm, |A|∞ elementwise infinity
norm, and |A|p→q = max‖x‖p=1 ‖A‖q. We use the shorthand ‖A‖Ω = ‖PΩA‖F . The trace inner product of two
matrices is 〈A,B〉 = tr(A>B), and σmin(X), σmax(X) are the smallest and largest singular values of X . We also use
Xi to denote the i-th row of a matrix X .
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2.2 Necessary conditions for Optimality
Given an objective function f(x) : Rn → R, we use ∇f(x) to denote the gradient of the function, and ∇2f(x) to
denote the Hessian of the function (∇2f(x) is an n× n matrix where [∇2f(x)]i,j = ∂2

∂xi∂xj
f(x)). It is well known

that local minima of the function f(x) must satisfy some necessary conditions:

Definition 2.1. A point x satisfies the first order necessary condition for optimality (later abbreviated as first order
optimality condition) if ∇f(x) = 0. A point x satisfies the second order necessary condition for optimality (later
abbreviated as second order optimality condition)if∇2f(x) � 0.

These conditions are necessary for a local minimum because otherwise it is easy to find a direction where the
function value decreases. We will also consider a relaxed second order necessary condition, where we only require the
smallest eigenvalue of the Hessian∇2f(x) to be not very negative:

Definition 2.2. For τ > 0, a point x satisfies the τ -relaxed second order optimality condition, if∇2f(x) � −τ · I .

This relaxation to the second order condition makes the conditions more robust, and allows for efficient algorithms.

Theorem 2.3. [NP06, SQW15, GHJY15] If every point x that satisfies first order and τ -relaxed second order necessary
condition is a global minimum, then many optimization algorithms (cubic regularization, trust-region, stochastic
gradient descent) can find the global minimum up to ε error in function value in time poly(1/ε, 1/τ, d).

3 Proof Strategy: “simple” proofs are more generalizable
In this section, we demonstrate the key ideas behind our analysis using the rank r = 1 case. In particular, we first give a
“simple” proof for the fully observed case. Then we show this simple proof can be easily generalized to the random
observation case. We believe that this proof strategy is applicable to other statistical problems involving partial/noisy
observations. The proof sketches in this section are only meant to be illustrative and may not be fully rigorous in various
places. We refer the readers to Section 4 and Section 5 for the complete proofs.

In the rank r = 1 case, we assume M = zz>, where ‖z‖ = 1, and ‖z‖∞ 6 µ√
d

. Let ε� 1 be the target accuracy
that we aim to achieve in this section and let p = poly(µ, log d)/(dε).

For simplicity, we focus on the following domain B of incoherent vectors where the regularizer R(x) vanishes,

B =

{
x : ‖x‖∞ <

2µ√
d

}
. (3.1)

Inside this domain B, we can restrict our attention to the objective function without the regularizer, defined as,

g̃(x) =
1

2
· ‖PΩ(M − xx>)‖2F . (3.2)

The global minima of g̃(·) are z and −z with function value 0. Our goal of this section is to (informally) prove that
all the local minima of g̃(·) are O(

√
ε)-close to ±z. In later section we will formally prove that the only local minima

are ±z.

Lemma 3.1 (Partial observation case, informally stated). Under the setting of this section, in the domain B, all local
mimina of the function g̃(·) are O(

√
ε)-close to ±z.

It turns out to be insightful to consider the full observation case when Ω = [d]× [d]. The corresponding objective is

g(x) =
1

2
· ‖M − xx>‖2F . (3.3)

Observe that g̃(x) is a sampled version of the g(x), and therefore we expect that they share the same geometric
properties. In particular, if g(x) does not have spurious local minima then neither does g̃(x).

Lemma 3.2 (Full observation case, informally stated). Under the setting of this section, in the domain B, the function
g(·) has only two local minima {±z} .

Before introducing the “simple” proof, let us first look at a delicate proof that does not generalize well.
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Difficult to Generalize Proof of Lemma 3.2. We compute the gradient and Hessian of g(x),

∇g(x) = Mx− ‖x‖2x, (3.4)

∇2g(x) = 2xx> −M + ‖x‖2 · I . (3.5)

Therefore, a critical point x satisfies ∇g(x) = Mx − ‖x‖2x = 0, and thus it must be an eigenvector of M and
‖x‖2 is the corresponding eigenvalue. Next, we prove that the hessian is only positive definite at the top eigenvector
. Let x be an eigenvector with eigenvalue λ = ‖x‖2, and λ is strictly less than the top eigenvalue λ∗. Let z be the
top eigenvector. We have that 〈z,∇2g(x)z〉 = −〈z,Mz〉+ ‖x‖2 = −λ∗ + λ < 0, which shows that x is not a local
minimum. Thus only z can be a local minimizer, and it is easily verified that∇2g(z) is indeed positive definite.

The difficulty of generalizing the proof above to the partial observation case is that it uses the properties of
eigenvectors heavily. Suppose we want to imitate the proof above for the partial observation case, the first difficulty is
how to solve the equation g̃(x) = PΩ(M − xx>)x = 0. Moreover, even if we could have a reasonable approximation
for the critical points (the solution of ∇g̃(x) = 0), it would be difficult to examine the Hessian of these critical points
without having the orthogonality of the eigenvectors.

“Simple” and Generalizable proof. The lessons from the subsection above suggest us find an alternative proof for
the full observation case which is generalizable. The alternative proof will be simple in the sense that it doesn’t use the
notion of eigenvectors and eigenvalues. Concretely, the key observation behind most of the analysis in this paper is the

following,

Proofs that consist of inequalities that are linear in 1Ω are often easily generalizable to partial observation case.

Here statements that are linear in 1Ω mean the statements of the form
∑
ij 1(i,j)∈ΩTij 6 a. We will call these kinds

of proofs “simple” proofs in this section. Roughly speaking, the observation follows from the law of large numbers
— Suppose Tij , (i, j) ∈ [d] × [d] is a sequence of bounded real numbers, then the sampled sum

∑
(i,j)∈Ω Tij =∑

i,j 1(i,j)∈ΩTij is an accurate estimate of the sum p
∑
i,j Tij , when the sampling probability p is relatively large.

Then, the mathematical implications of p
∑
Tij 6 a are expected to be similar to the implications of

∑
(i,j)∈Ω Tij 6 a,

up to some small error introduced by the approximation. To make this concrete, we give below informal proofs for
Lemma 3.2 and Lemma 3.1 that only consists of statements that are linear in 1Ω. Readers will see that due to the
linearity, the proof for the partial observation case (shown on the right column) is a direct generalization of the proof for
the full observation case (shown on the left column) via concentration inequalities (which will be discussed more at the
end of the section).

A “simple” proof for Lemma 3.2.

Claim 1f. Suppose x ∈ B satisfies ∇g(x) = 0, then
〈x, z〉2 = ‖x‖4.

Proof. We have,

∇g(x) = (zz> − xx>)x = 0

⇒ 〈x,∇g(x)〉 = 〈x, (zz> − xx>)x〉 = 0 (3.6)

⇒ 〈x, z〉2 = ‖x‖4

Intuitively, this proof says that the norm of a critical point
x is controlled by its correlation with z. Here at the lasa
sampling version of the f

Generalization to Lemma 3.1.

Claim 1p. Suppose x ∈ B satisfies ∇g̃(x) = 0, then
〈x, z〉2 = ‖x‖4 − ε.

Proof. Imitating the proof on the left, we have

∇g̃(x) = PΩ(zz> − xx>)x = 0

⇒ 〈x,∇g̃(x)〉 = 〈x, PΩ(zz> − xx>)x〉 = 0
(3.7)

⇒ 〈x, z〉2 > ‖x‖4 − ε

The last step uses the fact that equation (3.6) and (3.7) are
approximately equal up to scaling factor p for any x ∈ B,
since (3.7) is a sampled version of (3.6).
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Claim 2f. If x ∈ B has positive Hessian ∇2g(x) � 0,
then ‖x‖2 > 1/3.

Proof. By the assumption on x, we have that
〈z,∇2g(x)z〉 > 0. Calculating the quadratic form of the
Hessian (see Proposition 4.1 for details),

〈z,∇2g(x)z〉
= ‖zx> + xz>‖2 − 2z>(zz> − xx>)z > 0aaaaaa

(3.8)

⇒ ‖x‖2 + 2〈z, x〉2 > 1

⇒ ‖x‖2 > 1/3 (since 〈z, x〉2 6 ‖x‖2)

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Claim 2p. If x ∈ B has positive Hessian ∇2g̃(x) � 0,
then ‖x‖2 > 1/3− ε.

Proof. Imitating the proof on the left, calculating the
quadratic form over the Hessian at z (see Proposition 4.1) ,
we have aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

〈z,∇2g̃(x)z〉
= ‖PΩ(zx> + xz>)‖2 − 2z>PΩ(zz> − xx>)z > 0

(3.9)

⇒ · · · · · · (same step as the left)

⇒ ‖x‖2 > 1/3− ε

Here we use the fact that 〈z,∇2g̃(x)z〉 ≈ p〈z,∇2g(x)z〉
for any x ∈ B.

With these two claims, we are ready to prove Lemma 3.2 and 3.1 by using another step that is linear in 1Ω.

Proof of Lemma 3.2. By Claim 1f and 2f, we have x sat-
isfies 〈x, z〉2 > ‖x‖4 > 1/9. Moreover, we have that
∇g(x) = 0 implies

〈z,∇g(x)〉 = 〈z, (zz> − xx>)x〉 = 0 (3.10)

⇒ 〈x, z〉(1− ‖x‖2) = 0

⇒ ‖x‖2 = 1 (by 〈x, z〉2 > 1/9)

Then by Claim 1f again we obtain 〈x, z〉2 = 1, and there-
fore x = ±z. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Proof of Lemma 3.1. By Claim 1p and 2p, we have x sat-
isfies 〈x, z〉2 > ‖x‖4 > 1/9−O(ε). Moreover, we have
that ∇g̃(x) = 0 implies

〈z,∇g̃(x)〉 = 〈z, PΩ(zz> − xx>)x〉 = 0 (3.11)
⇒ · · · · · · (same step as the left)

⇒ ‖x‖2 = 1±O(ε) (same step as the left)

Since (3.11) is the sampled version of equation (3.10), we
expect they lead to the same conclusion up to some ap-
proximation. Then by Claim 1p again we obtain 〈x, z〉2 =
1 ± O(ε), and therefore x is O(

√
ε)-close to either of

±z.

Subtleties regarding uniform convergence. In the proof sketches above, our key idea is to use concentration
inequalities to link the full observation objective g(x) with the partial observation counterpart. However, we require a
uniform convergence result. For example, we need a statement like “w.h.p over the choice of Ω, equation (3.6) and (3.7)
are similar to each other up to scaling”. This type of statement is often only true for x inside the incoherent ball B.
The fix to this is the regularizer. For non-incoherent x, we will use a different argument that uses the property of the
regularizer. This is besides the main proof strategy of this section and will be discussed in subsequent sections.

4 Warm-up: Rank-1 Case
In this section, using the general proof strategy described in previous section, we provide a formal proof for the rank-1
case. In subsection 4.1, we formally work out the proof sketches of Section 3. In subsection 4.2, we prove that due to
the effect of the regularizer, outside incoherent ball B, the objective function doesn’t have any local minimum.

In the rank-1 case, the objective function simplifies to,

f(x) =
1

2
‖PΩ(M − xx>)‖2F + λR(x) . (4.1)
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Here we use the the regularization R(x)

R(x) =

d∑
i=1

h(xi), and h(t) = (|t| − α)4 It>α .

The parameters λ and α will be chosen later as in Theorem 4.2. We will choose α > 10µ/
√
d so that R(x) = 0 for

incoherent x, and thus it only penalizes coherent x. Moreover, we note R(x) has Lipschitz second order derivative. 3

We first state the optimality conditions, whose proof is deferred to Appendix A.

Proposition 4.1. The first order optimality condition of objective (4.1) is,

2PΩ(M − xx>)x = λ∇R(x) , (4.2)

and the second order optimality condition requires:

∀v ∈ Rd, ‖PΩ(vx> + xv>)‖2F + λv>∇2R(x)v > 2v>PΩ(M − xx>)v . (4.3)

Moreover, The τ -relaxed second order optimality condition requires

∀v ∈ Rd, ‖PΩ(vx> + xv>)‖2F + λv>∇2R(x)v > 2v>PΩ(M − xx>)v − τ‖v‖2 . (4.4)

We give the precise version of Theorem 1.1 for the rank-1 case.

Theorem 4.2. For p > cµ6 log1.5 d
d where c is a large enough absolute constant, set α = 10µ

√
1/d and λ >

µ2p/α2.Then, with high probability over the randomness of Ω, the only points in Rd that satisfy both first and second
order optimality conditions (or τ -relaxed optimality conditions with τ < 0.1p) are z and −z.

In the rest of this section, we will first prove that when x is constrained to be incoherent (and hence the regularizer
is 0 and concentration is straightforward) and satisfies the optimality conditions, then x has to be z or −z. Then we go
on to explain how the regularizer helps us to change the geometry of those points that are far away from z so that we
can rule out them from being local minimum. For simplicity, we will focus on the part that shows a local minimum x
must be close enough to z.

Lemma 4.3. In the setting of Theorem 4.2, suppose x satisfies the first-order and second-order optimality condition (4.2)
and (4.3). Then when p is defined as in Theorem 4.2,∥∥xx> − zz>∥∥2

F
6 O(ε) .

where ε = µ3(pd)−1/2.

This turns out to be the main challenge. Once we proved x is close, we can apply the result of Sun and Luo [SL15]
(see Lemma C.1), and obtain Theorem 4.2.

4.1 Handling incoherent x
To demonstrate the key idea, in this section we restrict our attention to the subset of Rd which contains incoherent x
with `2 norm bounded by 1, that is, we consider,

B =

{
x : ‖x‖∞ 6

2µ√
d
, ‖x‖ 6 1

}
. (4.5)

Note that the desired solution z is in B, and the regularization R(x) vanishes inside B.
The following lemmas assume x satisfies the first and second order optimality conditions, and deduce a sequence of

properties that x must satisfy.
3This is the main reason for us to choose 4-th power instead of 2-nd power.
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Lemma 4.4. Under the setting of Theorem 4.2 , with high probability over the choice of Ω, for any x ∈ B that satisfies
second-order optimality condition (4.3) we have,

‖x‖2 > 1/4.

The same is true if x ∈ B only satisfies τ -relaxed second order optimality condition for τ 6 0.1p.

Proof. We plug in v = z in the second-order optimality condition (4.3), and obtain that∥∥PΩ(zx> + xz>)
∥∥2

F
> 2z>PΩ(M − xx>)z . (4.6)

Intuitively, when restricted to Ω, the squared Frobenius on the LHS and the quadratic form on the RHS should both
be approximately a p fraction of the unrestricted case. In fact, both LHS and RHS can be written as the sum of terms of
the form 〈PΩ(uvT ), PΩ(stT )〉, because∥∥PΩ(zx> + xz>)

∥∥2

F
= 2〈PΩ(zxT ), PΩ(zxT )〉+ 2〈PΩ(zxT ), PΩ(xzT )〉

2z>PΩ(M − xx>)z = 2〈PΩ(zzT ), PΩ(zzT )〉 − 2〈PΩ(xxT ), PΩ(zzT )〉.

Therefore we can use concentration inequalities (Theorem D.1), and simplify the equation

LHS of (4.6) = p
∥∥zx> + xz>

∥∥2

F
±O(

√
pd‖x‖2∞‖z‖2∞‖x‖2‖z‖2)

= 2p‖x‖2‖z‖2 + 2p〈x, z〉2 ±O(pε) , (Since x, z ∈ B)

where ε = O(µ2
√

log d
pd ). Similarly, by Theorem D.1 again, we have

RHS of (4.6) = 2
(
〈PΩ(zz>), PΩ(zz>)〉 − 〈PΩ(xx>), PΩ(zz>)〉

)
(Since M = zz>)

= 2p‖z‖4 − 2p〈x, z〉2 ±O(pε) (by Theorem D.1 and x, z ∈ B)

(Note that even we use the τ -relaxed second order optimality condition, the RHS only becomes 1.99p‖z‖4 −
2p〈x, z〉2 ±O(pε) which does not effect the later proofs.)

Therefore plugging in estimates above back into equation (4.6), we have that

2p‖x‖2‖z‖2 + 2p〈x, z〉2 ±O(pε) > 2‖z‖4 − 2〈x, z〉2 ±O(pε) ,

which implies that 6p‖x‖2‖z‖2 > 2p‖x‖2‖z‖2 + 4p〈x, z〉2 > 2p‖z‖4 − O(pε). Using ‖z‖2 = 1, and ε being
sufficiently small, we complete the proof.

Next we use first order optimality condition to pin down another property of x – it has to be close to z after scaling.
Note that this doesn’t mean directly that x has to be close to z since x = 0 also satisfies first order optimality condition
(and therefore the conclusion (4.7) below).

Lemma 4.5. With high probability over the randomness of Ω, for any x ∈ B that satisfies first-order optimality condi-
tion (4.2), we have that x also satisfies ∥∥〈z, x〉z − ‖x‖2x∥∥ 6 O(ε) . (4.7)

where ε = Õ(µ3(pd)−1/2).

Proof. Note that since x ∈ B, we have R(x) = 0. Therefore first-order optimality condition says that

PΩ(M − xx>)x = PΩ(zz>)x− PΩ(xx>)x = 0 . (4.8)

Again, intuitively we hope PΩ(zzT ) ≈ pzzT and PΩ(xxT )x ≈ p‖x‖2x. These are made precise by the concentration
inequalities Lemma D.4 and Theorem D.2 respectively.
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By Theorem D.2, we have that with high probability over the choice of Ω, for every x ∈ B,

‖PΩ(xx>)x− pxx>x‖F 6 pε‖x‖3 6 pε (4.9)

where ε = Õ(µ3(pd)−1/2). Similarly, by Lemma D.4, we have that for with high probability over the choice of Ω,∥∥PΩ(zz>)− pzz>
∥∥ 6 εp .

for ε = Õ(µ2(pd)−1/2). Therefore for every x,∥∥PΩ(zz>)x− pzz>x
∥∥ 6 εp‖x‖ 6 εp . (4.10)

Plugging in estimates (4.10) and (4.9) into equation (4.8), we complete the proof.

Finally we combine the two optimality conditions and show equation (4.7) implies xxT must be close to zzT .

Lemma 4.6. Suppose vector x satisfies that ‖x‖2 > 1/4, and that
∥∥〈z, x〉z − ‖x‖2x∥∥ 6 δ . Then for δ ∈ (0, 0.1),∥∥xx> − zz>∥∥2

F
6 O(δ) .

Proof. We write z = ux+v where u ∈ R and v is a vector orthogonal to x. Now we know 〈z, x〉z = u2‖x‖2x+u‖x‖2v,
therefore

δ >
∥∥〈z, x〉z − ‖x‖2x∥∥ = ‖x‖2

√
u2‖v‖2 + (1− u2)2.

In particular, we know |1 − u2| 6 4δ and u‖v‖ 6 4δ. This means |u| ∈ 1 ± 3δ and ‖v‖ 6 8δ. Now we expand
xxT − zzT :

xxT − zzT = (1− u2)xxT + uxvT + uvxT + vvT

It is clear that all the terms have norm bounded by O(δ), therefore
∥∥xx> − zz>∥∥2

F
6 O(δ).

4.2 Extension to general x
We have shown when x is incoherent and satisfies first and second order optimality conditions, then it must be close to
z or −z. Now we need to consider more general cases when x may have some very large coordinates. Here the main
intuition is that the first order optimality condition with a proper regularizer is enough to guarantee that x cannot have a
entry that is too much bigger than µ/

√
d.

Lemma 4.7. With high probability over the choice of Ω, for any x that satisfies first-order order optimality condi-
tion (4.2), we have

‖x‖∞ 6 4 max
{
α, µ

√
p/λ

}
. (4.11)

Here we recall that α was chosen to be 10µ/
√
d and λ is chosen to be large so that the α dominates the second term

µ
√
p/λ in the setting of Theorem 4.2.

Proof of Lemma 4.7. Suppose i? = maxj |xj |. Without loss of generality, suppose xi? > 0. Suppose i?-th row of
Ω consists of entries with index [i] × Si? . If |xi? | 6 2α, we are done. Therefore in the rest of the proof we assume
|xi? | > 2α. Note that when p > c(log d)/d for sufficiently large constant c, with high probability over the choice of Ω,
we have |Si? | 6 2pd. In the rest of argument we are working with such an Ω with |Si? | 6 2pd.

We will compare the i?-th coordinate of LHS and RHS of first-order optimality condition (4.2). For preparation, we
have

|(PΩ(M)x)i? | =
∣∣(PΩ(zz>)x

)
i?

∣∣ =

∣∣∣∣∣∣
∑
j∈Si?

zi?zjxj

∣∣∣∣∣∣
6 |xi? |

∑
j∈Si?

|zi?zj | 6 |xi? | · µ2/d · |Si? | 6 2|xi? |pµ2 (4.12)

9



Figure 1: Partition of Rd into regions where our Lemmas apply. For example, Lemma 3.8 rules out the possibility that a
point x in the green region is local minimum. Here, The green region is the intersection of `∞ norm ball and `2 norm
ball. Both the white region and yellow region have non-zero gradient but for different reasons.

where the last step we used the fact that |Si? | 6 2pd. Moreover, we have that

(PΩ(xx>)x)i? =
∑
j∈Si?

xi?x
2
j > 0 ,

and that

(λ∇R(x))i? = 4λ(|xi? | − α)3 sign(xi?) >
λ

2
|xi? |3 (Since xi? > 2α)

Now plugging in the bounds above into the i?-th coordinate of equation (4.2), we obtain

4|xi? |pµ2 > 2(PΩ(M − xx>)x)i? > (λ∇R(x))i? >
λ

2
|xi? |3 ,

which implies that |xi? | 6 4
√
pµ2/λ.

Setting λ > µ2p/α2 and α = 10µ
√

1/d, Lemma 4.7 ensures that any x that satisfies first-order optimality condition
is the following ball,

B′ =
{
x ∈ Rd : ‖x‖∞ 6 4α

}
.

Then we would like to continue to use arguments similar to Lemma 4.4 and 4.5. However, things have become
more complicated as now we need to consider the contribution of the regularizer.

Lemma 4.8 (Extension of Lemma 4.4). In the setting of Theorem 4.2, with high probability over the choice of Ω,
suppose x ∈ B′ satisfies second-order optimality condition (4.3) or τ -relaxed condition for τ 6 0.1p, we have
‖x‖2 > 1/8.

The guarantees and proofs are very similar to Lemma 4.4. The main intuition is that we can restrict our attentions to
coordinates whose regularizer is equal to 0. See Section A for details.

We will now deal with first order optimality condition. We first write out the basic extension of Lemma 4.5, which
follows from the same proof except we now include the regularizer term.
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Lemma 4.9 (Basic extension of Lemma 4.5). With high probability over the randomness of Ω, for any x ∈ B′ that
satisfies first-order optimality condition (4.2), we have that x also satisfies∥∥〈z, x〉z − ‖x‖2x− γ · ∇R(x)

∥∥ 6 O(ε) . (4.13)

where ε = Õ(µ6(pd)−1/2) and γ = λ/(2p) > 0.

Next we will show that we can remove the regularizer term, the main observation here is nonzero entries∇R(x) all
have the same sign as the corresponding entries in x. See Section A for details.

Lemma 4.10. Suppose x ∈ B′ satisfies that ‖x‖2 > 1/8, under the same assumption as Lemma 4.9. we have,∥∥〈x, z〉z − ‖x‖2x∥∥ 6 O(ε)

Finally we combine Lemma 4.7, Lemma 4.8, Lemma 4.10 and Lemma 4.6 to prove Lemma 4.3. The argument are
also summarized in Figure 1, where we partition Rd into regions where our lemmas apply.

5 Rank-r case
In this section we show how to extend the results in Section 4 to recover matrices of rank r. Here we still use the same
proof strategy of Section 3. Though for simplicity we only write down the proof for the partial observation case, while
the analysis for the full observation case (which was our starting point) can be obtained by substituting [d]× [d] for Ω
everywhere.

Recall that in this case we assume the original matrix M = ZZT , where Z ∈ Rd×r. We also assume Assumption 1.
The objective function is very similar to the rank 1 case

f(X) =
1

2

∥∥PΩ(M −XX>)
∥∥2

F
+ λR(X) , (5.1)

where R(X) =
∑d
i=1 r(‖Xi‖) . Recall that r(t) = (|t| − α)4 It>α. Here α and λ are again parameters that we will

determined later.
Without loss of generality, we assume that ‖Z‖2F = r in this section. This implies that σmax(Z) > 1 > σmin(Z).

Now we shall state the first and second order optimality conditions:

Proposition 5.1. If X is a local optimum of objective function (5.1), its first order optimality condition is,

2PΩ(M)X = 2PΩ(XX>)X + λ∇R(X) , (5.2)

and the second order optimality condition is equivalent to

∀V ∈ Rd×r, ‖PΩ(V X> +XV >)‖2F + λ〈V >,∇2R(X)V 〉 > 2〈PΩ(M −XX>), V V >〉 . (5.3)

Note that the regularizer now is more complicated than the one dimensional case, but luckily we still have the
following nice property.

Proposition 5.2. We have that∇R(X) = ΓX where Γ ∈ Rd×d is a diagonal matrix with Γii = 4(‖Xi‖−α)4

‖Xi‖ I‖Xi‖>α.
As a direct consequence, 〈(∇R(X))i, Xi〉 > 0 for every i ∈ [d].

Now we are ready to state the precise version of Theorem 1.1:

Theorem 5.3. Suppose p > C max{µ6κ16r4, µ4κ4r6}d−1 log1.5 d where C is a large enough constant. Let α =
4µκr/

√
d, λ > µ2rp/α2. Then with high probability over the randomness of Ω, any local minimum X of f(·) satisfies

that f(X) = 0, and in particular, ZZ> = XX>.

The proof of this Theorem follows from a similar path as Theorem 4.2. We first notice that because of the
regularizer, any matrix X that satisfies first order optimality condition must be somewhat incoherent (this is analogues
to Lemma 4.7):
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Lemma 5.4. Suppose |Si| 6 2pd. Then for any X satisfies 1st order optimality (5.2), we have

‖X‖2→∞ = max
i
‖Xi‖ 6 4 max

{
α, µ

√
rp/λ

}
(5.4)

Proof. Assume i? = argmaxi ‖Xi‖. Suppose the ith row of Ω consists of entries with index [i]× Si. If ‖Xi?‖ 6 2α,
then we are done. Therefore in the rest of the proof we assume ‖Xi?‖ > 2α.

We will compare the i-th row of LHS and RHS of (5.2). For preparation, we have

(PΩ(M)x)i? =
(
PΩ(ZZ>)X

)
i?

=
(
PΩ(ZZ>)

)
i?
X (5.5)

Then we have that∥∥(PΩ(ZZ>)
)
i?

∥∥
1

=
∑
j∈Si?

|〈Zi? , Zj〉|

6
∑
j∈Si?

‖Zi?‖‖Zj‖ 6
∑
j∈Si?

µ2r/d|S1| (by incoherence of Z)

6 2µ2rp . (by |Si? | 6 2pd)

Therefore we can bound the `2 norm of LHS of 1st order optimality condition (5.2) by∥∥(PΩ(ZZ>)X
)
i?

∥∥ 6
∥∥(PΩ(ZZ>)

)
i?

∥∥
1

∥∥X>∥∥
1→2

6 2µ2rp ‖X‖2→∞ (by ‖X‖2→∞ =
∥∥X>∥∥

1→2
)

= 2µ2rp ‖Xi?‖ (5.6)

Next we lowerbound the norm of the RHS of equation (5.2). We have that

(PΩ(XX>)X)i? =
∑
j∈Si?

〈Xi? , Xj〉Xj = Xi

∑
j∈Xi?

X>j Xj ,

which implies that

〈(PΩ(XX>)X)i? , Xi?〉 = Xi?

 ∑
j∈Xi?

X>j Xj

X>i? > 0 . (5.7)

Using Proposition 5.2 we obtain that

〈(PΩ(XX>)X)i? , (∇R(X))i?〉 = ΓiiXi?

 ∑
j∈Xi?

X>j Xj

X>i? > 0 . (5.8)

It follows that ∥∥(PΩ(XX>)X)i? + (λ∇R(X))i?
∥∥ > ‖(λ∇R(X))i?‖ (by equation (5.8))

=
4λ(‖Xi?‖ − α)3

‖Xi?‖
· ‖Xi?‖ (by Proposition 5.2)

>
λ

2
‖Xi?‖3 (by the assumptino ‖Xi?‖ > 2α)

Therefore plugging in equation above and equation (5.6) into 1st order optimality condition (5.2). We obtain that
‖Xi?‖ 6

√
8µ2rp/λ which completes the proof.

Next, we prove a property implied by first order optimality condition, which is similar to Lemma 4.9.
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Lemma 5.5. In the setting of Theorem 5.3, with high probability over the choice of Ω, for any X that satisfies 1st order
optimality condition (5.2), we have

‖X‖2F 6 2rσmax(Z)2 . (5.9)

Moreover, we have
σmax(X) 6 2σmax(Z)r1/6 . (5.10)

and ∥∥ZZTX −XXTX − γ∇R(X)
∥∥
F
6 O(δ) (5.11)

where δ = O(µ3κ3r2 log0.75(d)σmax(Z)−3(dp)−1/2) and γ = λ/(2p) > 0.

Proof. If ‖X‖F 6
√
rσmax(Z)2 we are done. When ‖X‖F >

√
rσmax(Z)2, by Lemma 5.4, we have that

max ‖Xi‖ 6 4α = 4µκr/
√
d, and therefore max ‖Xi‖ 6 ν‖X‖F with ν = O(µκ

√
r/σmax(Z)). Then by Theo-

rem D.2, we have that ∥∥PΩ(ZZ>)X − pZZ>X
∥∥
F
6 pδ ,

and ∥∥PΩ(XX>)X −XX>X
∥∥
F
6 pδ ,

where δ = O(µ3κ3r2 log0.75(d)σmax(Z)−3(dp)−1/2). These two imply equation (5.11). Moreover, we have

p
∥∥ZZ>X∥∥

F
=
∥∥PΩ(ZZ>)X

∥∥
F
± pδ =

∥∥PΩ(XX>)X + λR(X)
∥∥
F
± pδ (by equation (5.2))

>
∥∥PΩ(XX>)X

∥∥
F
± pδ (by equation (5.8))

> p
∥∥XX>X∥∥

F
± 2pδ (5.12)

Suppose X has singular value σ1 > . . . > σr. Then we have
∥∥ZZ>X∥∥2

F
6 ‖ZZ>‖2‖X‖2F 6 σmax(Z)4‖X‖2F =

σmax(Z)4(σ2
1 + · · ·+ σ2

r). On the other hand,
∥∥XX>X∥∥2

F
= σ6

1 + · · ·+ σ6
r . Therefore, equation (5.12) implies that

(1 +O(δ))σmax(Z)4
r∑
i=1

σ2
i >

r∑
i=1

σ6
i

Then we have (by Proposition E.1) we complete the proof.

Now we look at the second order optimality condition, this condition implies the smallest singular value of X
is large (similar to Lemma 4.8). Note that this lemma is also true even if x only satisfies relaxed second order
optimality condition with τ = 0.01pσmin(Z).

Lemma 5.6. In the setting of Theorem 5.3. With high probability over the choice of Ω, suppose X satisfies equa-
tion (5.9), (5.4) the 2nd order optimality condition (5.3). Then,

σmin(X) >
1

4
σmin(Z) (5.13)

Proof. Let J = {i : ‖Xi‖ 6 α}. Let v ∈ Rr such that ‖Xv‖ = σmin(X). . Let ZJ be the matrix that has the same
i-th row as Z for every i ∈ J and 0 elsewhere. Since ZJ has column rank at most r, by variational characterization of
singular values, we have that for there exists unit vector zJ ∈ col-span(ZJ) such that ‖X>zJ‖ 6 σmin(X).

We claim that σmin(ZJ) > 1
2σmin(Z). Let L = [d] − J . Since for any i ∈ L it holds that ‖Xi‖ > α, we have

|L|α2 6 ‖X‖2F 6 2rσmax(Z)2 (by equation (5.9)), and it follows that |L| 6 2rσmax(Z)2/α2. Therefore,

σmin(ZJ) > σmin(Z)− σmax(ZL) > σmin(Z)− ‖ZL‖F
> σmin(Z)−

√
|L|rµ2/d > σmin(Z)−

√
2r2σmax(Z)2µ2/(α2d)

>
1

2
σmin(Z) . (by α > rκµ√

d
)
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Since zJ ∈ col-span(ZJ) is a unit vector, we have that zJ can be written as zJ = ZJβ where ‖β‖ 6 1
σmin(ZJ ) 6

O(1/σmin(Z)). Therefore this in turn implies that ‖zJ‖∞ 6 ‖ZJ‖2→∞‖β‖ 6 O(µ
√
r/d/σmin(Z)) 6 O(µκ

√
r/d).

We will plug in V = zJv
T in the 2nd order optimality condition (5.3). Note that since zJ ∈ col-span(ZJ), it is

supported on subset J , and therefore ∇2R(X)V = 0. Therefore the term about regularization in (5.3) will vanish. For
simplicity, let y = X>zJ , w = Xv We obtain that taking V = zJv

> in equation (5.3) will result in∥∥PΩ(wz>J + zJw
>)
∥∥2

F
> 2〈PΩ(ZZ> −XX>), zJz

>
J 〉

Note that we have that ‖w‖∞ 6 ‖X‖2→∞‖v‖ 6 µ
√
r/d. Recalling that ‖zJ‖∞ 6 O(µκ

√
r/d), by Theorem D.1,

we have that
p
∥∥wz>J + zJw

>∥∥2

F
> 2p〈ZZ> −XX>, zJz>J 〉 − δp

where δ = O(µ2κr2(pd)−1/2). Then simple algebraic manipulation gives that

〈w, zJ〉2 + ‖w‖2‖zJ‖2 + ‖X>zJ‖2 > ‖Z>zJ‖2 − δ/2 (5.14)

Note that 〈w, zJ〉 = 〈v,X>zJ〉 = 〈y, v〉. Recall that ‖zJ‖ = 1 and z ∈ col-span(ZJ), and therefore ‖Z>zJ‖ =
‖Z>J zJ‖ > σ2

min(ZJ). Moreover, recall that ‖y‖ = ‖X>zJ‖ 6 σmin(X). Using these with equation (5.14) we obtain
that

〈w, zJ〉2 + ‖w‖2‖zJ‖2 + ‖X>zJ‖2 6 〈y, v〉2 + ‖w‖2 + ‖y‖2

6 2‖y‖2 + σ2
min(X) (by Cauchy-Schwarz and ‖w‖ = σmin(X).)

6 3σ2
min(X) (by ‖y‖ 6 σmin(X).)

Therefore together with equation (5.14) and ‖Z>zJ‖ > σ2
min(ZJ) we obtain that

σmin(X) > (1/2− Ω(δ))σmin(ZJ) (5.15)

Therefore combining equation (5.15) and the lower bound on σmin(ZJ) we complete the proof.

Similar as before, we show it is possible to remove the regularizer term here, again the intuition is that the regularizer
is always in the same direction as X .

Lemma 5.7. Suppose X satisfies equation (5.4) and (5.13) and (5.10), then for any γ > 0,∥∥ZZTX −XXTX
∥∥2

F
6
∥∥ZZTX −XXTX − γ∇R(X)

∥∥2

F
(5.16)

Proof. Let L = {i : ‖Xi‖ > α}. For i 6∈ L, we have that (∇R(X))i = 0. Therefore it suffices to prove that for every
i ∈ L, ∥∥ZiZ>X −XiX

>X
∥∥2

6
∥∥ZiZ>X −XiX

>X − (γ∇R(X))i
∥∥2

It suffices to prove that
〈(∇R(X))i, XiX

>X − ZiZ>X〉 > 0 (5.17)

By proposition 5.2, we have∇R(X))i = ΓiiXi for Γii > 0. Then

〈(∇R(X))i, XiX
>X〉 = Γii〈Xi, XiX

>X〉

> Γii ‖Xi‖2 σmin(XTX)

>
1

4
Γii ‖Xi‖2 σmin(Z) (by equation 5.13)

On the other hand, we have

〈(∇R(X))i, ZiZ
>X〉 = Γii〈Xi, ZiZ

>X〉
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6 Γii‖Xi‖‖Zi‖σmax(ZTX) 6 Γii‖Xi‖‖Zi‖σmax(Z)σmax(X)

6 Γii‖Xi‖‖Zi‖σmax(Z)2r1/6 (by equation (5.10))

6
1

10
Γii‖Xi‖2σmax(Z)2r−1/3 (by ‖Xi‖ > α > 10

√
r‖Zi‖)

Therefore combining two equations above we obtain equation (5.17) which completes the proof.

Finally we show the form in Equation (5.16) implies ZZT is close to XXT (this is similar to Lemma 4.6).

Lemma 5.8. Suppose X and Z satisfies that σmin(X) > 1/4 · σmin(Z) and that∥∥ZZTX −XXTX
∥∥2

F
6 δ2

where δ 6 σ3
min(Z)/C for a large enough constant C, then

‖XX> − ZZ>‖2F 6 O(δκ2/σmin(Z)).

Proof. The proof is similar to the one-dimensional case, we will separate Z into the directions that are in column span
of X and its orthogonal subspace. We will then show the projection of Z in the column span is close to X , and the
projection on the orthogonal subspace must be small.

Let Z = U + V where U = Projspan(X)Z is the projection of Z to the column span of X , and V is the projection
to the orthogonal subspace. Then since V TX = 0 we know

ZZTX = (U + V )(U + V )TX = UUTX + V UTX.

Here columns of the first term UUTX are in the column span of X , and the columns second term V UTX are in the
orthogonal subspace. Therefore,

‖ZZTX −XXTX‖2F = ‖UUTX −XXTX‖2F + ‖V UTX‖2F 6 δ2.

In particular, both terms should be bounded by δ2. Therefore ‖UUT −XXT ‖2F 6 δ2/σ2
min(X) 6 16δ2/σ2

min(Z).
Also, we know σmin(UUTX) > σmin(XXTX) − δ > σmin(Z)3/128 if δ 6 σmin(Z)3/128. Therefore

σmin(UTX) is at least σmin(Z)3/‖Z‖128. Now ‖V ‖2F 6 δ2/σmin(UTX)2 6 O(δ2‖Z‖2/σmin(Z)6).
Finally, we can bound ‖UV T ‖F by ‖U‖‖V ‖F 6 ‖Z‖‖V ‖F (last inequality is because U is a projection of Z),

which at least Ω(‖V ‖2F ) when δ 6 σmin(Z)3/128, therefore

‖ZZT −XXT ‖F 6 ‖UUT −XXT ‖F + 2‖UV T ‖F + ‖V V T ‖F 6 O(δ‖Z‖2/σmin(Z)3).

Last thing we need to prove the main theorem is a result from Sun and Luo[SL15], which shows whenever XXT is
close to ZZT , the function is essentially strongly convex, and the only points that have 0 gradient are points where
XXT = ZZT , this is explained in Lemma C.1. Now we are ready to prove Theorem 5.3:

Proof of Theorem 5.3. SupposeX satisfies 1st and 2nd order optimality condition. Then by Lemma 5.5 and Lemma 5.4,
we have that X satisfies equation (5.4), (5.9), (5.10) and (5.11). Then by Lemma 5.6, we obtain that σmin(X) > 1/6 ·
σmin(Z). Now by Lemma 5.7 and equation (5.11), we have that

∥∥ZZTX −XXTX
∥∥
F
6 δ for δ 6 cσmin(Z)3/κ2

for sufficiently small constant c. Then by Lemma 5.8 we obtain that ‖ZZ> −XX>‖F 6 cσmin(Z)2 for sufficiently
small constant c. By Lemma C.1, in this region the only points that satisfy the first order optimality condition must
satisfy XXT = ZZT .

Handling Noise. To handle noise, notice that we can only hope to get an approximate solution in presence of noise,
and to get that our Lemmas only depend on concentration bounds which still apply in the noisy setting. See Section B
for details.
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6 Conclusions
Although the matrix completion objective is non-convex, we showed the objective function has very nice properties
that ensures the local minima are also global. This property gives guarantees for many basic optimization algorithms.
An important open problem is the robustness of this property under different model assumptions: Can we extend the
result to handle asymmetric matrix completion? Is it possible to add weights to different entries (similar to the settings
studied in [LLR16])? Can we replace the objective function with a different distance measure rather than Frobenius
norm (which is related to works on 1-bit matrix sensing [DPvdBW14])? We hope this framework of analyzing the
geometry of objective function can be applied to other problems.
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A Omitted Proofs in Section 4
We first prove the equivalent form of the first and second order optimality conditions:

Lemma A.1 (Proposition 4.1 restated). The first order optimality condition of objective (4.1) is,

2PΩ(M − xx>)x = λ∇R(x) ,

and the second order optimality condition requires:

∀v ∈ Rd, ‖PΩ(vx> + xv>)‖2F + λv>∇2R(x)v > 2v>PΩ(M − xx>)v .

Moreover, The τ -relaxed second order optimality condition requires

∀v ∈ Rd, ‖PΩ(vx> + xv>)‖2F + λv>∇2R(x)v > 2v>PΩ(M − xx>)v − τ‖v‖2 .

Proof. We take the Taylor’s expansion around point x. Let δ be an infinitesimal vector, we have

f(x+ δ) =
1

2
‖PΩ(M − (x+ δ)(x+ δ)>)‖2F + λR(x+ δ) + o(‖δ‖2)

=
1

2
‖PΩ(M − xx> − (xδ> + δx>)− δδ>)‖2F + λ

(
R(x) + 〈∇R(x), δ〉+

1

2
δT∇2R(x)δ

)
+ o(‖δ‖2)

=
1

2
‖M − xx>‖2Ω + λR(x)

− 〈PΩ(M − xx>), xδ> + δx>〉+ 〈∇R(x), δ〉+ o(‖δ‖2)

− 〈PΩ(M − xx>), δδ>〉+
1

2
‖PΩ(xδ> + δx>)‖2F +

1

2
λδ>∇2R(x)δ + o(‖δ‖2).

By symmetry 〈PΩ(M − xx>), xδ>〉 = 〈PΩ(M − xx>), δx>〉 = 〈PΩ(M − xx>)x, δ〉, so the first order optimal-
ity condition is ∀δ, 〈−2PΩ(M − xx>)x+ λ∇R(x), δ〉 = 0, which is equivalent to that 2PΩ(M − xx>)x = λ∇R(x).

The second order optimality condition says −〈PΩ(M − xx>), δδ>〉 + 1
2‖xδ

> + δx>‖2F + 1
2λδ
>∇2R(x)δ > 0

for every δ, which is exactly equivalent to Equation (4.3).

Next we show the full proof for the second order optimality condition:

Lemma A.2 (Lemma 4.8 restated). In the setting of Theorem 4.2, with high probability over the choice of Ω, suppose
x ∈ B′ satisfies second-order optimality condition (4.3) or τ -relaxed condition for τ 6 0.1p, we have ‖x‖2 > 1/8.

Proof. If ‖x‖ > 1, then we are done. Therefore in the rest of the proof we assume ‖x‖ 6 1. The proof is very similar
to Lemma 4.4. We plug in v = zJ instead into equation (4.3), where J = {i : |xi| 6 α}. Note that∇R(zJ) vanishes.
We plug in v = zJ in the equation (4.3) and obtain that x satisfies that∥∥PΩ(zJx

> + xz>J )
∥∥2

F
> 2z>J PΩ(M − xx>)zJ . (A.1)

Note that we assume ‖x‖∞ 6 2α, and in the beginning of the proof we assume wlog ‖x‖ 6 1. Moreover, we have
‖zJ‖ 6 µ√

d
an, ‖zJ‖ 6 1. Similarly to the derivation in the proof of Lemma 4.4, we apply Theorem D.1 (twice) and

obtain that with high probability over the choice of Ω, for every x, for ε = Õ(µ2(pd)−1/2),

LHS of (A.1) = p
∥∥zJx> + xz>J

∥∥2

F
±O(pε) = 2p‖x‖2‖zJ‖2 + 2p〈x, zJ〉2 ±O(pε) .

RHS of (A.1) = 2
(
〈PΩ(zz>), PΩ(zJz

>
J )〉 − 〈PΩ(xx>), PΩ(zJz

>
J )〉
)

(Since M = zz>)

= 2‖zJ‖4 − 2〈x, zJ〉2 ±O(pε) . (by Theorem D.1)
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(Again notice that using τ -relaxed second order optimality condition does not effect the RHS by too much, so it does
not change later steps.) Therefore plugging the estimates above back into equation (A.1), we have that

p‖x‖2‖zJ‖2 + 2p〈x, zJ〉2 > p‖zJ‖4 ±O(pε) ,

Using Cauchy-Schwarz, we have ‖x‖2‖zJ‖2 > 〈x, zJ〉2, and therefore we obtain that ‖zJ‖2‖x‖2 > 1
3‖zJ‖

4 −O(ε).
Finally, we claim that ‖zJ‖2 > 1/2, which completes the proof since ‖x‖2 > 1

3‖zJ‖
2 −O(ε) > 1/8.

Claim A.3. Suppose α > 4µ√
d

and x satisfies ‖x‖∞ 6 4α and ‖x‖ 6 2. Let J = {i : |xi| 6 α}. Then we have that
‖zJ‖ > 1/2.

The claim can be simply proved as follows: Since ‖x‖2 6 2 we have that |Jc| 6 2/α2 and therefore ‖zJc‖2 6
2µ2/(dα2). This further implies that ‖zJ‖2 = ‖z‖2 − ‖zL‖2 > (1− 2µ2/(dα2)) > 1

2 because α > 2µ√
d

.

Lemma A.4 (Lemma 4.10 restated). Suppose x ∈ B′ satisfies that ‖x‖2 > 1/8, under the same assumption as
Lemma 4.9. we have, ∥∥〈x, z〉z − ‖x‖2x∥∥ 6 O(ε)

Proof. Let L = {i : ‖xi‖ > α}. For i 6∈ L, we have that (∇R(x))i = 0. Therefore it suffices to prove that for every
i ∈ L,

(ziz
>x− xi‖x‖)2 6 (ziz

>x− xi‖x‖ − (γ∇R(x))i)
2

It suffices to prov that
(∇R(x))i(xi‖x‖2 − zi〈z, x〉) > 0 (A.2)

Since we have ∇R(x)i = γixi for some γi > 0, we have

(∇R(x))i · xi‖x‖2 = 〈γixi, xi‖x‖2〉
> γix

2
i ‖x‖2

>
1√
8
γix

2
i ‖x‖ (since ‖x‖2 > 1/8)

On the other hand, we have

(∇R(x))i · zi〈z, x〉 = γixizi〈z, x〉

6
1

4
γix

2
i ‖x‖‖z‖ (by |xi| > α > 4|zi|)

Therefore combining two equations above we obtain equation (A.2) which completes the proof.

B Handling Noise
Suppose instead of observing the matrix ZZT , we actually observe a noisy version M = ZZT + N , where N is a
Gaussian matrix with independent N(0, σ2) entries. In this case we should not hope to exactly recover ZZT (as two
close Z’s may generate the same observation). In this Section we show even with fairly large noise our arguments can
still hold.

Theorem B.1. Let µ̂ = max{µ,
√

4σd
√

log d
r }. Suppose p > Cµ̂6κ12r4d−1ε−2 log1.5 d where C is a large enough

constant. Let α = 2µ̂κr/
√
d, λ > µ̂2rp/α2. Then with high probability over the randomness of Ω, any local minimum

X of f(·) satisfies
‖XXT − ZZT ‖F 6 ε.

In fact, a noise level σ
√

log d 6 µ2r/d (when the noise is almost as large as the maximum possible entry) does not
change the conclusions of Lemmas in this Section.

19



Proof. There are only three places in the proof where the noise will make a difference. These are: 1. The infinity norm
bound of M , used in Lemma 5.4. 2. The LHS of first order optimality condition (Equation (5.2)). 3. The RHS of
second order optimality condition (Equation (5.3)).

What we require in these three steps are: 1. |M |∞ should be smaller than µ2r/d. 2. 〈PΩ(N),W 〉 should be smaller
than |〈PΩ(N), PΩ(W )〉| 6 O(σ|Z|∞dr log d+

√
pd2rσ2|W |∞‖W‖F log d). 3. ‖PΩ(N)‖ 6 εp‖ZZT ‖F . When we

define the µ̂ = max{µ,
√

4σd
√

log d
r }, all of these are satisfied (by Lemma D.5 and D.6).

Now we can follow the proof and see δ 6 cεσmin(Z)/κ2 for small enough constant c, and By Lemma 5.8 we know
‖XXT − ZZT ‖F 6 ε.

C Finding the Exact Factorization
In Section 5, we showed that any point that satisfies the first and second order necessary condition must satisfy
‖XXT − ZZT ‖F 6 c for a small enough constant c. In this section we will show that in fact XXT must be exactly
equal to ZZT . The proof technique here is mostly based on the work of Sun and Luo[SL15]. However we have to
modify their proof because we use slightly different regularizers, and we work in the symmetric case. The main Lemma
in [SL15] can be rephrased as follows in our setting:

Lemma C.1 (Analog to Lemma 3.1 in [SL15]). Suppose p > Cµ4r6κ4d−1 log d for large enough absolute constant
C, and ε = σmin(Z)2/100. with high probability over the randomness of Ω, we have that for any point X in the set

Bε =

{
X ∈ Rd×r : ‖XXT − ZZT ‖F 6 ε, ‖X‖2→∞ 6

16µκr√
d

}
, (C.1)

there exists a matrix U such that UUT = ZZT and

〈∇f(X), X − U〉 > p

4
‖M −XXT ‖2F .

As a consequence, any point X in the set B that satisfies first order optimality condition must be a global optimum (or,
equivalently, satisfy XXT = ZZT ).

Recall f(X) = 1
2‖PΩ(M −XXT )‖2F + λR(X). The proof of Lemma C.1 consists of three steps:

1. The regularizer has nonnegative correlation with (X − U): for any U such that UUT = ZZT , we have
〈∇R(X), X − U〉 > 0. (Claim C.3).

2. There exists a matrix U such that UUT = ZZT , and U is close to X . (Claim C.4)
3. Argue that 〈∇f(x), X − U〉 > p

4‖PΩ(M −XXT )‖2F when U is close to X . (See proof of Lemma C.1).
Before going into details, the first useful observation is that all matrices U with UUT = ZZT have the same row norm.

Claim C.2. Suppose U,Z ∈ Rd×r satisfy UU> = ZZ>. Then, for any i ∈ [d] we have ‖Ui‖ = ‖Zi‖. Consequently,
‖U‖F = ‖Z‖F .

Proof. Suppose UU> = ZZ>, then we have U = ZR where R is an orthonormal matrix. In particular, the i-th row of
U is equal to

Ui = ZiR.

Since `2 norm (and Frobenius norm) is preserved after multiplying with an orthonormal matrix, we know ‖Ui‖ = ‖Zi‖.
The Frobenius norm bound follows immediately.

Note that this simple observation is only true in the symmetric case. This Claims serves as the same role of the
bounds on row norms of U, V in the asymmetric case (Propositions 4.1 and 4.2 of [SL15]).

Next we are ready to argue that the regularizer is always positively correlated with X − U .

Claim C.3. For any U such that UUT = ZZT , we have,

〈∇R(X), X − U〉 > 0.
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Proof. Since the regularizer is applied independently to individual rows, we can rewrite 〈∇R(X), X − U〉 =∑n
i=1〈∇R(Xi), Xi − Ui〉, and focus on i-th row.
For each row Xi, ∇R(Xi) is 0 when ‖Xi‖ 6 2µ

√
r/
√
d. In that case 〈∇R(Xi), Xi − Ui〉 = 0.

When ‖Xi‖ is larger than 2µ/
√
d, we know∇R(Xi) is always in the same direction asXi. In this case λ∇R(Xi) =

γXi for some γ > 0 and ‖Xi‖ > 2µ
√
r/
√
d > 2‖Zi‖ = 2‖Ui‖ (where last equality is by Claim C.2). Therefore by

triangle inequality
〈Xi, Xi − Ui〉 > ‖Xi‖2 − ‖Xi‖‖Ui‖ > ‖Xi‖2/2 > 0.

This then implies 〈λ∇R(Xi), Xi − Ui〉 = γ〈Xi, Xi − Ui〉 > 0.

Next we will prove the gradient of 1
2‖PΩ(M −XXT )‖2F has a large correlation with X − U . This is analogous to

Proposition 4.2 in [SL15].

Claim C.4. Suppose ‖XXT − M‖F = ε 6 σmin(Z)2/100, there exists a matrix U such that UUT = M and
‖X − U‖F 6 5ε

√
r/σmin(Z)2.

Proof. Without loss of generality we assume M is a diagonal matrix with first r diagonal terms be-
ing σ1(Z)2, σ2(Z)2, ..., σr(Z)2 (this can be done by a change of basis). That is, we assume M =
diag(σ1(Z)2, . . . , σr(Z)2), 0, . . . , 0). We use M ′ to denote the first r × r principle submatrix of M .

We write X =

[
V
W

]
where V contains the first r rows of X , and W ∈ R(d−r)×r contains the remaining rows in X .

We write similarly U =

[
P
Q

]
where P and Q denote the first r rows and the rest of rows respectively.

In order to construct U , we first notice that Q must be constructed as a zero matrix since M has non-zero diagonal
only on the top-left corner. A natural guess of P then becomes a “normalized” version of V .

Concretely, we construct P := V S = V (V T (M ′)−1V )−1/2 (where S := (V T (M ′)−1V )−1/2). Thus, the
difference between U and X is equal to ‖U −X‖F 6 ‖P − V ‖F + ‖W‖F .

Since ‖XXT −M‖F 6 ε, we know ‖M ′− V V T ‖2F + 2‖VWT ‖2F 6 ε2. In particular both terms are smaller than
ε2.

First, we bound ‖W‖F . Note that since ‖M ′ − V V T ‖F 6 ε 6 σmin(Z)2/100, we know σmin(V )2 >
0.99σmin(Z)2. Therefore σmin(V ) > 0.9σmin(Z). Now we know ‖W‖F 6 ‖VWT ‖F /σmin(V ) 6 2ε/σmin(Z).

Next we bound ‖P − V ‖2F . Since ‖M ′ − V V T ‖F 6 ε 6 σmin(Z)2/100, we know (1− 2ε/σmin(Z)2)V V T �
M ′ � (1 + 2ε2/σmin(Z)2)V V T . This implies ‖V ‖F 6 1.1‖Z‖F , and (1 − 2ε/σmin(Z)2)I � V TM−1V �
(1 + 2ε/σmin(Z)2)I . Therefore the matrix S is also very close to identity, in particular, ‖S − I‖ 6 2ε/σmin(Z)2.
Now we know ‖P − V ‖F = ‖V ‖F ‖S − I‖ 6 3ε‖Z‖F /σmin(Z)2. Using the fact that ‖Z‖F = 1 we know
‖U −X‖F 6 ‖P − V ‖F + ‖W‖F 6 5ε

√
r/σmin(Z)2.

We can now combine this Claim with a sampling lemma to show ‖PΩ((X − U)(X − U)T )‖2F is small:

Lemma C.5. Under the same setting of Lemma C.1, with probability at least 1− 1/(2n)4 over the choice of Ω, if U
satisfies conclusion of Claim C.4, then,

‖PΩ((X − U)(X − U)T )‖2F 6
p

25
‖M −XXT ‖2F .

Intuitively, this Lemma is true because ‖(X − U)(X − U)T ‖F 6 25‖M −XXT ‖2F r/σmin(Z)4, which is much
smaller than ‖M−XXT ‖F when ‖M−XXT ‖F is small. By concentration inequalities we expect ‖PΩ((X−U)(X−
U)T )‖2F to be roughly equal to p‖(X − U)(X − U)T ‖F , therefore it must be much smaller than p‖M −XXT ‖2F .
The proof of this Lemma is exactly the same as Proposition 4.3 in [SL15] (in fact, it is directly implied by Proposition
4.3), so we omit the proof here. We also need a different concentration bound for the projection of the norm of the
matrix a = U(X − U)T + (X − U)UT . Unlike the previous lemma, here we want ‖PΩ(a)‖F to be large.
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Lemma C.6. Under the same setting of Lemma C.1, let a = U(X −U)T + (X −U)UT where U is constructed as in
Claim C.4. Then, with high probability, we have that for any X ∈ Bε,

‖PΩ(a)‖2F >
5p

6
‖a‖2F .

Intuitively this should be true because a is in the tangent space {Z : Z = UWT + (W ′)UT } which has rank O(nr).
The proof of this follows from Theorem 3.4 [Rec11], and is written in detail in Equations (37) - (41) in [SL15].

Finally we are ready to prove the main lemma. The proof is the same as the outline given in Section 4.1 of [SL15].
We give it here for completeness.

Proof of Lemma C.1. Note that f(X) is equal to h(X) + λR(X) where where h(X) = 1
2‖PΩ(M −XXT )‖2F , and

R(X) is the regularizer. By Claim C.3 we know 〈∇R(X), X − U〉 > 0, so we only need to prove there exists a U
such that UUT = Z and 〈∇g(X), X − U〉 > p

4‖M −XX
T ‖2F .

Define a = U(X − U)T + (X − U)UT , b = (U −X)(U −X)T , then XXT −M = a+ b and (X − U)XT +
X(X − U)T = a+ 2b.

Now

〈∇h(X), X − U〉 = 2〈PΩ(XXT −M)X,X − U〉
= 〈PΩ(XXT −M), (X − U)XT +X(X − U)T 〉
= 〈PΩ(a+ b), PΩ(a+ 2b)〉
= ‖PΩ(a)‖2F + 2‖PΩ(b)‖2F + 3〈PΩ(a), PΩ(b)〉
> ‖PΩ(a)‖2F + 2‖PΩ(b)‖2F − 3‖PΩ(a)‖‖PΩ(b)‖.

Let ε = ‖M −XXT ‖F . Note that from Claim C.4 and Lemma C.5, we know

‖b‖F 6 ε/10, ‖PΩ(b)‖F 6
√
pd/5.

Therefore as long as we can show ‖PΩ(a)‖F is large we are done. This is true because ‖a‖F > ‖M−XXT ‖F−‖b‖F >
9ε/10. Hence by Lemma C.6 we know

‖PΩ(A)‖2F >
5p

6
‖a‖2F >

27

40
pε2.

Combining the bounds for ‖PΩ(a)‖F , ‖PΩ(b)‖F , we know 〈∇g(X), X − U〉 > p
4‖M −XX

T ‖2F . Together with
the fact that 〈∇R(X), X − U〉 > 0, we know

〈∇f(X), X − U〉 > p

4
‖M −XXT ‖2F .

D Concentration inequality
In this section we prove the concentration inequalities used in the main part. We first show that the inner-product of
two low rank matrices is preserved after restricting to the observed entries. This is mostly used in arguments about the
second order necessary conditions.

Theorem D.1. With high probability over the choice of Ω, for any two rank-r matrices W,Z ∈ Rd×d, we have

|〈PΩ(W ), PΩ(Z)〉 − p〈W,Z〉| 6 O(|W |∞|Z|∞dr log d+
√
pdr|W |∞|Z|∞ ‖W‖F ‖Z‖F log d)
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Proof. Since both LHS and RHS are bilinaer in both W and Z, without loss of generality we assume the Frobenius
norms of W and Z are all equal to 1. Note that in this case we should expect |W |∞ > 1/d.

Let δi,j be the indicator variable for Ω, we know

〈PΩ(W,Z〉 =
∑
i,j

δi,jWi,jZi,j ,

and in expectation it is equal to p〈W,Z〉. LetQ =
∑
i,j(δi,j−p)Wi,jZi,j . We can then viewQ as a sum of independent

entries (note that δi,j = δj,i, but we can simply merge the two terms and the variance is at most a factor 2 larger). The
expectation E[Q] = 0. Each entry in the sum is bounded by |W |∞|Z|∞, and the variance is bounded by

V[Q] 6 p
∑
i,j

(Wi,jZi,j)
2

6 pmax
i,j
|Wi,j |2

∑
i,j

Z2
i,j

6 p|W |2∞.

Similarly, we also know V[Q] 6 p|Z|2∞ and hence V[Q] 6 p|W |∞|Z|∞.
Now we can apply Bernstein’s inequality, with probability at most η,

|Q− E[Q]| > |W |∞|Z|∞ log 1/η +
√
p|W |∞|Z|∞ log(1/η).

By Proposition E.2, there is a set Γ of size dO(dr) such that for any rank r matrix X , there is a matrix X̂ ∈ Γ such
that ‖X − X̂‖F 6 1/d3. When W and Z come from this set, we can set η = d−Cdr for a large enough constant C. By
union bound, with high probability

|Q− E[Q]| 6 O(|W |∞|Z|∞dr log d+
√
pdr|W |∞|Z|∞ log d).

When W and Z are not from this set Γ, let Ŵ and Ẑ be the closest matrix in Γ, then we know |〈PΩ(W ), PΩ(Z)〉 −
p〈W,Z〉 − (〈PΩ(Ŵ ), PΩ(Ẑ)〉 − p〈Ŵ , Ẑ〉)| 6 O(1/d3)� |W |∞|Z|∞dr log d. Therefore we still have

|〈PΩ(W ), PΩ(Z)〉 − p〈W,Z〉| 6 O(|W |∞|Z|∞dr log d+
√
pdr|W |∞|Z|∞ ‖W‖F ‖Z‖F log d).

Next Theorem shows PΩ(XXT )X is roughly equal to pXXTX , this is one of the major terms in the gradient.

Theorem D.2. When p > Cν6r log1.5 d
dε2 for a large enough constant C, With high probability over the randomness of Ω,

for any matrix X ∈ Rd×r such that ‖Xi‖ 6 ν
√

1
d‖X‖F , we have

‖PΩ(XX>)X − pXXTX‖F 6 pε‖X‖3F (D.1)

Proof. Without loss of generality we assume ‖X‖F = 1. Let δi,j be the indicator variable for Ω, we first prove the
result when δi,j are independent, then we will use standard techniques to show the same argument works for δi,j = δj,i.

Note that
[PΩ(XX>)X]i =

∑
j

δi,j〈Xi, Xj〉Xj ,

whose expectation is equal to
[pXXTX]i = p

∑
j

〈Xi, Xj〉Xj .

We know ‖Xi‖ 6 ν
√

1
d , therefore each term is bounded by ν3(1/d)3/2. Let Zi be a random variable that is

equal to ‖PΩ(XX>)X]i − [pXXTX]i‖2, then it is easy to see E[Zi] 6 pdν6(r/d)3 = pν6/d2. and the variance
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V[Zi] = E[Z2
i ] − E[Zi]

2 6 pdν12(1/d)6 + 2E[Zi]
2 6 3E[Zi]

2 (as long as p > 1/d). Our goal now is to prove∑d
i=1 Zi 6 p2ε2 for all X .
Let Zi be a truncated version of Zi. That is, Zi = Zi when Zi 6 [2pdν3(1/d)3/2]2, and Zi = [2pdν3(1/d)3/2]2

otherwise. It’s not hard to see Zi has smaller mean and variance compared to Zi. Also, by vector’s Bernstein’s
inequality, we know

P[

√
Zi 6 t] 6 d exp

(
− t2

pν6

d2 + t ν
3

d3/2

)
.

Notice that this is only relevant when t 6 O(pν3d−1/2) (because otherwise the probability is 0) and in that regime
the variance term always dominates. Therefore Zi is the square of a subgaussian random variable.

By the Bernstein’s inequality, we know the moments of
√
Zi − E[

√
Zi] are dominated by a Gaussian distribution

with variance O(E[Zi
√

log d).
Now we can use the concentration bound for quadratics of the subgaussian random variables[HKZ12]: we know

that with probability exp(−t),
d∑
i=1

Zi 6 O(E[Z2
i ]
√

log d(d+ 2
√
dt+ 2t)).

this means with probability exp(−Cdrlogd) with some large constant C, we know
∑d
i=1 Zi 6 O(pν6r log1.5 d/d).

The probability is low enough for us to union bound over all X in a standard ε-net such that every other X is within dis-
tance (ε/d)6. Therefore we know with high probability for all X in the ε-net we have

∑d
i=1 Zi 6 O(pν6r log1.5 d/d),

which is smaller than p2ε2 when p > Cν6r log1.5 d
dε2 for a large enough constant C.

For any X̂ that is not in the ε-net, let X be the closest point of X in the net, then ‖X − X̂‖F 6 1/d6, therefore the
bound of X̂ clearly follows from the bound of X .

Now to convert sum of Zi to sum of Zi, notice that with high probability there are at most 2pd entries in Ω for every
row. When that happens Zi is always bounded by [2pdν3(1/d)3/2]2 so Zi = Zi. Let event 1 be

∑d
i=1 Zi 6 p2ε2 for

all X , and let event 2 be that there are at most 2pd entries per row, we know with high probability both event happens,
and in that case

∑d
i=1 Zi 6 p2ε2 for all X .

Handling δi,j = δj,i. First notice that the diagonal entries δi,i’s cannot change the Frobenius norm by more than
O(ν3(1/d)3/2 ·

√
d) 6 pε so we can ignore the diagonal terms. Now for independent terms δi,j , let γj,i = δi,j ,

then by union bound both δi,j and γi,j satisfy the equation, and by triangle’s inequality (δi,j + γi,j)/2 also satisfies
the inequality. Let τi,j be the true indicator of Ω (hence τi,j = τj,i), and τ ′i,j be an independent copy, we know
(τi,j + τ ′i,j)/2 has the same distribution as (δi,j + γi,j)/2 (for off-diagonal entries), therefore with high probability the
equation is true for (τi,j + τ ′i,j)/2. The Theorem then follows from the standard Claim below for decoupling (note that
sup‖X‖F =1 ‖PΩ(XXT )X − pXXTX‖F is a norm for the indicator variables of Ω):
Claim D.3. Let X,Y be two iid random variables, then

P[‖X‖ > t] 6 3P[‖X + Y ‖ > 2t

3
].

Proof. Let X,Y, Z be iid random variables then,

P[X > t] = P[‖(X + Y ) + (X + Z)− (Y + Z)‖ > 2t]

6 P[‖X + Y ‖ > 2t/3] + P[‖X + Z‖ > 2t/3] + P[‖Y + Z‖ > 2t/3]

6 3P[‖X + Y ‖ > 2t

3
].
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Finally we argue that random sampling of a matrix gives a nice spectral approximation. This is a standard Lemma
that is used in arguing about the PΩ(M)X term in the gradient (PΩ(M −XXT )X).

Lemma D.4. Suppose W ∈ Rd×d satisfies that |W |∞ 6 ν
d‖W‖F , then with high probability (1 − d−10) over the

choice of Ω,
‖PΩ(W )− pW‖ 6 εp‖W‖F .

where ε = O(ν
√

log d/(pd)).

Proof. Without loss of generality we assume ‖W‖F = 1. The proof follows simply from application of Bernstein
inequality. We view PΩ(W ) as

PΩ(W ) =
∑

i,j∈[d]2

sijWijδij

where δij ∈ Rd×d is the indicator matrix for entry (i, j), and sij ∈ {0, 1} are independent Bernoulli variable with
probability p of being 1. Then we have that E[PΩ(W )] = pW and ‖sijWijδij‖ 6 ν

d‖W‖F . Moreover, we compute
the variance by ∑

i,j∈[d]2

E[sijW
2
ijδ
>
ijδij ] =

∑
i,j∈[d]2

E[sijW
2
ijδjj ]

=
∑
j∈[d]

p

(∑
i∈d

W 2
ij

)
δjj (D.2)

Therefore ∥∥∥∥∥∥
∑

i,j∈[d]2

E[sijW
2
ijδ
>
ijδij ]

∥∥∥∥∥∥ 6
pν2

d

Similarly we can control
∥∥∥∑i,j∈[d]2 E[sijW

2
ijδijδ

>
ij ]
∥∥∥ by pν2/d (again notice that although δi,j = δj,i the bounds here

are correct up to constant factors). Then it follows from non-commutative Bernstein inequality [Imb10] that

P
Ω

[‖PΩ(W )− p(W )‖ > εp] 6 d exp(−2ε2pd/ν2) .

Concentration Lemmas for Noise Matrix N . Next we will state the concentration lemmas that are necessary when
observed matrix is perturbed by Gaussian noise. The proof of these Lemmas are really exactly the same (in fact even
simpler) than the corresponding Theorem that we have just proven. The first Lemma is used in the same settings as
Theorem D.1.

Lemma D.5. Let N be a random matrix with independent Gaussian entries N(0, σ2). With high probability over the
support Ω and the Gaussian N , for any low rank matrix W , we have

|〈PΩ(N), PΩ(W )〉| 6 O(σ|Z|∞dr log d+
√
pd2rσ2|W |∞‖W‖F log d

Proof. The proof is exactly the same as Theorem D.1 as |〈PΩ(N), PΩ(W )〉| is a sum of independent entries that
follows from the same Bernstein’s inequality.

Next we show that random sampling entries of a Gaussian matrix gives a matrix with low spectral norm.

Lemma D.6. Let N be a random Gaussian matrix with independent Gaussian entries N(0, σ2), with high probability
over the choice of Ω and N , we have

‖PΩ(N)‖ 6 εpσd,

where ε = O(
√

log d/pd).

Proof. Again the proof follows from the same argument as Lemma D.4.
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E Auxiliary Lemmas
Proposition E.1. Let a1, . . . , ar > 0, C > 0. ThenC4(a2

1 + · · ·+a2
r) > a6

1 + · · ·+a6
r implies that a2

1 + · · ·+a2
r 6 C2r

and that max ai 6 Cr1/6.

Proof. By Cauchy-Schwarz inequality, we have,(
r∑
i=1

a2
i

)(
r∑
i=1

a6
i

)
>

(
r∑
i=1

a4
i

)2

>

1

r

(
r∑
i=1

a2
i

)2
2

Using the assumption and equation above we have that a2
1 + · · · + a2

r 6 C2r. This implies with the condition that
a6

1 + · · ·+ a6
r 6 C6r, which implis that max ai 6 Cr1/6.

Proposition E.2. For any ζ ∈ (0, 1), there is a set Γ of rank r d× d matrices, such that for any rank r d× d matrix X
with Frobenius norm at most 1, there is a matrix X̂ ∈ Γ with ‖X − X̂‖F 6 ζ. The size of Γ is bounded by (d/ζ)O(dr).

Proof. Standard construction of ε-net shows that there is a set P ⊂ Rd of size (d/ε)O(d) such that for any ‖u‖ 6 1,
there is a û ∈ P such that ‖u− û‖ 6 ε. Such construction can also be applied to matrices and Frobenius norm as that
is the same as vectors and `2 norm.

Here we let ε = 0.1ζ, and construct three sets P1, P2, P3 where P1 is an ε-net for d× r matrices with Frobenius
norm at most

√
r, P2 is an ε-net for r × r diagonal matrices whose Frobenius norm is bounded by 1, and P3 is an ε-net

for r × d matrices with Frobenius norm at most
√
r.

Now we define Γ = {ÛD̂V̂ |Û ∈ P1, D̂ ∈ P2, V̂ ∈ P3}. Clearly the size of Γ is as promised. For any rank r d× d
matrix X , suppose its Singular Value Decomposition is UDV , we can find Û ∈ P1, D̂ ∈ P2 and V̂ ∈ P3 that are ε
close to U,D, V respectively. Therefore ÛD̂V̂ ∈ Γ and it is easy to check

‖UDV − ÛD̂V̂ ‖F 6 8ε 6 ζ.
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