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A Proofs

A.1 Proof of Theorem 2.1

Proof. Suppose by contradiction, that there is a set Γ ⊆ <q with positive Lebesgue measure, such that
for all z ∈ Γ, F ′1z(r) = F ′2z(r) for all r > 0. It follows that

∫
y∈Bq(z,r)

dF1(y)−
∫
y∈Bq(z,r)

dF2(y) =

0 for all r > 0 and z ∈ Γ. Since |F1 − F2| ≤ 1, clearly F1 − F2 is of at most exponential-quadratic
growth. Moreover, the only real analytic function that vanishes on Γ is the zero function, since Γ
has positive Lebesgue measure. Therefore, it follows from Proposition 2.1 that F1 − F2 = 0, thus
contradicting the fact that H0 is false.

A.2 Proof of Corollary 2.1

Proof. If H0 : F1 = F2 is false, then Theorem 2.1 guarantees that for every z, apart from at most a
set of Lebesgue measure zero, the null univariate hypothesis, H ′0 : F ′1z = F ′2z , is false. Since for such
a good z the asymptotic power of a false null univariate hypothesis will be one for any consistent
two-sample univariate test, the power of the multivariate test will be one.

A.3 Proof of Theorem 2.2

Proof. Suppose by contradiction, that there is a set Γ ⊆ <p+q with positive Lebesgue measure, such
that for all z ∈ Γ, F ′XY z(rx, ry) = F ′Xz(rx)F ′Y z(ry) for all rx > 0, ry > 0. It follows that for all
z ∈ Γ and rx > 0, ry > 0,∫

(‖x−zx‖,‖y−zy‖)≤(rx,ry)

dFXY (x, y) =

∫
‖x−zx‖≤rx

dFX(x)

∫
‖y−zy‖≤ry

dFY (y).

It thus follows that for all z ∈ Γ and any r > 0,∫
(‖(x,y)−(zx,zy)‖)≤r

dFXY (x, y) =

∫
‖(x,y)−(zx,zy)‖≤r

dFX(x)dFY (y). (1)

However, from Theorem 2.1, with F1 = FXY and F2 = FXFY , it follows that for all z ∈ Γ, apart
from a set of Lebesgue measure 0, there exists an r > 0 such that∫

(‖(x,y)−(zx,zy)‖)≤r
dFXY (x, y) 6=

∫
‖(x,y)−(zx,zy)‖≤r

dFX(x)dFY (y),

thus contradicting (1).
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A.4 Proof of Corollary 2.2

Proof. If H0 : FXY = FXFY is false, then Theorem 2.2 guarantees that for every z, apart from at
most a set of Lebesgue measure 0, the null univariate hypothesis, H ′0 : F ′XY z = F ′XzF

′
Y z , is false.

Since for such a z the asymptotic power of a false null univariate hypothesis test will be one for any
consistent univariate test of independence, the power of the multivariate test will be one.

A.5 Proof of Theorem 3.1

Proof. Proving item 2 will prove item 1 since if the Bonferonni adjusted p-value is consistent then so
is the permutation test based on the minimum p-value (or maximum statistic), which has necessarily
a smaller p-value than Mp(1). We need to show that the probability of rejection goes to one when
H0 is false. According to Corollary 2.1 when H0 is false, ν-almost surely any point zi offers a
consistent univariate test. Therefore, ν-almost surely, supi=1,...,M KS(zi) ≥ KS(z1) > 0. Let d0

be a distance such that |F ′1z1(d0)− F ′2z1(d0)| = c > 0.

Let F ′iz1N be the empirical cumulative distribution function based on N/2 sampled distances from
F ′iz1 , i ∈ {1, 2}. The test statistic is bounded away from zero:

pr{ sup
i=1,...,M

KSN (zi) > c/2)} ≥ pr{KSN (z1) > c/2} = pr{sup
d
|F ′1z1N (d)− F ′2z1N (d)| > c/2}

≥ pr{|F ′1z1N (d0)− F ′2z1N (d0)| > c/2}

≥ pr{|F ′1z1N (d0)− F ′1z1(d0)| < c/4}pr{|F ′2z1N (d0)− F ′2z1(d0)| < c/4} ≥ (1− 2e−Nc
2/8)2

where in the last row, the first inequality follows since if |F ′1z1N (d0) − F ′1z1(d0)| < c/4 and
|F ′2z1N (d0)− F ′2z1(d0)| < c/4, given that |F ′1z1(d0)− F ′2z1(d0)| = c, it implies that |F ′1z1N (d0)−
F ′2z1N (d0)| > c/2, and the last inequality is the Dvoretzky—Kiefer—Wolfowitz inequality (1).
Therefore, when H0 is false, the probability that the statistic is greater than c/2 goes to 1 as N →∞.

When H0 is true, let F ′z denote the common cumulative distribution function of ‖Y − z‖. For each
z ∈ {z1, . . . , zM},

pr{KSN (z) > c/2} = pr{sup
d
|F ′1zN (d)− F ′z(d) + F ′z(d)− F ′2zN (d)| > c/2}

≤ pr{sup
d
|F ′1zN (d)− F ′z(d)|+ sup

d
|F ′2zN (d)− F ′z(d)| > c/2}

≤ pr{sup
d
|F ′1zN (d)− F ′z(d)| > c/4}

+ pr{sup
d
|F ′2zN (d)− F ′z(d)| > c/4} ≤ 4e−Nc

2/8, (2)

where the last inequality follows from the Dvoretzky—Kiefer—Wolfowitz inequality. It follows from
(2) that the Bonferonni adjusted p-value is bounded above by 4Me−Nc

2/8, and therefore goes to zero
as N →∞ for M = o(eN ), proving consistency.

For item 3, the proof is very similar. Hommel’s global null p-value is at most M(
∑M
l=1 1/l)p(1),

and as in the proof for item 2 it is bounded above by 4M(
∑M
l=1 1/l)e−Nc

2/8, which goes to zero as
N →∞ for M logM = o(eN ).

For item 4, let z0 ∈ <q be a center point sampled from ν. When H0 is false, ν-almost surely
KS(z0) = c > 0. By Lebesgue’s density theorem ν-almost surely there exists an ε such that if
r < ε then at least half of the ball Bq(z0, r) is within the support S. Since F1 and F2 are continuous,
KS(z) is a continuous function of z. Therefore, there exists an ε′ < ε such that KS(z) > c/2 for
all z ∈ Bq(z0, ε

′) ∩ S. Similar arguments to those for item 2 show that ν-almost surely for any
zi ∈ S ∩Bq(z0, ε

′),
pr(KSN (zi) < c/4) < 4e−Nc

2/32. (3)

Therefore, pr(∪zi∈S∩Bq(z0,ε′)KSN (zi) < c/4) < 4Me−Nc
2/32. Since ν-almost surely pr{Z ∈

S ∩ Bq(z0, ε
′)} > 0, then ν-almost surely with probability going to one T1 is O(M), as long as

M = o(eN ). On the other hand when H0 is true, E(KSN (z)) = O(1/
√
N), see for example

Marsaglia et al. (7). Therefore, E(T1) = O(M/
√
N), and by Markov’s inequality the permutation
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test based on T1 will have ν-almost surely power increasing to one as the sample size increases. For
the test based on T2, from equations (3) and (2) it follows that for N large enough pi < 4e−Nc

2/32

for zi ∈ S ∩Bq(z0, ε
′), i = 1, . . . ,M . Therefore, for N large enough−2

∑M
i=1 log pi is greater than

O(NM)pr{Z ∈ S ∩Bq(z0, ε
′)}. On the other hand, when H0 is true Pi is uniformly distributed, so

E(−2
∑M
i=1 logPi) is O(M). By Markov’s inequality the permutation test based on−2

∑M
i=1 log pi

will have ν-almost surely power increasing to one as the sample size increases.

A.6 Proof of Lemma 3.1

Denote B(a, b) for the binomial coefficient a choose b. If the univariate test statistic TN−1 is a U -
statistic, then it can be written as TN−1 =

∑
CN−1,m

h{(uj1 , vj1), . . . , (ujm , vjm)}/B(N − 1,m),

where h is a symmetric function, (uj1 , vj1), . . . , (ujm , vjm) is a subset of size m from a sample of
size N − 1, and CN−1,m is the set of all such subsets of size m. The multivariate test statistic SN
can therefore be written as∑

CN,m+1

f{(xj1 , yj1), . . . , (xjm+1
, yjm+1

)}/B(N,m+ 1),

where f{(x1, y1), . . . , (xm+1, ym+1)} is the symmetric function

1

m+ 1
[h{(‖xk − x1‖, ‖yk − y1‖), k = 2, . . . ,m+ 1}+

. . .+ h{(‖xk − xm+1‖, ‖yk − ym+1‖), k = 1, . . . ,m}].

B Additional Experiments

Simulation 3: distributions of high dimensions. In order to examine the effect of increasing the
vector dimensions on the power, we sampled 100 observations from each of the following two dis-
tributions of a random vector of dimension q ∈ {10, 100, 1000}: F1 = 1

2Nq(0, diag(1, . . . , 1, 9)) +
1
2Nq(0, diag(100, . . . , 100) and F2 = 1

2Nq(0, diag(9, 1, . . . , 1)) + 1
2Nq(0, diag(100, . . . , 100).

Therefore, the two distributions differ only in 2 coordinates out of q. Figure 1 shows the power of our
novel tests. The choice of center points and univariate tests clearly affect the power. For this example,
choosing an outlying value at the coordinate where there is a difference had the greatest benefit, and
since this center point is tailored to where the distributions differ, the power was close to one for all
q using the minP univariate test. For a single center point that is less optimal, or using all sample
points as center points, the power deteriorated with the dimension q, and there was little power left
at q = 100. Using minP (detailed in § C) as the univariate test statistic resulted in greater power
than the test of Kolmogorov-Smirnov (5), referred to as KS or the test of the Anderson and Darling
family, constructed by (8) for the univariate two-sample problem, referred to as AD. Our competitors,
Hotelling, Edist, and MMD had power at most 0.09 for all values of q examined.

Simulation 4: a closer inspection of relationship between power and sample size. In order
to examine the power increase as a function of sample size, we sampled N ∈ {25, 50, . . . , 150}
observations from each distribution for several data generations. Figure 2 shows the power of our novel
test using minP as the univariate statistic, as well as that of Hotelling, Edist, and MMD. In the top
panel, F1 is a standard multivariate normal of dimension q = 5, and F2 with coordinates each from the
t-distribution with 5 degrees of freedom. The tests based on using minP as the univariate test reach
power close to one withN = 150, and MMD is a close second. Edist increases much slower, whereas
Hotelling has no power to detect this alternative. In the bottom panel, F1 = 1

2N2(0, diag(1, 9)) +
1
2N2(0, diag(100, 100)) and F2 = 1

2N2(0, diag(9, 1)) + 1
2N2(0, diag(100, 100)). The tests based

on using minP as the univariate test have the highest power. As expected, the ideal single center
point z = c(0, 100) is the most powerful, but interestingly as the sample size increases taking all
sample points as center points results in even greater power. The rate of increase when the center
point is a single random sample point is far slower, as well as the rate of MMD and Edist. Hotelling
has no power to detect this alternative.

Real Data from the American Gut Project (AGP), preprocessed as described in (4). Data were
analyzed for 1879 AGP participants. Unweighted UniFrac distance matrices were derived from the
QIIME pipeline (4). We tested the null hypohtesis that the microbiome composition is the same for
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Figure 1: The fraction of rejections at the 0.1 significance level as a function of the vector dimension
q for testingH0 : F1 = F2 when F1 = 1

2Nq(0, diag(1, . . . , 1, 9))+ 1
2Nq(0, diag(100, . . . , 100) and

F2 = 1
2Nq(0, diag(9, 1, . . . , 1, 9)) + 1

2Nq(0, diag(100, . . . , 100), based on a sample of 100 points
from each group, using different univariate tests (minP, KS, AD), and different center points schemes
(all coordinates are 0 except for a value of 100 or 4 in a coordinate where the distributions differ, as
well as using all sample points as center points). Based on 500 repetitions. The competitors Hotelling,
Edist, and MMD had power at most 0.09.

males and females. Using the AD univariate test on the distances, where 256 sample points were
selected at random to serve as center points, the p-value was < 10−14 using both the Bonferroni
and the Hommel combining method. This took 17.2sec on a standard PC. For comparison, the Edist
permutation test was run with 50000 permutations, and it took almost 4 minutes to run. It produced
the smallest possible permutation p-value, which was 2× 10−5. To produce p-values in the order of
10−14 using a permutation test will be computationally impossible on a standard PC.

In practice, if the alternative is believed to be of simple form, one can apply a univariate test targeted
to such an alternative (but which is not omnibus consistent). We tested the null hypothesis that the
microbiome composition is independent of age using Spearman’s test as the univariate test, and
here again using 256 sample points selected at random to serve as center points, the p-value was
< 10−14 using both the Bonferroni and the Hommel combining method, and this computation took
less than 20 seconds to run. For comparison, the p-value from the permutation test of (9), with 50000
permutations, was 8× 10−5, and it took 4 minutes to run.

C Description of the univariate tests in our experiments

In our simulations we utilized, as univariate tests, classical tests and also three modern tests proposed
in (2). In this section we give a short description of these modern consistent tests.

We assume that Y is a univariate continuous random variable, and that X is categorical with K ≥ 2
categories. We have N independent realizations (x1, y1), . . . , (xN , yN ) from the joint distribution of
X and Y . The test statistics only depend on the marginal ranks, and therefore are distribution free,
i.e., their null distributions are free of the (unknown) marginal distributions FX and FY . The classical
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Figure 2: The fraction of rejections at the 0.1 significance level as a function of sample size for
testing H0 : F1 = F2. Top panel: F1 = N5(0, diag(1, . . . , 1)) and F2 = (t5, . . . , t5 . . .), we use
minP as the univariate test for our novel test, and three different center points schemes (the center
of mass, a randomly selected sample point, as well as using all sample points as center points).
Bottom panel: F1 = 1

2N2(0, diag(1, 9)) + 1
2N2(0, diag(100, 100)) and F2 = 1

2N2(0, diag(9, 1)) +
1
2N2(0, diag(100, 100)), we use minP as the univariate test for our novel test, and three different
center points schemes (z = c(0, 100), a randomly selected sample point, as well as using all sample
points as center points). Based on 500 repetitions. The power of the competitors Hotelling, Edist, and
MMD are also shown. 5



Kolmogorov-Smirnov, Anderson-Darling and Cramer- von-Mises tests look at all possible partitions
of the yi’s into two parts and give a score to each partition, they then aggregate all these scores by
either maximization or summation. On the other hand, the scores suggested in (2) aggregate scores
for all possible partitions of the data, not just into two parts, and surprisingly this can be done in only
O(N2) even though the number of partitions is exponentially large. Formally, for N observations,
there are

(
N+1

2

)
possible cells, and

(
N−1
m−1

)
possible partitions of the observations into m cells, where

a cell is an interval on the real line. Since the cell membership of observations is the same regardless
of whether the partition is defined on the original observations or on the ranked observations, and
the statistics only depend on these cell memberships, we describe the proposed test statistics on the
ranked observations, rank(Y ) ∈ {1, ..., N}. Let Πm denote the set of partitions into m cells. For
any fixed partition I = {i1, . . . , im−1} ⊂ {1.5, . . . , N − 0.5}, i1 < i2 < . . . < im−1, C(I) is the
set of m cells defined by the partition. For a cell C ∈ C(I), let oC(g) and eC(g) be the observed and
expected counts inside the cell for distribution g ∈ {1, . . . ,K}, respectively. The expected count
eC(g) is the width of cell C based on ranks multiplied by Ng/N , where Ng is the total number
observations from distribution g: e[il,il+1](g) = (il+1 − il) × Ng/N , where l ∈ {0, . . . ,m − 1},
i0 = 0.5 and im = N + 0.5. For a given cell C, (2) considered Pearson’s score or the likelihood
ratio score:

tC ∈

{
K∑
g=1

[oC(g)− eC(g)]2

eC(g)
,

K∑
g=1

oC(g) log
oC(g)

eC(g)

}
. (4)

For a given partition I, the score is T I =
∑
C∈C(I) tC . In our experiments we used tC =∑K

g=1 oC(g) log oC(g)
eC(g) , so T I is the likelihood ratio test statistic. The per partition test statis-

tics can be aggregated over all partitions by summation (Cramer–von Mises-type statistics) or by
maximization (Kolmogorov–Smirnov-type statistics):

Sm =
∑
I∈Πm

T I , Mm = max
I∈Πm

T I . (5)

Tables of critical values for given sample sizes N1, . . . , NK can be obtained for (very) small sample
sizes by generating all possible N !/(ΠK

g=1Ng!) reassignments of ranks {1, . . . , N} to K groups of
sizes N1, . . . , NK and computing the test statistic for each reassignment. The p-value is the fraction
of reassignments for which the computed test statistics are at least as large as observed. When the
number of possible reassignments is large, the null tables are obtained by large scale Monte Carlo
simulations. For each of the B reassignment selected at random from all possible reassignments, the
test statistic is computed. Clearly, the B computations do not depend on the data, hence the tests
based on these statistics are distribution free. Again, the p-value is the fraction of reassignments for
which the computed test statistics are at least as large as the one observed, but here the fraction is
computed out of the B + 1 assignments that include the B reassignments selected at random and the
one observed assignment, see Chapter 15 in (6). Finally, (2) also suggest another score which they
call minP that combines the p-values from each m, so that the test statistic becomes the combined
p-value. Let pm be the p-value from a test statistic based on partition size m, be it Sm or Mm. They
consider as a test statistic the minimum p-value, minm∈{2,...,mmax} pm (where mmax is typically
m/c for some constant c > 1. This combined p-value is a test statistic (not a p-value), and its null
distribution can be easily obtained from the null distributions of the test statistics for fixed ms. Again,
somewhat surprisingly, this test statistic can be calculated with the same effort as calculating the
statistic for any fixed m (i.e., O(N2)). In our experiments, the minP univariate test statistic is
minm∈{2,...,mmax} pm where pm is the p-value of Sm.

D Technical definitions

U-statistics: For our purpose it suffices to discuss bivariate U-statistics based on i.i.d samples
x1, . . . , xN and y1, . . . , yN . Let m be a positive integer and let h((x1, y1), . . . , (xm, ym)) be a
symmetric function. Let Πm denote the set of all subsets of size m of {(x1, y1), . . . , (xN , yN )}.
Then UN =

∑
S∈Πm

h(S) is called a U-statistic and h is called the kernel function. The theory of
U-statistics was introduced by Hoeffding in (3) and has developed into a rich and useful method with
many applications in asymptotic theory.

Radon measure: A measure µ is called inner regular, if, for any Borel set B, µ(B) is the supremum
of µ(K) over all compact subsets K of B.
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A measure µ is called locally finite if every point has a neighborhood U for which µ(U) is finite.

A measure µ is called a Radon measure if it is inner regular and locally finite.
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