
Deep Learning for Predicting Human Strategic
Behavior - Supplementary Material

Jason Hartford, James R. Wright, Kevin Leyton-Brown
Department of Computer Science
University of British Columbia

{jasonhar, jrwright, kevinlb}@cs.ubc.ca

1 Data

Table 1: Our datasets. Each experiment had subjects play between 8 and 20 games for a total of 128
games, 113 of which were unique.

Source Games n
Stahl and Wilson [1994] 10 400
Stahl and Wilson [1995] 12 576
Costa-Gomes et al. [1998] 18 1296
Goeree and Holt [2001] 10 500
Cooper and Huyck [2003] 8 2992
Rogers et al. [2009] 17 1210
Haruvy et al. [2001] 15 869
Haruvy and Stahl [2007] 20 2940
Stahl and Haruvy [2008] 18 1288
All9 113 unique 12071

We used a dataset that combined observations from 9 human-subject experimental studies conducted
by behavioural economists in which subjects were paid to select actions in normal-form games. Their
payment depended on the subject’s actions and the actions of their unseen opposition who chose
an action simultaneously. The subjects were shown the payment for each outcome using a payoff
matrix that lists each pair of actions and the respective player’s payments. Each experiment presented
subjects with between 8 and 20 different games and the number of subjects who selected each action
is recorded. Obtained outcomes were only shown at the end of each experiment to prevent learning
effects. The games range in size from 2× 2 to 121× 121; in the majority, players have three actions
each.

Our model takes such payoff matrices as input and predicts the observed frequency with which each
action was selected by the row player. We encode the payoffs of each normal form game as a pair of
utility matrices corresponding to the respective players’ payoffs, normalized such that the standard
deviation of the payoffs is approximately 1. For symmetric games we combine observations as though
both players were the row player and for asymmetric games we treat observations of the column
player’s choice of actions as though they had come from a game with a transposed payoff matrix,
such that they become the row player. A few games appear in multiple experiments; we combined
their observed frequencies into a single common game.

We evaluate performance of the models using 10-fold cross-validation. We randomly partitioned our
113 unique games into 10 folds containing between 11 and 15 games each. Our experimental results
examine both the mean and variance across 10 different such 10-fold cross-validations, each time
re-randomizing the assignment of games into folds (requiring each model to be retrained 100 times).

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

We are interested in the model’s ability to predict the distribution over the row player’s action, rather
than just its accuracy in predicting the most likely action. As a result, we fit models to maximize the
likelihood of training data P(D|θ) (where θ are the parameters of the model and D is our dataset)
and evaluate them in terms of negative log-likelihood on the test set.

2 Regular neural network performance

FFNet FFNet (Permuted) GameNet QCH Linear4
500

550

600

650

700

750

800

N
L

L
(T

es
t

Se
t)

Test
Train

FFNet FFNet (Permuted) GameNet QCH Linear4
4600

4700

4800

4900

5000

5100

5200

N
L

L
(T

ra
in

in
g

Se
t)

Figure 1: Performance comparison on 3 × 3 games of a feed forward neural network (FFNet),
a feed forward neural network with data augmentation at every epoch (FFNet (Permuted)), our
architecture fit with the same hyper parameters as used for our best performing model in the main
results (GameNet), and Quantal Cognitive Hierarchy with four hand-crafted features (QCH Linear4).

Figure 1 compares the performance of our architecture with that of a regular feed-forward neural
network, with and without data augmentation, and the previous state-of-the-art model on this dataset.
It shows that the feed-forward network dramatically overfitted the data without data augmentation.
Data augmentation improved test set performance, but it was still unable to match state of the art
performance. A three layer instantiation of our model (two layers of 50 hidden units and a single AR
layer) matched the previous state of the art but failed to improve upon it. We suspect that this may be
because the subset of the data that contains only 3× 3 games is too small to take advantage of the
flexibility of our model.

3 Pooling units performance

To test the effect of pooling units on performance, in Figure 2 we first removed the pooling units
from two of the network configurations, keeping the rest of the hyperparameters unchanged. The
models that did not use pooling layers underfit on the training data and performed very poorly on the

2

50, 50
(no pooling)

50, 50 (no pooling
or dropout)

50, 50
(pooling)

100,100,100
(no pooling)

100,100,100 (no
pooling or dropout)

100,100,100
(pooling)

940

960

980

1000

1020

1040

N
L

L
(T

es
t

L
os

s)

50, 50
(no pooling)

50, 50 (no pooling
or dropout)

50, 50
(pooling)

100,100,100
(no pooling)

100,100,100 (no
pooling or dropout)

100,100,100
(pooling)

Pooling Comparison (# units)

7500

8000

8500

9000

9500

N
L

L
(T

ra
in

in
g

L
os

s)

Figure 2: Performance comparison with and without pooling units. All models were fit with the same
hyperparameters using dropout unless otherwise stated, with the only difference being the number of
layers and hidden units and whether or not the models used pooling units.

test set. While we were able to improve their performance by turning off dropout, these unregularised
networks didn’t match the training set performance of the corresponding network configurations that
had pooling units. The test set performance for all the networks we trained without pooling units
remained significantly worse than our best performing networks that used pooling units. Thus, our
final network contained two layers of 50 hidden units and pooling units and used dropout.

4 Representational ability of our network

In this section we make explicit the connection between our model and popular models from the
behavioral game theory literature by demonstrating how our architecture is able to express these
models. At a high level, we express behavioral models using appropriately parameterized action
response layers and we express non-strategic features using the invariance preserving hidden layers
with pooling units.

4.1 Models

The four behavioral models we consider are quantal cognitive hierarchy (QCH) [Wright and Leyton-
Brown, 2014, Stahl and Wilson, 1994] and quantal level-k (QLk) [Stahl and Wilson, 1994], cognitive
hierarchy (CH) [Camerer et al., 2004] and level-k (Lk) [Costa-Gomes et al., 2001]. They differ in
their behavioral assumptions, but they are similar in their mathematical descriptions. All involve
some notion of a response (in the form of a strategy or distribution over one’s own actions) to beliefs
about one’s opposition strategy (in the form of a distribution over one’s opposition’s actions).

Responses We can divide these four models into two distinct classes: either they assume players
best respond or quantally respond. Players best respond by selecting an action from the set of actions
that maximizes their expected utility given their beliefs. Alternatively, they quantally respond by
choosing actions with probability proportional to the action’s expected utility.

3

This is modeled formally as follows: let ūi(s) =
∑n

j=1 ui,jsj denote a player’s expected utility,
given beliefs, s, about the opposition actions. A quantal response strategy is defined as

si(sj) =
exp(λūi(s))∑m
i=1 exp(λūi(s))

.

Quantal response approaches best response as λ→∞ in the sense that it defines a strategy where
players uniformly randomize from the set of best responses1. Alternatively, if λ→ 0, players ignore
their payoffs and uniformly randomize over their set of actions.

Beliefs The four models can also be categorized based on how they define beliefs about one’s
opposition, sj . All of the models rely on a notion of a “cognitive level" that differs among players.
However, while Level-k models assume that a player at cognitive level k only has beliefs about level
(k − 1) players, cognitive hierarchy models assume that players respond to beliefs about the full
distribution of players having cognitive level less than their own.

We now show the connection between our neural network-based approach and these behavioral
models. Recall that action response layer l is defined as

ar
(r)
l = softmax

(
λl

(
l−1∑
j=0

v
(r)
l,j

(
k∑

i=1

w
(r)
l,i H

(r)
L,i

)
· ar(c)j

))
, ar

(r)
l ∈ ∆m, l ∈ {1, ...,K},

and action response layer 0 is defined as a weighted sum of features, ar0 =
∑k

i=1 wifi.

The behavioral models do not depend on transformed versions of the input matrices or behavioral
features, so we let the parameters of the network be set such that

ar
(r)
l = softmax

(
λl

(
l−1∑
j=0

v
(r)
l,j U

(r) · ar(c)j

))
, ar

(r)
l ∈ ∆m, l ∈ {1, ...,K},

and let ar0,i = 1
m for all i ∈ {1, . . . ,m}.

4.2 Level-k

The Level-k model associates every player in the population with a particular cognitive level cor-
responding to the number of steps of strategic reasoning they complete (bounded by some fixed
maximum level), and assumes that level-k players best respond to the strategy played by level-
(k − 1) players and that level-0 players select actions uniformly at random. Each level also has some
probability εk of making an “error” by selecting some action other than their best response.

We model this with the action response layers, by setting

v
(r)
l,i =


1− εi if i = l − 1

εi if i = 0

0 otherwise.

and letting λl →∞ in order to simulate best response.

4.3 Cognitive Hierarchy

Cognitive Hierarchy is similar to level-k except it assumes a distribution over the levels a player may
take, and assumes they best respond without error to the normalized distribution of players below
them.

That is, there is some level distribution p where pi is the proportion of players in the population who
behave according to a particular level and players respond to a normalized distribution p[0:i−1].

1The claim that we can represent best response by letting parameters tend to infinity may appear dubious
given that the models are optimized numerically. However because the exp(x) function saturates quickly using
floating point numbers, in practice λ only needs to be moderately large to output a best response.

4

We model this with the action response layers, by setting

v
(r)
l,i =

pi∑i−1
j=0 pj

and letting λl →∞ in order to simulate best response.

4.4 Quantal Level-k

Quantal Level-k differs from the level-k model described above by allowing players to quantally
respond with each level having a different precision parameter λl. The parameters remain as described
in Section 4.2 except that we use λl instead of letting λ→∞

4.5 Quantal Cognitive Hierarchy

Quantal Cognitive Hierarchy [Stahl and Wilson, 1994, Wright and Leyton-Brown, 2014] generalists
cognitive hierarchy by allowing players to quantally respond and optimism the parameter λ. Similarly
to the above, the parameters of our action response layers remain the same as in Section 4.3 except
we use λl = λ instead of letting λl →∞.

4.6 Game Theoretic Features

Wright and Leyton-Brown [2014] showed the importance of explicitly modeling nonstrategic level-0
players. They investigated a wide range of models and found that weighted linear combinations of
nonstrategic features were most effective for improving predictive performance. In this section we
argue that our model is sufficiently flexible to represent all the behavioral features used in their best
performing models which allows us to generalize the quantal cognitive hierarchy with weighted linear
features model presented in Wright and Leyton-Brown [2014]. We make this claim formally below.

Claim: A network with two hidden layers, one hidden unit per layer, pooling units at every layer and
rectified linear unit activation functions can represent each of the following normalised features,

• min max regret,
• min min unfairness,
• max min payoff,
• max max payoff
• max max efficiency.

Proof By expanding the sums from the definition of the network, we see the first hidden layer has the
following functional form:
H(1,1) = relu(w1,rU

(r) + w1,cU
(c) + w1,rcU

(r)
c + w1,rrU

(r)
r + w1,ccU

(c)
c + w1,crU

(c)
r + b1,1).

where U(r) is the row player’s payoff matrix and U
(r)
c is the row player’s payoff matrix aggregated

using the column-preserving pooling unit where we use the max function to perform the aggregation.
Similarly, the second hidden layer can be written as,

H(2,1) = relu(w2,1H
(1,1) + w2,cH

1,1
c + w2,rH

(1,1)
r + b2,1).

We denote H(1,1) as the output of the first hidden layer and H
(1,1)
c and H

(1,1)
r are its respective

pooled outputs.

Game theoretic features can be interpreted as outputting a strategy (a distribution over a player’s
actions) given a description over the game. We express features in a style similar to [Wright and
Leyton-Brown, 2014] by outputting a vector f such that fi ≈ 0 for all fi ∈ f if action i does not
correspond to the target feature, and fi ≈ 1

l where l is the number of actions that correspond to the
target feature (with l = 1 if the actions uniquely satisfies the feature; Wright and Leyton-Brown
[2014] instead used a binary encoding, but that does not fit naturally into our framework). We have
approximate equality, ≈, because we construct the features using a softmax function and hence our
output approaches fi = 0 or 1

l as our parameters→∞. Because features are all constructed from a
sparse subset of the parameters, we limit notational complexity by letting wi,j = 0 and bi,j = 0 for
all i, j ∈ 1, 2, r, c unless stated otherwise.

5

4.7 Max Max Payoff

Required: fmaxmax(i) =

{
1
l if i ∈ arg maxi∈{1,...,m}maxj∈{1,...,n} ui,j ui,j ∈ U(r)

0 otherwise

Let w1,r = 1, w2,r = c where c is some large positive constant and b1,1 = b where is some scalar
b ≥ mini,j U

(r)
i,j and all other parameters wi,j , bi,j = 0. Then H(1,1) reduces to,

H(1,1) = relu(U(r) + b) = U(r) + b since U(r) + b ≥ 0 by definition of b

H(2,1) = relu(cH(1,1)
r)⇒ hj,k = c(max

k
uj,k + b) ∀uj,k ∈ U(r), hj,k ∈ H(2,1)

That is, all the elements in each row of H(2,1) equal an positive affine transformation of the maximum
element from the corresponding row in U(r).

f
(1)
i = softmax(

n∑
k=1

hj,k) = softmax

(
n∑

k=1

c(max
k

uj,k + b)

)
= softmax

(
nc(max

k
uj,k + b)

)

Therefore, as c→∞, f (1)i → fmaxmax(i) as required.

4.8 Max Min Payoff

Required: fmaxmin(i) =

{
1
l if i ∈ arg maxi∈{1,...,m}minj∈{1,...,n} ui,j ui,j ∈ U(r)

0 otherwise

Max Min Payoff is derived similarly to Max Max except with w1,r = −1, and b1,1 = b where
b ≥ maxi,j U

(r)
i,j ; we keep w2,r = c as some large positive constant.

Then H(1,1) reduces to,

H(1,1) = relu(−U(r) + b) = −U(r) + b since −U(r) + b ≥ 0 by definition of b

H(2,1) = relu(cH(1,1)
r)⇒ hj,k = c(max

k
(−uj,k+b)) = c(min

k
uj,k+b) ∀uj,k ∈ U(r), hj,k ∈ H(2,1)

Since maxi−xi + b = mini xi + b. Thus,

f
(1)
i = softmax(

n∑
k=1

hj,k) = softmax
(
nc(min

k
uj,k + b)

)

Therefore, as c→∞, f (1)i → fmaxmin(i) as required.

4.9 Max Max Efficiency

Required: fmax max efficiency(i) =

{
1
l if i ∈ arg maxi∈{1,...,m}maxj∈{1,...,n} u

(c)
i,j + u

(r)
i,j

0 otherwise

Max Max Efficiency follow from the derivation of Max Max except with w1,r = 1, w1,c = 1, w2,r =

c and b1,1 = b where b ≥ mini,j(U
(r)
i,j + U

(r)
i,j).

Following the same steps we get,

f
(1)
i = softmax(

n∑
k=1

hj,k) = softmax

(
n∑

k=1

c(max
k

(u(r) + u(c))j,k + b)

)

= softmax
(
nc(max

k
(u(r) + u(c))j,k + b)

)
= fmax max efficiency(i) as c→∞

6

4.10 Minimax Regret

Regret is defined as r(i, j) = maxi ui,j − ui,j ui,j ∈ U(r)

Required: fminimax regret(i) =

{
1
l if i ∈ arg mini∈{1,...,m}maxj∈{1,...,n} r(i, j)

0 otherwise

Let w1,rc = 1, w1,r = −1, and b1,1 = 0; we keep w2,r = c as some large positive constant.

Then H(1,1) reduces to,

H(1,1) = relu(U(r)
c −U(r)) = U(r)

c −U(r) since U(r)
c ≥ U(r) by definition of U(r)

c

H(2,1) = relu(cH(1,1)
r)⇒ hj,k = c(max

k
(max

j
uj,k − uj,k)) ∀uj,k ∈ U(r), hj,k ∈ H(2,1)

Thus,

f
(1)
i = softmax(

n∑
k=1

hj,k) = softmax
(
nc(max

k
(max

j
uj,k − uj,k))

)

Therefore, as c→∞, f (1)i → fminimax regret(i) as required.

4.11 Min Min Unfairness

Required: fmin min unfairness(i) =

{
1
l if i ∈ arg maxi∈{1,...,m}minj∈{1,...,n} |u

(r)
i,j − u

(c)
i,j |

0 otherwise

To represent Min Min Unfairness, we an additional hidden unit in the first layer. Let H(1,2) be defined
in the same manner as H(1,1).

For H(1,1), we let w1
1,r = 1, w1

1,c = −1 and b1,1 = 0 such that,

H(1,1) = relu(U(r) −U(c)) = max(U(r) −U(c), 0) where the max is applied element-wise

For H(1,2), we let w1
1,r = −1, w1

1,c = − and b1,1 = 0 such that,

H(1,2) = relu(U(c) −U(r)) = max(U(c) −U(r), 0)

Now, notice that if w2,1 = 1 and w2,2 = 1,

H(2,1) = H(1,1) + H(1,2) = max(U(r) −U(c), 0) + max(U(c) −U(r), 0) = |U(r) −U(c)|

Which gives us a measure of “unfairness” as the absolute difference between the two payoffs.

We can therefore simulate fmin min unfairness(i) by letting w2,1 = −1 and w2,2 = −1, and using the
output of H(2,1)

r (which gives us min unfairness), then constructing fi by letting c→∞.

References
C.F. Camerer, T.H. Ho, and J.K. Chong. A cognitive hierarchy model of games. Quarterly Journal of

Economics, 119(3), 2004.
D.J. Cooper and J.B. Van Huyck. Evidence on the equivalence of the strategic and extensive form

representation of games. Journal of Economic Theory, 110(2), 2003.
M. Costa-Gomes, V. Crawford, and B. Broseta. Cognition and behavior in normal-form games: an

experimental study. Discussion paper, UCSD, 1998.
M. Costa-Gomes, V.P. Crawford, and B. Broseta. Cognition and behavior in normal-form games: An

experimental study. Econometrica, 69(5), 2001.
J. K. Goeree and C. A. Holt. Ten little treasures of game theory and ten intuitive contradictions. The

American Economic Review, 91(5), 2001.

7

E. Haruvy and D.O. Stahl. Equilibrium selection and bounded rationality in symmetric normal-form
games. JEBO, 62(1), 2007.

E. Haruvy, D.O. Stahl, and P.W. Wilson. Modeling and testing for heterogeneity in observed strategic
behavior. Review of Economics and Statistics, 83(1), 2001.

B. W. Rogers, T. R. Palfrey, and C. F. Camerer. Heterogeneous quantal response equilibrium and
cognitive hierarchies. Journal of Economic Theory, 144(4), July 2009.

D.O. Stahl and E. Haruvy. Level-n bounded rationality and dominated strategies in normal-form
games. JEBO, 66(2), 2008.

D.O. Stahl and P.W. Wilson. Experimental evidence on players’ models of other players. JEBO, 25
(3), 1994.

D.O. Stahl and P.W. Wilson. On players’ models of other players: Theory and experimental evidence.
GEB, 10(1), 1995.

J. R. Wright and K. Leyton-Brown. Level-0 meta-models for predicting human behavior in games.
In Proceedings of the Fifteenth ACM Conference on Economics and Computation, pages 857–874,
2014.

8

	Data
	Regular neural network performance
	Pooling units performance
	Representational ability of our network
	Models
	Level-k
	Cognitive Hierarchy
	Quantal Level-k
	Quantal Cognitive Hierarchy
	Game Theoretic Features
	Max Max Payoff
	Max Min Payoff
	Max Max Efficiency
	Minimax Regret
	Min Min Unfairness

