5 Appendix
5.1 Proof of Theorem 1.1

Lemma 5.1. Let Q 2 Q(A, Ag), andz = [x"y"|" forx € X,y € Y. Foranyx € X, and
Yy € ), the iterate sequence {zk}kzl defined as in Theorem 1.1 satisfies for all k > 0

LM y) = £0x,y" ) < [Dalx,x) + Dy (v, v") = (Tx = x4, y = y")]

= [Dee XM + Dy (3,5 ) = (Tlx = x4, y =y = S = 25T Qe - ),
(24)

Proof. Note that x-subproblem in (5a) is separable in local decisions {z; };enr; for each i € N the
local subproblem over z; is strongly convex with constant 1/7;. Indeed, let p¥ = T'Ty* and define

{p¥}ienr such that p¥ is the subvector corresponding to the components of ;, i.e., p* = [pFlicn
Thus, the definitions of p, f and D,, v, = 1, and (5a) imply that for all i € N’

k 2
Ti — Xy

2 = argmin pi(ei) + filad) + (Viled), o — o) + (b i)+ o (25)

x; 27—1'

Therefore, the strong convexity of the objective in local subproblem (25) for 7 € N implies

k k 1 k)%

(s ek ) koo il R, >
p1($1)+<vfl($z)7 xl>+<pzaml>+ 27_1_ T T )

1 2 1 2

(zF T (zF), phTl kogktt B | . Y 4 ;— ghtt

pl(xz ) + <vf1(‘rz )7 Z; > + <pz >y Ty > =+ 2Ti K3 €T + 27—1’ L Z; :

Convexity of f; and Lipschitz continuity of V f; implies that
Li 2
filws) = filal) + <Vfi(1:f), Ti — 11?> > filzith) + <Vfi(mf), zi — xf+1> -5 | =t

Since Y, p (PF, @) = (Tx, y*) for all x, summing these two inequalities for each i € A/, and
then summing the resulting inequalities over i € A/, we get

®(x) + Do (x,x") > (26)

o(x") + <T(xk+1 ~x), yk> + D (XM + L (xF T - xF)TD, (xM ! — %),

Similarly, let g* = T'(2x**! — x*) and define ¢§ € R™0 and ¢¥ € R™: for i € N such that ¢} is

the subvector corresponding to the components of A, and ¢¥ is the subvector corresponding to the
components of ; fori € N, i.e., pF = [p’fT . .p’fva’gT]T. Thus, the definitions of # and D,, and
v, = 1 imply that according to (5b) we have

AR arg)I\ninhO(A) — <q§,>\> + % HA - AkH27

2

0, —6F|| , VieN.

' 1
k1 _ inhi(0;) — (qt’, 0:
o — argerinln hz(el) <QZ 791> + 2K

Tlleref()re, the Str()]lg C()]l\/exity of the ()bjecti\/es in these Subpr()blellls i]llplies that
k 1 H kH2 k1 k oy ktl 1 H Bl kH2 1 H k+1‘ 2
_ - _ > _ - _ . _

2 1
> h (05! 7< k 9’.“+1> —
>hi(0;777) —(ai, 0 )+ Gy

1
2/@'

2 1
+ 2[-{1‘

na(0:) — (at,0) + 5. [ os — 0 o -0 oot

Since <q§, )\> + D ien <qll-“7 9i> = <T(2x’“rl —x"), y> for all y, summing the second inequality
over i € N and then summing the resulting inequality with the first one, we get

h(y) + Dy(y,y") > 27)
h(y"*) — <T(2X'“+1 —x"), y*H - y> + Dy(y,y" ) + Dy (", ¥5).

Summing (26) and (27) gives the desired result. O
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Now we continue to the proof of Theorem 1.1. Let Q £ Q(A, Ay). Since Q = 0, we can drop the
last term in the inequality given in the statement of Lemma 5.1; and summing it over k, we get

K—

S LM y) = Lx,y" ) < [Da(x,x°) + Dy(y,y") — (T(x = x°), y — y°)]
k=0

-

= [P x) + Dy (") = (Tl =x"), y =) .

Q = 0 also implies that D, (x,x®) + D, (y,y*) — (T'(x — x¥), y — y¥) > 0; therefore, (6)
follows from Jensen’s inequality.

Now suppose Q > 0, and let z* = [x* "y*"]T be a saddle point for (4). From the definition of Q,
for all z, z’, we have

Du(x, %)+ Dy (y,y') = (Tx=x), y =y') > 3 |2 = 2|1 - (28)
Evaluating (24) atz = z*, we get k > 0
0< L, y7) = L0, y" ) < [Dalx’ %) + Dy (v, 3" = (T = %), y" = y")]

[P ) Dy (77 = (T =),y -yt

1 k+1
-5z _

zkH;. (29)

Note that (29) implies that { D, (x*, x*) + Dy (y*,y") — (T'(x* —x*), y* —y*) },. is a non-
increasing sequence. Using this fact together with (28), we get forall k > 0 B

1

k+1 *
2 ||% -

Z

2 * 0 * 0 * 0 * 0
QSDz(X,XHDy(y ) —(T(x"=x"), y" —y").

Therefore, both {z*} and {Z*} are bounded sequences. Hence, there is a subsequence {z""},,>;
converging to a limit point 2. From (29), it follows that Y77, ||z" ! — z’“HfQ < 00. Since Q >~ 0,
for any € > 0, there exists N7 such that for all n > N, we have ||z’“”Jr1 — zhn H < 5. From the
fact that z"» — 2, there exists N5 such that for all n > N», we have |zk" — i” < g Therefore, by
letting N = max{ Ny, No} we get ||z"3"Jrl — ZH < e ie., zintl g,

The optimality conditions for (5a) and (5b) imply that for all n. € Z,, we have a™ € dp(xF~*1)
and 3" € Oh(y*»*+1), where

o™ & Vi, (xFr) — Vi, (xFn ) — (Vf(xk") + TTyk"),
B" £ Vi (y*) — Vb, (y™ ) + T(Zxk"+1 - Xk")~

Since Vi, and V), are continuously differentiable on dom p and dom h, respectively, and since
p and h are proper, closed convex functions, it follows from Theorem 24.4 in [22] that

dp(%) 3 lima™ = —Vf(X) — Ty, and Oh(y) 3 limB" = T%,

which also implies that z is a saddle point of (4).

Since (29) is true for any saddle point z*, by setting z* = 2 in (29), one can conclude that {s*} ;>
is a nonincreasing sequence, where

s* 2 D, (5,x") + D, (3,y") = (T(x=x"), 5 = ¥*); (30)

moreover, s = limy, s* > 0 exists since s > 0 for all £ > 0 due to (28). Therefore, s = lim,, s¥;

and since lim,, (T'(x — x*),y — y*) = 0 (from z"» — 2),
s= lim D,(%,x"") + Dy(y*,y") = 0.

n—o0o

Therefore, z¥ — z follows from (28) and (30).
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5.2 Proof of Lemma 2.1

Since D, > 0, Schur complement condition implies that Q > 0 if and only if

T B T
B_V{MM 0 D —Al

A
0 0] =0, where B = {—A D,

€2y
Moreover, since D, > 0, again using Schur complement and the fact that M ™M =Q®I1,,
one can conclude that (31) holds if and only if D, — (2 ® I,) — ATD'A = 0. By definition
Q2 = diag([d;]icn) — E, where E;; = Oforalli € N and E;; = Ej; = 1if (i,j) € Eor (j,1) € €.
Note that diag([d;]icar) + E = 0 since it is diagonally dominant. Therefore, 2 < 2 diag([d;]ien)-
Hence, it is sufficient to have D, — 2v diag([d;]ien) ® I, — ATD;1A = 0, and this condition
holds if (10) is true. By the same argument, if (10) holds with strict inequality, then Q > 0.

5.3 Proof of Theorem 2.2

We start the proof with a simple observation. Every closed convex cone C € R™ induces a decom-
position on R™, i.e., according to Moreau decomposition, for any y € R™, there exist yl, y2 € R™
such that y! | 3% and y = y' + %?; in particular, y' = P¢(y) and y?> = Peo (y) where C° = —C*
is the polar cone of C. Hence, from the definition of a support function and the fact that (y, w) < 0
for any y € C° and w € C, one can conclude that

oe(y) = {0 yec (32)

+00  0.W.

Note the iterate sequence {x* 0%}~ generated by Algorithm DPDA-S in Fig. 1 is the same as
the PDA iterate sequence {xk, Ok, Ak }i>0 computed according to (9) for solving (8) when 20 =
yMx". From Lemma 2.1, since the step-size parameters {7;, #; }icns and ~y are chosen satisfying

(10) with strict inequality, the condition Q(A, Ag) = 0 in Theorem 1.1 holds, where Ay = M
for problem (8). Therefore, Theorem 1.1 implies that (6) holds for all X > 1 with v, = v, =1
and Bregman function D,, D, defined as in Definition 1. In particular, the result of Theorem 1.1

can be written more explicitly for (8) as follows: let XX £ % Zle Xk, o 2 % Zszl 6" and

Aa + Zszl A, then for any x € R"VI X € R"¢1 9 € R™ for m = > ien i, and for all
K > 1, we have

LEX,0,0)—-L(x,0", ") <0(x,0,\)/K, (33)
O(x,0,\) éf; A =X = (M(x—x"),A =A%
Y
1 012 1 012 0 0
5 ITi —x; 510 = 0: |7 — (Ai(zs — x7),0; — 07)|.
+i€§N [inlx ||+ 2m_||9 0i I” — (Ai(ws — x7),0; — 0;)

Note that under the assumption in (10), Schur complement condition guarantees that

21 o'
{ 0 jImi] '

1 1 1
@(x,e,x)s§j[—szx?nz+—|\9we£’\|““]+—2 IX= N = (M (x = x%), A= X%, (34)
ien LT Fi v

17 —A
“A; 1L,

ki

PN

Therefore,

Note that, if Assumption 1.1 holds, one can construct a primal-dual optimal solution (x*, 8™, A*) to
(7) which is a saddle point for £ in (8); hence, £(x*,0",X\*) = ®(x*) and 0 € K? fori € N.
Define w = [w;];ear such that w; £ AZ-;EZK —b; € R™ fori € N. Since K; is a closed convex cone,
it induces a decomposition on R™: for i € N, i.e., consider w; = Py, (w;) and 0} = Prce ().
Note that since w; = @} + @2, |@2|| = ||Px, (@;) — w;|| = dx, (@0;). Define @ = [0;];cr such that
0; £ 2||07|| w3 € K2. Therefore,

[EH

1167 1

07|

(Al —bi,0;) =2 (W} + o7, 07) =207 || d, (ATl — by), (35)

I
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where the second equality follows from @} L @?2. Similarly, define A £ 2||X*||(MxX / || M=)
Hence, (MXX, A) = 2||A*|||| MZX . Therefore, together with (35), we get

LE",0,8) - L(x",07,X") = B(x") — B(x") +2 (llA*IIIMiKI + Y di, (Aiz — bi)||03||> :
ieN
Now we are going to upper bound ©(x*, 8, X) using (34). Since A\” = vMx°, we get

1.5 02 * 0\ X o 1 75 yo « 0\2 .2 N
oy A=A = (MG =50, 3= N = o (A= X0 =M =) =2 M = <))
2\« ol 2
= ZINIP = g Il (36)
where in the last equality follows from Mx* = 0. Since 6" and A" maximize the Lagrangian
function at x*, and we set 9? = 0, the definitions of #;, A, and (33), (34) together imply that

L=,8,8) — L(x",07,A%) < £(x5,8,3) ~ £, 8", ") < 2O(x",8,4) < %.
Therefore, we can conclude that
* * = — * e
P(R") = @(x") +2 (llA MRS+ > dic, (Asz = bo)|6; ||> < (37)
ieN

where we use £(x*,0%, ") = ®(x*) and the fact that o, (6;) = 0 due to (32) since 8; € K¢ for
i € N. Moreover, since (x*, 8%, \*) is a saddle-point for £ in (8), we clearly have £(X/, 0%, \*) —
L(x*,0",X*) > 0; therefore,

(x") = B(x") + (N, Mx) + > (05, Azl —bi) > 0. (38)
ieN
Recall that i € N we defined W} = P, (10;) and w? = Pree (;), where ; = AizK — b, e R™.
Foralli € N, 6 € K¢ and @} € K; imply (0, w;}) < 0; hence, forall i € N,
(A = bi,07) = (s —; + @i, 07) < (Wi — by, 07) < |05 ||dic, (Aizi* — by).
Together with (38), we conclude that
D) — (") + AR + D 1167 e, (A = bi) > 0. (39)
ieN
By combining inequalities (37) and (39) immediately implies the desired result. Finally, since (10)

in Lemma 2.1 holds with strict inequality, Q(A, Ag) = 0. Hence, the proof of convergence for {x*}
and {x*} follows from Theorem 1.1.

5.4 Proof of Theorem 3.2

In order to prove Theorem 3.2, we first prove Theorem 5.2 which help us to appropriately bound
L(xXy) — L(x,y5). Next, we provide a technical result in Lemma 5.3 to study the error accumu-
lation, and another technical result in Lemma 5.4 to show the asymptotic convergence of {x*,y*}.

Theorem 5.2. Lety = [0 |7 such that p € R"™W1, 0 = [0:]ien € R™, and m £ D ien Mis
and {x* y*} k>0 be the iterate sequence generated using Algorithm DPDA-D, displayed in Fig. 2,

initialized from an arbitrary x° and y°; and {e*} k>1 be the proximal error sequence defined as in
(20). For any x € X, andy € Y, the iterate sequence {x", yk}kzo satisfies for all k > 0

L y) = £66y™) S B0+ [Daex) 4 Dy v,y = (T =5,y —¥")] o)

1
*(Zk+1 _ Zk:)T

k k
5 (z“—z)7

Qi

= [Dele )+ D,y ¥ ) — (Tl —x 1), y =y )] -

T T
Pyt [ATAF]T
(A,A()) is
) for k > 1.

where z T D,, D, are Bregman functions defined as in Definition 1,
for block-diagonal matrix A 2 diag([A;]ienr) € R™*" Wl and Ay = Ly Q
defined as in Theorem 1.1 for Ag = 1, x|, and EF(u) = ||e¥|| (QV\/N B+|p—p

>~
Ol

e
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Proof. Fork > 0,letq" £ 2x"*! —x*. From strong convexity of oc () — (a*, p1) + o5 [l — p*[|3

Ak+1

in p and the fact that is its minimizer we conclude that

o) = (a*s ) + £l — 1P > oo (W) = (@, A 4 SN < R - AR,
According to (20), uk =\ 'yek for all £ > 1; hence, from (22) we have

oc(p) — (@, ) + 2l — p"ll >

oo(p") —(a", ") + E T = R 4 Sl = e = ST (), 1)
where the error term S¥*1(p) is defined as
S () £ VN Bl e - (& o et @)

If one customizes the steps of Lemma 5.1 for problem (11) using p*+! instead of AR

ately follows from (41) that for all £ > 0:

, it immedi-

L6 y) = L6631 < 8 ) 4 [Daleox) 4 Dy, y") = (T =5, y =")] @)

= [Dabe X ) 4 Dy 3,y ) = (Tl = x5,y =y )] - SR - 2T Qe - ),

2
where z* = [kaykT]T, and Q 2 Q(A, Ay) is defined as in Theorem 1.1 for Ay = L.

For k > 0, let h*t!1 £ PC(%uk + q"); hence, A"t = pF + vqF — yhF Tt Since pht! =
AL ekt we have p 4 yqF — pFt! = y(h*+! — eF11); therefore, (42) can be written as

S¥ () = vV N Bllef T — (ef T, p— p* T 4 4hF) < R (), (44)

where the inequality follows from Cauchy-Schwarz inequality and the fact that |h**!|| < /N B
since h¥*1 € C. Combining (43) and (44) gives the desired result. L]

The Lemma 5.3 below is a slight extension of Proposition 3 in [20], where it is stated for ¢ = 1. The
proof is omitted due to limited space. The next result in Lemma 5.4 follows from [23].

Lemma 5.3. Ler « € (0,1), ¢ > 1 is a rational number, and d € Zy. Define P(k,d) =
{Zf:() cik! © ¢ € Ri = 1,...,d} denote the set of polynomials of k with degree at most d.
Suppose p*) € P(k,d) for k > 1, then Z;:O% P vk is finite.

Lemma 5.4. Let {a*}, {b*}, and {c*} be non-negative real sequences such that a*+1 < a* —b* 4c*
forallk > 1, and Zzozl P < 0o. Then a = limy,_, o a” exists, and Z;ozl bF < 0.

Now we are ready to prove Theorem 3.2.

5.5 Proof of Theorem 3.2

Setting Ag = I,, )| instead of M in the proof of Lemma 2.1, one can show that Q=Q(A, A4) =0
when the condition in (23) holds for all ¢ € N; thus, we can drop the last term in (40). Similar to
the proof of Theorem 1.1, summing (40) over k after dropping —3 ||z" ! — z* HQ’ using Jensen’s
inequality, and dropping the last term, D, (x,x*) + Dy, (y,y*) — (T(x —x*), y —y®) > 0, in
the telescoping sum gives

L=, y) ~ £665%) S [Daex) + Dy (3,y") — (T =0, y = ¥°) + X B )] 49)
k=1

Note that E* () appearing in (45) is the error term due to approximating Pc in the k-th iteration
of the algorithm for & > 1. Furthermore, (45) can be written more explicitly as follows: let X £
+ Zszl xk, pf £ L Zszl ¥, and o 2 = Zle 6", then for any x, u € R*"WI 9 ¢ R™
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such that m = ), \-m;, and for all K > 1, we have

E()_(K,OHU,)—,C(X, 9K7p’K) < @(xyevu)/K
K
al 012 0 0 k
O0x.0,10) &l — ) = (x = =)+ S B )

k=1

+Z[—sz—x 12 4 gl — 621 — (A — 2), 6~ 80

iEN
Note that under the assumption in (23), Schur complement condition guarantees that

S - 21, 0
=" 2 :

:Ai LIW
O(x,6,1) <3 [—nxﬁxln + Lo *9°||]+*Hu e
ieEN

K

Therefore,

K

—(x=x"p—p’) + > E¥ (). (46)
k=1

As argued in the proof of Theorem 2.2, if Assumption 1.1 holds, one can construct a saddle point
(x*,0%, ") for Lin (11); hence, L(x*,0%,\") = ®(x*) and 0} € K¢ fori € A. Asin the proof of
Theorem 2.2, define 6 = [6;];cr such that §; 2 2[167 ]| (|| Prs (A — b))~ Pro (AiZE —b;) €
KC7, which implies

(A — b, 0;) = 2|07 || dc, (Al — bs). (47)
Define C' £ {x € R"WI: 3z ¢ R" s.t. z; = Z,Vi € N'}. Note that C'is a closed convex cone, and
the projection P (x) = 1 ® p(x), where p(x) is defined in (15). Let fr = 2 || A"|| % € Ce,
where C'° denotes polar cone of C.. Hence, it can be verified that (. x x) = 2|[A"||ds(xF). Note

that i € C° implies that o () = 0; moreover, we also have C' C C; hence, o (f1) < oa(p) = 0.
Therefore, we can conclude that o (ft) = 0 since 0 € C. Together with (47), we get

LX",0, 1) - L(x",0%, A7) = &) - d(x") + <|)\ lde (%) + > dic, (Aiz — b,)]|6; ||>. (48)

€N

Now we are going to upper bound ©(x* p,) using (46). Since u® = 0, from Cauchy-Schwarz
inequality,
[(x" =% = )] < 2 A7 [x" =" (49)

Since 8" and A* maximize the Lagrangian function at x*, and 0° = 0, it follows from (47), (49),
and (46) that

Therefore, we can conclude that

B(x) ~ (x") + <||A ldg (=) + 3~ dr. (A —bi)|9:||><;(@z+ZE’“<m>, (50)

ieN k=1
where we use £(x*, 8%, A\*) = ®(x*) and the fact that o, (6;) = 0 due to (32) since ; € K.

Since (x*, 0", X*) is a saddle-point for £ in (11), we clearly have £(xX, 0, X\*) — L(x*, 0", X*) >
0; therefore,
(%) — B(x7) + (AT, %)+ D (07, AL —bi) 0. 51)
iEN
As shown in the proof of Theorem 2.2, for all i € N, we have

(A" = bi, 07) < 107 [[dic, (A% = by).
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Similarly, we can also show that (A", x*) < [|X*||ds(x"). Together with (51), we conclude that

B(x") — (x") + [N lda(RF) + D 1165 |1, (A% —bi) > 0. (52)
iEN

Finally, note that (18) implies that | R* (x) — Pc(x)|| < N I'ad* |[x| forall x, and ||x*|| < VN B
for k£ > 1, it follows from (20) and (21) that

€441 = IPe (a2 ) — RE (Lt 4 2x ) |

3
< NTa® |[Lp* 4 oxh* - ka < 4N2 Ba% (k + 1). (53)

Moreover, using (53) and (21) we obtain that

K K K

3 -
D OEN(@) =) lle"(29VN B+ || — 1)) <D 4N2BTa®k(29V'N B + || — 1)
k=1 k=1 k=1

K
<8N?B’T ) o [27192 + (7 + “}TQ,) k} = 03(K). (54)
k=1
From Lemma 5.3, it follows that sup ¢y, ©3(K) < oo. Therefore, combining inequalities (50),
(52) and (54) immediately implies the desired result.

Let z* = [x*Ty*T]T be a saddle point for £ in (11), where y* = [6* ' A*"]T. Due to (23), we
have Q > 0; hence, evaluating (40) at z = z*, we get kK > 0

0< £ y") = L6y ) BT 4 [Da(x %) 4 Dy (v v - (T = %), 37 = 3]

- [Dz(x*7xk+1) n Dy(y*,ka) -~ <T(x* B Xk+1)’ v* — yk+1>]

_1
2

2
S zkH " (55)
Q

Define a* £ D, (x*,x%) + Dy(y*,y") — (T(x* —x*), y* —y*), bF £ 1|25 — z"“”é, and
ck & EFY(A*) for k > 0. Clearly, b* > 0 and c* > 0 for k¥ > 0. Moreover, from the
definition of Q, it follows that (28) holds for all z, z’; therefore, a* > 1 sz —z* % > (0 fork > 0.
Finally, note that (54) also implies that Zszl ER(X*) < ©3(K). Since Supgez, O3(K) < oo,

Lemma 5.4 implies that limj,_, . a* exists. Thus, {a*} is a bounded sequence, and this also implies

that {z*} is bounded as well. Consequently, there exists a subsequence {z*" },, such that z*» — 2
as n — oo. Since (55) is true for any saddle point z*, by setting z* = z in (55), one can conclude

that s £ limy, s* > 0 exists, where

s* 2 D (%, x") + Dy (9.9") — (T - x"),5 - y") (56)

for k > 0. Since s = lim,, s*» and lim,, <T(§< —xkn) g — yk"> = 0 (from z*» — 2), clearly
s= lim D,(%,x")+ Dy(y",y"") =0,

n—oo

which also implies that z* — 2.
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5.6 Additional figures
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Figure 4: Comparison among DPDA-S on a random graph with algebraic connectivity 4, local SVMs for two
nodes, and central SVM against test data. All models are trained with C' = 2.
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Figure 5: Comparison among DPDA-S on a random graph with algebraic connectivity 4, local SVMs for two
nodes, and central SVM against training data. All models are trained with C' = 2.

17



