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1 Model comparison via Predictive Log Likelihood

How can we compare different network models in a principled manner? Predictive log likelihood of
held-out time bins is insufficient since it only depends directly onA andW . The network prior does
aid in the estimation ofA andW , but this is only an indirect effect, and it may be small relative to the
effect of the data. Instead, we hold out neurons rather than time bins. Accurate network models play
a crucial role in predicting held-out neurons’ activity, since the distribution of incident connections to
the held-out neuron are informed solely by the network model.

Formally, we estimate the probability of a held-out neuron’s spike train sn∗ = [s1,n∗ , . . . , sT,n∗ ],
given the observed spike trains. We integrate over the latent variables and parameters underly-
ing the observed spike train, as well as those underlying the new spike train, using Monte Carlo.
Let Z = {{wn,an, νn,un,vn}Nn=1,θ}, and let zn∗ = {νn∗ ,wn∗ ,an∗ ,un∗ ,vn∗}. Then,

p(sn∗ |S) ≈
∫
p(sn∗ | zn∗ ,S) p(zn∗ |Z) p(Z |S) dzn∗ dZ ≈

1

Q

Q∑
q=1

p(sn∗ | z(q)n∗ ,S),

z
(q)
n∗ ∼ p(zn∗ |Z

(q)), Z(q) ∼ p(Z |S).

The samples {Z(q)}Qq=1 are posterior samples generated our MCMC algorithm given S. While a
proper Bayesian approach would impute sn∗ , for large N this approximation suffices. For each
sample, we draw a set of latent variables and connections for neuron n∗ given the parameters Z(q).
These, combined with the spike train, enable us to compute the likelihood of sn∗ .

2 Further MCMC details

Gibbs sampling the parameters of the network model

• Independent Model Under an independent model, the neurons do not have latent variables so
all we have to sample are the global parameters, θ. If the independent model applies to the
adjacency matrix, then θ = ρ. The model is conjugate with a beta prior. If the independent
model applies to the weights, then θ = {µ,Σ}, and the model is conjugate with a normal
inverse-Wishart prior.

• Stochastic Block Model (SBM) updates: If a stochastic block model is used for either
the adjacency matrix or the weights, then it is necessary to sample the class assignments
from their conditional distribution. We iterate over each neuron and update its assignment
given the rest by sampling from the conditional distribution. For example, if un governs a
stochastic block model for the adjacency matrix, the conditional distribution of the label for
neuron n is given by,

p(un = c | {um6=n},A,θ) ∝ πc
N∏

m=1

p(am→n | ρcm→) p(an→m | ρc→cm),
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where θ = {π, {ρc←c′}}. For stochastic block models of the weight matrix, W , the
conditional distribution depends on wn→m and wm→n instead.
Given the class assignments and the network, the parameters ρc←c′ , µc←c′ , Σc←c′ , and π
are easily updating according to their conditional distributions, assuming π and ρc→c′ are
given conjugate Dirichlet and beta priors, respectively.

• Latent location updates: We resample the locations using hybrid Monte Carlo (HMC) [1].
Since the latent variables are continuous and unconstrained, this method is quite effective.
In addition to the locations, the latent distance model is parameterized by a location scale, η.
Given the locations and an inverse gamma prior, the inverse gamma conditional distribution
can be computed in closed form.
The remaining parameters include the log-odds, γ0, if the distance model applies to the
adjacency matrix. This can be sampled alongside the locations with HMC. For a latent
distance model of weights, the baseline mean and variance, (µ0, σ

2), are conjugate with a
normal inverse-gamma prior.

Observation parameter updates The observation parameter updates depend on the particular
distribution. Bernoulli observations have no parameters. In the binomial model, νn corresponds to
the maximum number of possible spikes — this can often be set a priori, but it must upper bound the
maximum observed spike count. For negative binomial spike counts, the shape parameter νn can
be resampled as in Zhou et al. [2]. One possible extension is to introduce a transition operator that
switches between binomial and negative binomial observations in order to truly capture both over-
and under-dispersion.

We implemented our code in Python using Cython and OMP to parallelize the Pólya-gamma updates.
This is available at https://github.com/slinderman/pyglm.

Number of MCMC iterations For both the synthetic and retinal ganglion cell results presented
in the main paper, we ran our MCMC algorithm for 1000 iterations and used the last 500 samples
to approximate posterior expectations. These limits were set based on monitoring the convergence
of the joint log probability. Even after convergence, the weighted adjacency matrix continues to
vary from sample to sample, reflecting genuine posterior uncertainty. In some cases, the samples of
the stochastic block model seem to get stuck in local modes that are difficult to escape. This is a
challenge with coclustering models like these, and more sophisticated transition operators could be
considered, such as collapsing over block parameters in order to update block assignments.
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