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Abstract

Contexts are crucial for action recognition in video. Current methods often mine
contexts after extracting hierarchical local features and focus on their high-order
encodings. This paper instead explores contexts as early as possible and lever-
ages their evolutions for action recognition. In particular, we introduce a novel
architecture called deep alternative neural network (DANN) stacking alternative
layers. Each alternative layer consists of a volumetric convolutional layer followed
by a recurrent layer. The former acts as local feature learner while the latter is
used to collect contexts. Compared with feed-forward neural networks, DANN
learns contexts of local features from the very beginning. This setting helps to
preserve hierarchical context evolutions which we show are essential to recognize
similar actions. Besides, we present an adaptive method to determine the temporal
size for network input based on optical flow energy, and develop a volumetric
pyramid pooling layer to deal with input clips of arbitrary sizes. We demonstrate
the advantages of DANN on two benchmarks HMDB51 and UCF101 and report
competitive or superior results to the state-of-the-art.

1 Introduction

Contexts contribute semantic clues for action recognition in video. Current leading convolutional
neural networks (CNNs) [13, 22, 31] and its shifted version 3D CNNs [11, 28, 29] often aggregate
contexts in the late stage. More precisely, in the first layer of a typical CNN, receptive field (RF)
starts at the kernel size which is usually small and the outputs only extract local features. As the layer
goes deeper, RF expands and contexts start to be involved. These models need to be very deep [32] to
preserve rich context topologies and reach competitive trajectory-based works [16, 19, 20, 30]. We
speculate this is the main reason that going deeper with convolutions achieves better performance
on many visual recognition tasks [23, 26]. However, it is not wise to simply increase layer number
due to parameter burden. Besides, these models do not embed context evolutions of local features in
the forward flow which is essential for context mining [17, 18]. To this end, we attempt to explore
contexts as early as possible and investigate architectures for action recognition.

Our motivation also derives from the relations between CNNs and visual systems of brain since they
share many properties [9, 10]. One remarkable difference is that abundant recurrent connections
exist in the visual system of brain [3] while CNNs only have forward connections. Anatomical
evidences have shown that recurrent synapses typically outnumber feed-forward, top-down and
feedback synapses in the neocortex [4, 37]. This makes visual recognition tend to be a dynamic
procedure. Hence, we investigate to insert recurrent connections in the deployment of our architecture.
Recent works utilize recurrent neural networks (RNNs) with long-short term memory (LSTM) units
at the end CNN-based features of each frame to exploit semantic combinations [5, 25, 35]. These
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methods can be regarded as inter-image context learner. In contrast, we attempt to apply recurrent
connections to each level of hierarchical features to aggregate their context evolutions. Similar
efforts have demonstrated effectivity for image analysis such as object recognition and scene parsing
[21, 17, 18]. We extend in temporal domain and study its potential for action recognition.

The main contribution of this paper is summarized as follows. First, we propose a deep alternative
neural network (DANN) for action recognition. DANN stacks alternative layers consisting of
volumetric convolutional layer and recurrent layer. The alternative deployment is used to preserve the
contexts of local features as early as possible and embed their evolutions in the hierarchical feature
learning procedure. Second, we introduce an adaptive method to determine the temporal size of input
video clip based on the density of optical flow energy. Instead of manual choices used in most deep
architectures, our method utilizes adaptive input video clips preserving long range dependencies,
while not breaking semantic structures. To cope with input video clips of arbitrary sizes, we develop
a volumetric pyramid pooling layer to resize the output to fixed-size before fully connected layers.
Finally, we conduct extensive experiments and demonstrate the benefits of our method with early
context exploration. On two challenging benchmarks HMDB51 and UCF101, we report competitive
or superior results to the state-of-the-art.

2 Deep Alternative Neural Network

2.1 Adaptive Network Input

The input size of deep networks in temporal domain is often determined empirically since it is hard to
evaluate all the choices. Previous methods often consider short intervals such as [11, 13, 27, 28] from
1 to 16 frames. Recent work [29] argues that human actions usually span tens or hundreds of frames
and contain characteristic patterns with long-term temporal structure. The authors use 60-frame as
the network input and demonstrate its advantage over 16-frame. However, it is still an ad hoc manner
and difficult to favor all the action classes. We introduce an adaptive method to automatically select
the most discriminative video fragments using the density of optical flow energy. We attempt to
preserve as much as motion information and appropriate range dependencies while not breaking their
semantic structures in temporal domain.

Figure 1: Sample video clip at every 3 frames of class “golfswing” and its optical flow energy with
local minima and maxima landmarks where landmarks approximately correspond to motion change.

Many evidences show that motion energy intensity induced by human activity exhibits regular
periodicity [33]. This signal can be approximately estimated by optical flow computation as shown in
Figure 1, and is particularly suitable to address our temporal estimation due to: (1) the local minima
and maxima landmarks probably correspond to characteristic gesture and motion; (2) it is relatively
robust to changes in camera viewpoint. More specifically, we first compute the optical flow field
(vx,vy) for each frame I from a video Q and define its flow energy as

e(I) =
∑

(x,y)∈P

‖vx(x, y),vy(x, y)‖2 (1)

where P is the pixel level set of selected interest points. The energy of Q is then obtained as E =
{e(I1), · · · , e(It)}, which is further smoothed by a Gaussian filter to suppress noise. Subsequently,
we locate the local minima and maxima landmarks {t} of E and for each two consecutive landmarks
create a video fragment s by extracting the frames s = {It−1, · · · , It}. We average the fragment
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length of each class and illustrate the distribution in Figure 2, which indicates that using a universal
length can not favor all classes. To deal with the different length of video clip, we adopt the idea
of spatial pyramid pooling (SPP) in [8] and extend to temporal domain, developing a volumetric
pyramid pooling (VPP) layer to transfer video clip of arbitrary size into a universal length in the last
alternative layer before fully connected layer, which is presented in Section 2.3.

Figure 2: Average fragment length of each class in UCF101 dataset.

2.2 Alternative Layer

The key component of DANN is the alternative layer (AL), which consists of a standard volumetric
convolutional layer followed by a designed recurrent layer. Specifically, volumetric convolution is
first performed to extract features from local spatiotemporal neighborhoods on feature maps in the
previous layers. Then a recurrent layer is applied to the output and iteratively proceeds for T times.
This procedure makes each unit evolve over discrete time steps and aggregate larger RFs. More
formally, the input of a unit at position (x, y, z) in the jth feature map of the ith AL at time t, denoted
as uxyz

ij (t), is given by

uxyz
ij (t) = uxyz

ij (0) + f(wr
iju

xyz
ij (t− 1)) + bij

uxyz
ij (0) = f(wc

(i−1)ju
xyz
(i−1)j)

(2)

where uxyz
ij (0) denotes the feed-forward output of volumetric convolutional layer, uxyz

ij (t− 1) is the
recurrent input of previous time, wc

k and wr
k are the vectorized feed-forward kernels and recurrent

kernels, bij is the bias for jth feature map in ith layer, f is defined as popular rectified linear unit
(ReLU) function followed by a local response normalization (LRN) [14]. The first term is the
output of volumetric convolution of previous layer and the second term is induced by the recurrent
connections. LRN mimics the lateral inhibition in the cortex where different features compete for
large responses.

Equation 2 describes the dynamic behavior of AL where contexts are involved after local features are
extracted. Unfolding recurrent connection for T time steps results in a feed-forward subnetwork of
depth T + 1 as shown in Figure 3. While the recurrent input evolves over iterations, the feed-forward
input remains the same in all iterations. When t = 0 only the feed forward input is present. The
effective RF of an AL unit in the feature maps of the previous layer expands when the iteration
number increases.

Figure 3: Illustrations of an alternative layer (left). The unfolding recurrent procedure is on the right.

The recurrent connections in AL provide two advantages. First, they enable every unit to incorporate
contexts in an arbitrarily large region in the current layer. As the time steps increase, the state of
every unit is influenced by other units in a larger and larger neighborhood in the current layer. As
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a consequence, the size of regions that each unit can “watch” in the input space also increases. In
standard volumetric convolutions, the size of effective RFs of the units in the current layer is fixed,
and “watching” a larger region is only possible for units in higher layers. But unfortunately the
context seen by higher-level units cannot influence the states of the units in the current layer without
top-down connections. Second, the recurrent connections increase the network depth while keeping
the number of adjustable parameters constant by weight sharing, since AL consumes only extra
constant parameters of a recurrent kernel size compared with standard volumetric convolutional layer.

2.3 Volumetric Pyramid Pooling Layer

The AL accepts input video clips of arbitrary sizes and produces outputs of variable sizes. However,
the fully connected layers require fixed-length vectors. Similar phenomenon can be found in region
CNN (R-CNN) [6] where the input image patch is of arbitrary size. To adopt DANN for input video
clips of arbitrary sizes, we replace the last pooling layer with a volumetric pyramid pooling layer
(VPPL) inspired by the success of spatial pyramid pooling layer (SPPL) [8]. Figure 4 illustrates the
structure of VPPL. In each volumetric bin, we pool the responses of each kernel (throughout this
paper we use max pooling). The outputs of the volumetric pyramid pooling are kM -dimensional
vectors where M is the number of bins and k is the number of kernels in the last alternative layer.
The fixed-dimensional vectors are then sent to the fully connected layers.

Figure 4: A network structure with volumetric pyramid pooling layer (VPPL) to resize feature maps
of arbitrary size to fixed size.

With VPPL, the input video clips can be of any sizes. This allows not only arbitrary aspect ratios, but
also arbitrary scales. One can apply more compact video clips only containing semantic regions such
as action tubes in [7] to DANN with our VPPL to pursue potential improvement.

2.4 Overall Architecture

Figure 5: DANN has 6 alternative layers, 5 volumetric pooling layers, 1 volumetric pyramid pooling
layer, 3 fully conncected layers and a softmax layer. Number of kernels are denoted in each box.

Our network architecture DANN is illustrated in Figure 5. The network has 6 alternative layers with
64, 128, 256, 256, 512 and 512 kernel response maps, followed by a volumetric pyramid pooling
layer and 3 fully connected layers of size 2048 each. Following [28] we use 3 × 3 × 3 kernel for
volumetric convolutional layer and recurrent layers of all 6 alternative layers. After each alternative
layer, the network includes a ReLU and a volumetric max pooling layer. Max pooling kernels are of
size 2×2×2 except in the first layer, where it is 2×2×1. All of these volumetric convolutional layers
and recurrent layers are applied with appropriate padding and stride in both spatial and temporal
dimensions. VPPL is applied to resize the output of the last AL to fixed-size which is the input of
fully connected layers. Fully connected layers are followed by ReLU layers and a softmax at the end
of the network, which outputs class scores.
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3 Implementation details

The major implementations of DANN including volumetric convolutions, recurrent layers and
optimizations are derived from Torch toolbox platform [2].

Data Augmentation. Inspired by the random spatial cropping during training [23], we apply the
corresponding augmentation to spatiotemporal dimension, which we call random clipping. During
training stage, given an input video, we first determine their temporal size t as discussed in Section
2.1. Then we randomly select point (x, y, z) to sample a video clip of fixed size 80 × 80 × t. A
common alternative is to pre-process data by using a sliding window approach to have pre-segmented
clips. However, this approach limits the amount of data when the windows are not overlapped as in
[28]. Another data augmentation method that we evaluate is a multi-scale cropping similar to [32].

Training. We use SGD applied to mini-batches with negative log likelihood criterion. The size of
mini-batch is set 30. Training is performed by minimizing the cross-entropy loss function using
the backpropagation through time (BPTT) algorithm [34]. This is equivalent to using the standard
BP algorithm on the time-unfolded network. The final gradient of a shared weight is the sum of its
gradients over all time steps. The initial learning rate for networks learned from scratch is 3× 10−3

and it is 3 × 10−4 for networks fine-tuned from pre-trained models. The above schedule is used
together with 0.9 dropout ratio. The momentum is set to 0.9 and weight decay is initialized with
5× 10−3 and reduced by 10−1 factor at every decrease of the learning rate.

Testing. At test time, a video is also applied with temporal estimation in Section 2.1 and divided into
80× 80× t clips with a temporal stride of 4 frames, where t is the adaptive temporal size. Each clip
is further tested with 10 crops, namely 4 corners and the center, together with their horizontal flips.
The video-level score is obtained by averaging all the clip-level scores and crop scores.

4 Evaluations

4.1 Datasets

The evaluation is performed on UCF101 [24] and HMDB51 [15] benchmarks. Specifically, UCF101
contains 13K videos, annotated into 101 classes while HMDB51 includes 6.8K videos of 51 actions.
The evaluation protocol is the same for both datasets: the organisers provide three training and test
splits, and the performance is measured by the mean classification accuracy across the splits. Each
UCF101 split contains 9.5K training videos while HMDB51 split contains 3.7K training videos.

4.2 Quantitative Results

We first evaluate several experimental deployment choices and determine the common settings. Then
we study the impact of different configurations of our DANN and investigate the optimal architecture.
Finally, we report our best model and compare with state-of-the-art results.

Optical flow quality. We used three types of optical flow as input signal. The performance influence
is summarized in Table 1(a). We observe that sparse optical flow consistently outperforms RGB. The
use of TVL1 suggested in [32] allows an almost 20% increase in performance. This demonstrates
that action recognition is more easy to learn from motion information compared to raw pixel values.
Given such results, we choose TVL1 optical flow for all remaining experiments in this paper.

Data augmentation. Table 1(b) demonstrates the influence of data augmentation. Our baseline is
sliding window with 75% overlap. On UCF101 split 1 dataset, we find random clipping and multi-
scale clipping both outperform the baseline and their combination can further boost the performance.
Thus we use the combination strategy in the following experiments.

Temporal length. Another issue we discuss is that our DANN takes video clips with adaptive
temporal length, which is different from most existing architectures. We examine such setting by
comparing 6AL_VPPL_3FC with a new architecture 6AL_3FC using fixed-size temporal length of
16-frame, 32-frame and 64-frame, while removing VPPL. The performance gain by 6AL_VPPL_3FC
on UCF101 split 1 is approximate 4.2% as shown in Table 2(a). This result verifies the advantages of
our adaptive method to determine temporal length for network input.
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Table 1: Performance comparison of different input modalities and data augmentation strategies on
UCF101 split1.

(a) Impact of optical flow quality.
Input Clip-level Video-level
RGB 64.4 64.9
MPEG [12] 71.3 73.5
Brox [1] 76.7 77.2
TVL1 [36] 78.1 79.6

(b) Impact of data augmentation using TVL1.
Method Clip-level Video-level
Sliding window 75.4 74.8
Random clipping 78.5 79.6
Multi-scale clipping 81.2 82.4
Combined 81.6 82.3

Additional training data. We conduct experiments to see if our spatio-temporal features learned on
one dataset can help to improve the accuracy of the other one. Such additional data is already known
to improve results in some gain [22]. The performance from scratch is 56.4% while fine-tuning
HMDB51 from UCF101 boosts the performance to 62.5%. Similar conclusion is demonstrated in
Table 2(b). We conclude that one can learn generic representations with DANN like C3D [28].

Table 2: Performance impact of temporal length choice and additional training data.

(a) Impact of temporal length on UCF101.
Temporal length Clip-level Video-level

16-frame 77.2 77.6
32-frame 77.3 77.2
64-frame 79.7 80.1

Adaptive (Ours) 82.8 83.0

(b) Impact of additional training data.
Method Accuracy

From scratch UCF 80.2
Fine-tuning from HMDB 83.7

From scratch HMDB 56.4
Fine-tuning from UCF 62.5

Model Analysis. In the following we investigate the optimal configuration of our DANN. There are
two crucial settings for DANN model. The first one is the AL deployment including its order and
number. The other one is the unfolding time T in the recurrent layers. Table 3 shows the details of
performance comparison, where VC is the standard volumetric convolutional layer and B_6VC_3FC
is a baseline composed of similar configurations with DANN but without ALs and adaptive input
size choice. The first column of Table 3(a) only has one AL layer and the accuracy comparison
demonstrates the benefits of exploring contexts as early as possible. The right column of Table 3(a)
shows the performance gains as the number of AL increases, which verifies the advantages of the
inserted recurrent layer. Table 3(b) uses 6AL_VPP_3FC to study the impact of T and the results
prove that larger T leads to better performance. This is perhaps due to larger contexts embedded into
DANN which are more suitable to capture semantic information.

Table 3: Performance comparison with different configurations of DANN on UCF101 split 1.

(a) Impact of the order and the number of AL using T = 3.
Architecture Acc. Architecture Acc.
B_6VC_3FC 80.2 2AL_4VC_VPP_3FC 85.9
AL_5VC_VPP_3FC 85.1 3AL_3VC_VPP_3FC 86.7
VC_AL_4VC_VPP_3FC 83.3 4AL_2VC_VPP_3FC 86.4
2VC_AL_3VC_VPP_3FC 82.4 5AL_VC_VPP_3FC 87.5
3VC_AL_2VC_VPP_3FC 82.7 6AL_VPP_3FC 87.9
4VC_AL_VC_VPP_3FC 81.4
5VC_AL_VPP_3FC 80.9

(b) Impact of T .
Architecture Acc.
6AL_VPP_3FC, T = 3 87.9
6AL_VPP_3FC, T = 4 88.5
6AL_VPP_3FC, T = 5 88.3
6AL_VPP_3FC, T = 6 89.0

Combining spatial stream. Recent work [29] demonstrates that combining appearance information
learned from spatial stream can improve the performance of pure 3D CNN. We examine this issue and
train a network with static RGB frames similar to [22] by inputting 256× 256 frames and cropping
them randomly into 224 × 224 regions. The VGG-16 [23] network pre-trained on ImageNet is
fine-tuned on UCF101 and HMDB51 separately. Following good practice in [32], we apply weighted
averaging of 0.4 and 0.6 for RGB and DANN scores, respectively. Table 4 reports the final results of
our best model and its fusion with spatial stream on the three splits of both datasets.
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Comparison with the state-of-the-art. Table 4 reports the best DANN model and state-of-the-art
approaches over three splits on UCF101 and HMDB51 datasets in terms of video-level accuracy.
As can be seen from Table 4, trajectory-based features are still competitive in the area of deep
learning, especially with the help of high-order encodings or deep architectures. Fusion strategies
often outperform pure single deep networks. Note that all the other deep networks use a pre-defined
temporal length to generate video clip as input such as 16-frame [28] and 60-frame [29], while our
DANN determines it in an adaptive manner. Combined with spatial stream, DANN achieves the
accuracy of 65.9% and 91.6% on HMDB51 and UCF101, separately.

Table 4: Comparison with the state-of-the-art on HMDB51 and UCF101 (over three splits).

Method HMDB UCF Method HMDB UCF

CNN

Slow fusion [13] - 65.4

Fusion

Two-stream [22] 59.4 88.0
C3D [28] - 85.2 CNN+deep LSTM [35] - 88.6
Two-Stream(spatial) [22] 40.5 73.0 TDD [31] 63.2 90.3
Two-Stream(temporal) [22] 54.6 83.7 TDD+iDT [31] 65.9 91.5
LTC [29] 57.9 83.3 C3D+iDT [28] - 90.4
Very deep (temporal) [32] - 87.0 Very deep (two-stream) [32] - 91.4
Very deep (spatial) [32] - 87.0 LTC+spatial 61.5 88.6

Hand

IDT+FV [30] 57.2 85.9 Ours DANN 63.3 89.2
IDT+HSV [19] 61.1 87.9 DANN+spatial 65.9 91.6
IDT+MIFS [16] 65.1 89.1
IDT+SFV [20] 66.8 -

4.3 Qualitative Analysis

We present qualitative analysis of DANN and investigate where mistakes exist. We examine the per-
class accuracies are computed and the difference between 6AL_VPP_3FC(T = 6) and B_6VC_3FC.
The class with the largest improvement when 6AL_VPP_3FC(T = 6) is used instead of B_6VC_3FC
is “bowling”. This action is composed of preparing for a few seconds and then throwing a bowl. The
adaptive temporal choice determined by DANN can aggregate more reasonable semantic structures
while B_6VC_3FC has to choose temporal size manually. Figure 6 illustrates sample frames
from class “bowling”. It is clear that DANN is more likely to leverage reasonable video clips
as network input. On the other hand, there are also a few classes that B_6VC_3FC outperforms
6AL_VPP_3FC(T = 6) such as “haircut”. We also illustrate its sample frames in Figure 6. We
speculate this phenomenon is partly due to the rich contexts provided by 6AL_VPP_3FC(T = 6) are
not fit to simple actions performed in simple background.

Figure 6: Sample frames of “bowling” and “haircut”. For “bowling” 6AL_VPP_3FC(T = 6)
segments video clips with 52 frames (Figure 2) which preserves temporal semantic structures. Such
adaptive choice performs worse than baseline for “haircut”, where background and action are simple.

5 Conclusion and Future Work

This paper introduces a deep alternative neural network (DANN) for action recognition. DANN
stacks alternative layers which consists of a volumetric convolutional layer and a recurrent layer.
To preserve motion structures in temporal domain, we present an adaptive method to determine the
temporal size of network input and develop a volumetric pyramid pooling layer to resize the output
before fully connected layers into fixed-size vector. We demonstrate the advantages of DANN on
HMDB51 and UCF101 benchmarks and report competitive or superior results to the state-of-the-art.
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There still remains some potential area of improvement. The most prominent one is the input size.
Although in our model we use adaptive temporal length, the spatial size is still chosen in ad hoc
manner. A more compact input such as action tube [7] of arbitrary size will be studied in the future,
which only contains key actor and spatiotemporal movement regions.
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