
Learning Tree Structured Potential Games (Supplementary)

Theorem 1. Given a set of training examples S = {(xm, ym)}Mm=1, it is NP-hard to decide whether
there exists a tree T and parameters θ (up to model equivalence) such that

∀ m, i, yi, f(ym;xm, T, θ) ≥ f(ym−i, yi;x
m, T, θ) + e(y, ym),

when f(y;x, T, θ) is of the following form:

f(y;x, T, θ) =
∑
ij∈T

θij(yi, yj) +
∑
i

θi(yi) +
∑
i

xi(yi).

Proof. Without loss of generality, we omit the margin losses e(yi, ymi ) since the bias terms xi(yi)
suffice to rule out the trivial solution θ = 0. We prove the result via a poly-time reduction from the
bounded-degree spanning tree problem. The decision version of the bounded-degree spanning tree
problem is stated as follows. Given an undirected graph G, does there exist a spanning tree with
maximum degree D in G? This problem is known to be NP-hard [17].

We construct an instance of our problem from an instance of the bounded-degree spanning tree
problem in the following way. Let n = |V | be the number of vertices in the input graph G = (V,E).
We define variables y1, y2, . . . , yn, where each yi ∈ {1, 2, . . . , n+ 1}. Let degT (i) be the degree of
node i ∈ {1, . . . , n} in T . Next we define a set of parameters θ as

θi(yi) =

{
D if yi = n+ 1

0 otherwise
, and

θij(yi, yj) =


1 if yi 6= n+ 1 and yj = n+ 1, or yj 6= n+ 1 and yi = n+ 1

0 if yi = yj = n+ 1

−n2 otherwise.
.

We now construct a training set that we would like to be separable only by the desired parameters.
Let zi(j) be the n-dimensional vector (n+ 1, . . . , j︸︷︷︸

index i

, . . . , n+ 1)

︸ ︷︷ ︸
n−component vector

with all entries identically set

to n + 1, other than index i ∈ {1, . . . , n} with entry j ∈ {1, 2, . . . , n}. Construct a set of O(n2)
examples S = {(0, 0, . . . , 0), zi(j)}i∈{1,...,n},j∈{1,...,n}. Consider (x = (0, . . . , 0), ỹ) ∈ S, where
ỹ = (n + 1, . . . , n + 1) is a labeling vector with each entry set to n + 1. Note that the bias terms
xi(ỹi) are identically 0 for all examples in S. For this example, we have

f(ỹ; (0, . . . , 0), T, θ) = nD,

since the pairwise θ values are all zero, and only non-zero contribution comes from
∑
i θi(ỹi). Every

other assignments y is of the form y = zi(j), where i, j ∈ {1, . . . , n}. For any i, j ∈ {1, . . . , n}, we
have the contribution of singleton potential to f(y; (0, . . . , 0), T, θ) = f(zi(j); (0, . . . , 0), T, θ) is∑

k

θk(yk) = θi(yi)︸ ︷︷ ︸
= 0

+
∑
k 6=i

θk(yk)︸ ︷︷ ︸
=D

= (n− 1)D.

On the other hand, for all i, and j, the contribution of the pairwise potentials to f(y; (0, . . . , 0), T, θ)
is simply degT (i), the number of neighbors of node i in T . Therefore, we have,

f(y; (0, . . . , 0), T, θ) = f(zi(j); (0, . . . , 0), T, θ) = (n− 1)D + degT (i)

Since the assignments ỹ and y differ in exactly one component, we have that S is separable by θ if
and only if there exists a spanning tree T such that

f(ỹ; (0, . . . , 0), T, θ) ≥ f(y; (0, . . . , 0), T, θ),

10



or equivalently iff
nD ≥ (n− 1)D + degT (i),∀ i,

i.e., iff D ≥ degT (i)∀ i, which is just the bounded degree spanning tree problem. Thus we have
shown that S is separable by θ if and only if there exists a spanning tree T of degree at most D. i.e.
if and only if the answer to the bounded degree spanning tree problem is “yes”.

To complete the proof, we need to recover θ. To this end, we can express θ in is equivalent canonical
form with respect to assignment (n+ 1, n+ 1, . . . , n+ 1) using the procedure outlined in [15]. Then,
we can construct a set S′ of M = 2|V |n+ 2|E|n2 = 2n2(1 + |E|) examples {xm, y(xm, θ)} using
the procedure in Proposition 2.1 of [15] to recover (canonical) θ. This procedure is polynomial, and
ensures that every example satisfies the following property: for each i ∈ {1, . . . , n}, either the label
ymi or its neighbors are set to the canonical state n+ 1. Note that set S described above also satisfies
this property. Clearly, the entire training set S

⋃
S′ is of size O

(
(1 + |E|)n2

)
, which is polynomial

in n. Thus we have outlined a procedure to recover θ in polynomial time, and the proof is complete.
�

Theorem 2. Consider the following combinatorial problem

Opt = max
z

{
f(z) +

∑
α∈A

gα(zα)

}
, (2)

where f(z) specifies global constraints on admissible z, and gα(zα) represent local terms guiding the
assignment of values to different subsets of variables zα = {zj}j∈α. Let the problem be minimized
with respect to the dual coefficients {δi,α(zi)} by following a dual decomposition approach. Suppose
we can find a global assignment ẑ and dual coefficients such that this assignment nearly attains the
local maxima, i.e.,

gα(ẑα) +
∑
j∈α

δj,α(ẑj) ≥ max
zα

{
gα(zα) +

∑
j∈α

δj,α(zj)
}
− ε (3)

for some ε > 0, across the components α ∈ A. Assume further, without loss of generality,4 that the
assignment attains the max for the global constraint. Then, we have that

max
z

{
f(z)−

∑
α,i∈α

δi,α(zi)
}

+
∑
α∈A

max
zα

{
gα(zα) +

∑
j∈α

δj,α(zj)
}
− ε

 ∈ [Opt− |A|ε, Opt].
Proof. Typically, if the local maximizing assignments are consistent across the components for some
choice of dual coefficients, then the resulting assignment is optimal, and the upper bound is tight.
However, under the conditions of the theorem, we have

max
z

{
f(z) +

∑
α∈A

gα(zα)

}
(4)

≥ f(ẑ) +
∑
α∈A

gα(ẑα) (5)

= f(ẑ)−
∑
α,i∈α

δi,α(ẑi) +
∑
α∈A

{
gα(ẑα) +

∑
j∈α

δj,α(ẑj)
}

(6)

≥ max
z

{
f(z)−

∑
α,i∈α

δi,α(zi)
}

+
∑
α∈A

max
zα

{
gα(zα) +

∑
j∈α

δj,α(zj)
}
− ε

 (7)

≥ max
z

{
f(z) +

∑
α∈A

gα(zα)

}
− |A|ε. (8)

In other words, such consistent ẑ is |A|ε optimal even though it does not attain local maxima for the
components. The goal can be therefore slightly shifted towards finding consistent assignments at the
expense of obtaining exact local maxima. �

4We can adjust the bound with a term that depends on the difference between the value of the optimal global
structure and the value of the global structure under consideration if these values do not coincide.
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