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Abstract

We consider the weakly supervised binary classification problem where the labels
are randomly flipped with probability 1 − α. Although there exist numerous al-
gorithms for this problem, it remains theoretically unexplored how the statistical
accuracies and computational efficiency of these algorithms depend on the degree
of supervision, which is quantified by α. In this paper, we characterize the effect of
α by establishing the information-theoretic and computational boundaries, namely,
the minimax-optimal statistical accuracy that can be achieved by all algorithms,
and polynomial-time algorithms under an oracle computational model. For small
α, our result shows a gap between these two boundaries, which represents the com-
putational price of achieving the information-theoretic boundary due to the lack of
supervision. Interestingly, we also show that this gap narrows as α increases. In
other words, having more supervision, i.e., more correct labels, not only improves
the optimal statistical accuracy as expected, but also enhances the computational
efficiency for achieving such accuracy.

1 Introduction
Practical classification problems usually involve corrupted labels. Specifically, let {(xi, zi)}ni=1 be
n independent data points, where xi ∈ Rd is the covariate vector and zi ∈ {0, 1} is the uncorrupted
label. Instead of observing {(xi, zi)}ni=1, we observe {(xi, yi)}ni=1 in which yi is the corrupted label.
In detail, with probability (1−α), yi is chosen uniformly at random over {0, 1}, and with probability
α, yi = zi. Here α ∈ [0, 1] quantifies the degree of supervision: a larger α indicates more supervision
since we have more uncorrupted labels in this case. In this paper, we are particularly interested in the
effect of α on the statistical accuracy and computational efficiency for parameter estimation in this
problem, particularly in the high dimensional settings where the dimension d is much larger than the
sample size n.
There exists a vast body of literature on binary classification problems with corrupted labels. In
particular, the study of randomly perturbed labels dates back to [1] in the context of random clas-
sification noise model. See, e.g., [12, 20] for a survey. Also, classification problems with missing
labels are also extensively studied in the context of semi-supervised or weakly supervised learning
by [14, 17, 21], among others. Despite the extensive study on this problem, its information-theoretic
and computational boundaries remain unexplored in terms of theory. In a nutshell, the information-
theoretic boundary refers to the optimal statistical accuracy achievable by any algorithms, while the
computational boundary refers to the optimal statistical accuracy achievable by the algorithms under
a computational budget that has a polynomial dependence on the problem scale (d, n). Moreover,
it remains unclear how these two boundaries vary along with α. One interesting question to ask is
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how the degree of supervision affects the fundamental statistical and computational difficulties of
this problem, especially in the high dimensional regime.
In this paper, we sharply characterize both the information-theoretic and computational boundaries
of the weakly supervised binary classification problems under the minimax framework. Specifically,
we consider the Gaussian generative model where X|Z = z ∼ N (µz,Σ) and z ∈ {0, 1} is the
true label. Suppose {(xi, zi)}ni=1 are n independent samples of (X, Z). We assume that {yi}ni=1 are
generated from {zi}ni=1 in the aforementioned manner. We focus on the high dimensional regime,
where d � n and µ1 − µ0 is s-sparse, i.e., µ1 − µ0 has s nonzero entires. We are interested in
estimating µ1−µ0 from the observed samples {(xi, yi)}ni=1. By a standard reduction argument [24],
the fundamental limits of this estimation task are captured by a hypothesis testing problem, namely,
H0 : µ1 − µ0 = 0 versus H1 : µ1 − µ0 is s-sparse and

(µ1 − µ0)>Σ−1(µ1 − µ0) := γn > 0, (1.1)
where γn denotes the signal strength that scales with n. Consequently, we focus on studying the
fundamental limits of γn for solving this hypothesis testing problem.
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Figure 1: Computational-statistical phase transitions for weakly supervised binary classification. Here
α denotes the degree of supervision, i.e., the label is corrupted to be uniformly random with probabil-
ity 1− α, and γn is the signal strength, which is defined in (1.1). Here a ∧ b denotes min{a, b}.
Our main results are illustrated in Figure 1. Specifically, we identify the impossible, intractable, and
efficient regimes for the statistical-computational phase transitions under certain regularity condi-
tions.
(i) For γn = o[

√
s log d/n ∧ (1/α2 · s log d/n)], any algorithm is asymptotically powerless in

solving the hypothesis testing problem.
(ii) For γn = Ω[

√
s log d/n ∧ (1/α2 · s log d/n)] and γn = o[

√
s2/n ∧ (1/α2 · s log d/n)], any

tractable algorithm that has a polynomial oracle complexity under an extension of the statistical query
model [18] is asymptotically powerless. We will rigorously define the computational model in §2.
(iii) For γn = Ω[

√
s2/n ∧ (1/α2 · s log d/n)], there is an efficient algorithm with a polynomial

oracle complexity that is asymptotically powerful in solving the testing problem.
Here

√
s log d/n ∧ (1/α2 · s log d/n) gives the information-theoretic boundary, while

√
s2/n ∧

(1/α2 · s log d/n) gives the computational boundary. Moreover, by a reduction from the estimation
problem to the testing problem, these boundaries for testing imply the ones for estimating µ2 − µ1

as well.
Consequently, there exists a significant gap between the computational and information-theoretic
boundaries for small α. In other word, to achieve the information-theoretic boundary, one has to
pay the price of intractable computation. As α tends to one, this gap between computational and
information-theoretic boundaries narrows and eventually vanishes. This indicates that, having more
supervision not only improves the statistical accuracy, as shown by the decay of information-theoretic
boundary in Figure 1, but more importantly, enhances the computational efficiency by reducing
the computational price for attaining information-theoretic optimality. This phenomenon — “more
supervision, less computation” — is observed for the first time in this paper.

1.1 More Related Work, Our Contribution, and Notation

Besides the aforementioned literature on weakly supervised learning and label corruption, our work
is also connected to a recent line of work on statistical-computational tradeoffs [2–5, 8, 13, 15, 19,
26–28]. In comparison, we quantify the statistical-computational tradeoffs for weakly supervised
learning for the first time. Furthermore, our results are built on an oracle computational model
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in [8] that slightly extends the statistical query model [18], and hence do not hinge on unproven
conjectures on computational hardness like planted clique. Compared with our work, [8] focuses
on the computational hardness of learning heterogeneous models, whereas we consider the interplay
between supervision and statistical-computational tradeoffs. A similar computational model is used
in [27] to study structural normal mean model and principal component analysis, which exhibit
different statistical-computational phase transitions. In addition, our work is related to sparse linear
discriminant analysis and two-sample testing of sparse means, which correspond to our special cases
of α = 1 and α = 0, respectively. See, e.g., [7, 23] for details. In contrast with their results, our
results capture the effects of α on statistical and computational tradeoffs.
In summary, the contribution of our work is two-fold:
(i) We characterize the computational and statistical boundaries of the weakly supervised binary
classification problem for the first time. Compared with existing results for other models, our results
do not rely on unproven conjectures.
(ii) Based on our theoretical characterization, we propose the “more supervision, less computation”
phenomenon, which is observed for the first time.

Notation. We denote the χ2-divergence between two distributions P,Q by Dχ2(P,Q). For two
nonnegative sequences an, bn indexed by n, we use an = o(bn) as a shorthand for limn→∞ an/bn =
0. We say an = Ω(bn) if an/bn ≥ c for some absolute constant c > 0 when n is sufficiently large.
We use a ∨ b and a ∧ b to denote max{a, b} and min{a, b}, respectively. For any positive integer k,
we denote {1, 2, . . . , k} by [k]. For v ∈ Rd, we denote by ‖v‖p the `p-norm of v. In addition, we
denote the operator norm of a matrix A by |||A|||2.

2 Background
In this section, we formally define the statistical model for weakly supervised binary classification.
Then we follow it with the statistical query model that connects computational complexity and
statistical optimality.

2.1 Problem Setup

Consider the following Gaussian generative model for binary classification. For a random vector
X ∈ Rd and a binary random variable Z ∈ {0, 1}, we assume

X|Z = 0 ∼ N (µ0,Σ), X|Z = 1 ∼ N (µ1,Σ), (2.1)
where P(Z = 0) = P(Z = 1) = 1/2. Under this model, the optimal classifier by Bayes rule
corresponds to the Fisher’s linear discriminative analysis (LDA) classifier. In this paper, we focus
on the noisy label setting where true label Z is replaced by a uniformly random label in {0, 1} with
probability 1−α. Hence, α characterizes the degree of supervision in the model. In specific, if α = 0,
we observe the true label Z, thus the problem belongs to supervised learning. Whereas if α = 1,
the observed label is completely random, which contains no information of the model in (2.1). This
setting is thus equivalent to learning a Gaussian mixture model, which is an unsupervised problem.
In the general setting with noisy labels, we denote the observed label by Y , which is linked to the
true label Z via

P(Y = Z) = (1 + α)/2, P(Y = 1− Z) = (1− α)/2. (2.2)
We consider the hypothesis testing problem of detecting whether µ0 6= µ1 given n i.i.d. samples
{yi,xi}ni=1 of (Y,X), namely

H0 : µ0 = µ1 versus H1 : µ0 6= µ1. (2.3)
We focus on the high dimensional and sparse regime, where d � n and µ0 − µ1 is s-sparse, i.e.,
µ0 − µ1 ∈ B0(s), where B0(s) := {µ ∈ Rd : ‖µ‖0 ≤ s}. Throughout this paper, use the sample
size n to drive the asymptotics. We introduce a shorthand notation θ := (µ0,µ1,Σ, α) to represent
the parameters of the aforementioned model. Let Pθ be the joint distribution of (Y,X) under our
statistical model with parameter θ, and Pnθ be the product distribution of n i.i.d. samples accordingly.
We denote the parameter spaces of the null and alternative hypotheses by G0 and G1 respectively. For
any test function φ : {(yi,xi)}ni=1 → {0, 1}, the classical testing risk is defined as the summation of
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type-I and type-II errors, namely
Rn(φ;G0,G1) := sup

θ∈G0
Pnθ(φ = 1) + sup

θ∈G1
Pnθ(φ = 0).

The minimax risk is defined as the smallest testing risk of all possible test functions, that is,
R∗n(G0,G1) := inf

φ
Rn(φ;G0,G1), (2.4)

where the infimum is taken over all measurable test functions.
Intuitively, the separation between two Gaussian components under H1 and the covariance matrix Σ
together determine the hardness of detection. To characterize such dependence, we define the signal-
to-noise ratio (SNR) as ρ(θ) := (µ0−µ1)>Σ−1(µ0−µ1). For any nonnegative sequence {γn}n≥1,
let G1(γn) := {θ : ρ(θ) ≥ γn} be a sequence of alternative parameter spaces with minimum
separation γn. The following minimax rate characterizes the information-theoretic limits of the
detection problem.

Definition 2.1 (Minimax rate). We say a sequence {γ∗n}n≥1 is a minimax rate if
• For any sequence {γn}n≥1 satisfying γn = o(γ∗n), we have limn→∞R∗n[G0,G1(γn)] = 1;
• For any sequence {γn}n≥1 satisfying γn = Ω(γ∗n), we have limn→∞R∗n[G0,G1(γn)] = 0.

The minimax rate in Definition 2.1 characterizes the statistical difficulty of the testing problem. How-
ever, it fails to shed light on the computational efficiency of possible testing algorithms. The reason
is that this concept does not make any computational restriction on the test functions. The minimax
risk in (2.4) might be attained only by test functions that have exponential computational complex-
ities. This limitation of Definition 2.1 motivates us to study statistical limits under computational
constraints.

2.2 Computational Model

Statistical query models [8–11, 18, 27] capture computational complexity by characterizing the total
number of rounds an algorithm interacts with data. In this paper, we consider the following statistical
query model, which admits bounded query functions but allows the responses of query functions to
be unbounded.

Definition 2.2 (Statistical query model). In the statistical query model, an algorithm A is allowed
to query an oracle T rounds, but not to access data {(yi,xi)}ni=1 directly. At each round, A queries
the oracle r with a query function q ∈ QA , in whichQA ⊆ {q : {0, 1}×Rd → [−M,M ]} denotes
the query space of A . The oracle r outputs a realization of a random variable Zq ∈ R satisfying

P
( ⋂

q∈QA

{
|Zq − E[q(Y,X)]| ≤ τq

})
≥ 1− 2ξ, where

τq = [η(QA ) + log(1/ξ)] ·M/n
∨√

2[η(QA ) + log(1/ξ)] · (M2 − {E[q(Y,X)]}2)
/
n. (2.5)

Here τq > 0 is the tolerance parameter and ξ ∈ [0, 1) is the tail probability. The quantity η(QA ) ≥ 0
in τq measures the capacity ofQA in logarithmic scale, e.g., for countableQA , η(QA ) = log(|QA |).
The number T is defined as the oracle complexity. We denote byR[ξ, n, T, η(QA )] the set of oracles
satisfying (2.5), and by A(T ) the family of algorithms that queries an oracle no more than T rounds.

This version of statistical query model is used in [8], and reduces to the VSTAT model proposed in
[9–11] by the transformation q̃(y,x) = q(y,x)/(2M) + 1/2 for any q ∈ QA . The computational
model in Definition 2.2 enables us to handle query functions that are bounded by an unknown and
fixed number M . Note that that by incorporating the tail probability ξ, the response Zq is allowed to
be unbounded. To understand the intuition behind Definition 2.2, we remark that (2.5) resembles the
Bernstein’s inequality for bounded random variables [25]

P
{∣∣∣∣

1

n

n∑

i=1

q(Yi,Xi)− E[q(Y,X)]

∣∣∣∣ ≥ t
}
≤ 2 exp

{
t2

2Var[q(Y,X)] +Mt

}
. (2.6)

We first replace Var [q(Y,X)] by its upper bound M2 − {E[q(Y,X)]}2, which is tight when q takes
values in {−M,M}. Then inequality (2.5) is obtained by replacing n−1

∑n
i=1 q(Yi,Xi) in (2.6) by

Zq and then bounding the suprema over the query space QA . In the definition of τq in (2.5), we

4



incorporate the effect of uniform concentration over the query space QA by adding the quantity
η(QA ), which measures the capacity of QA . In addition, under the Definition 2.2, the algorithm
A does not interact directly with data. Such an restriction characterizes the fact that in statistical
problems, the effectiveness of an algorithm only depends on the global statistical properties, not the
information of individual data points. For instance, algorithms that only rely on the convergence of
the empirical distribution to the population distribution are contained in the statistical query model;
whereas algorithms that hinge on the first data point (y1,x1) is not allowed. This restriction captures
a vast family of algorithms in statistics and machine learning, including applying gradient method to
maximize likelihood function, matrix factorization algorithms, expectation-maximization algorithms,
and sampling algorithms [9].
Based on the statistical query model, we study the minimax risk under oracle complexity constraints.
For the testing problem (2.3), let A(Tn) be a class of testing algorithms under the statistical query
model with query complexity no more than Tn, with {Tn}n≥1 being a sequence of positive integers
depending on the sample size n. For any A ∈ A(Tn) and any oracle r ∈ R[ξ, n, Tn, η(QA )] that
responds to A , letH(A , r) be the set of test functions that deterministically depend on A ’s queries
to the oracle r and the corresponding responses. We use Pθ to denote the distribution of the random
variables returned by oracle r when the model parameter is θ.
For a general hypothesis testing problem, namely, H0 : θ ∈ G0 versus H1 : θ ∈ G1, the minimax test-
ing risk with respect to an algorithm A and a statistical oracle r ∈ R[ξ, n, Tn, η(QA )] is defined as

R
∗
n(G0,G1; A , r) := inf

φ∈H(A ,r)

[
sup
θ∈G0

Pθ(φ = 1) + sup
θ∈G1

Pθ(φ = 0)

]
. (2.7)

Compared with the classical minimax risk in (2.4), the new notion in (2.7) incorporates the computa-
tional budgets via oracle complexity. In specific, we only consider the test functions obtained by an
algorithm with at most Tn queries to a statistical oracle. If Tn is a polynomial of the dimensionality
d, (2.7) characterizes the statistical optimality of computational efficient algorithms. This motivates
us to define the computationally tractable minimax rate, which contrasts with Definition 2.1.

Definition 2.3 (Computationally tractable minimax rate). Let G1(γn) := {θ : ρ(θ) ≥ γn} be a
sequence of model spaces with minimum separation γn, where ρ(θ) is the SNR. A sequence {γ∗n}n≥1
is called a computationally tractable minimax rate if
• For any sequence {γn}n≥1 satisfying γn = o(γ∗n), any constant η > 0, and any A ∈ A(dη),
there exists an oracle r ∈ R[ξ, n, Tn, η(QA )] such that limn→∞R

∗
n[G0,G1(γn); A , r] = 1;

• For any sequence {γn}n≥1 satisfying γn = Ω(γ∗n), there exist a constant η > 0 and an algorithm
A ∈ A(dη) such that, for any r ∈ R[ξ, n, Tn, η(QA )], we have limn→∞R

∗
n[G0,G1(γn); A , r] = 0.

3 Main Results
Throughout this paper, we assume that the covariance matrix Σ in (2.1) is known. Specifically, for
some positive definite Σ ∈ Rd×d, the parameter spaces of the null and alternative hypotheses are
defined as

G0(Σ) := {θ = (µ,µ,Σ, α) : µ ∈ Rd}, (3.1)

G1(Σ; γn) := {θ = (µ0,µ1,Σ, α) : µ0,µ1 ∈ Rd,µ0 − µ1 ∈ B0(s), ρ(θ) ≥ γn}. (3.2)
Accordingly, the testing problem of detecting whether µ0 6= µ1 is to distinguish

H0 : θ ∈ G0(Σ) versus H1 : θ ∈ G1(Σ; γn). (3.3)
In §3.1, we present the minimax rate of the detection problem from an information-theoretic perspec-
tive. In §3.2, under the statistical query model introduced in §2.2, we provide a computational lower
bound and a nearly matching upper bound that is achieved by an efficient testing algorithm.

3.1 Information-theoretic Limits

Now we turn to characterize the minimax rate given in Definition 2.1. For parameter spaces (3.1) and
(3.2) with known Σ, we show that in highly sparse setting where s = o(

√
d), we have

γ∗n =
√
s log d/n ∧ (1/α2 · s log d/n), (3.4)
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To prove (3.4), we first present a lower bound which shows that the hypothesis testing problem in
(3.3) is impossible if γn = o(γ∗n).

Theorem 3.1. For the hypothesis testing problem in (3.3) with known Σ, we assume that there exists
a small constant δ > 0 such that s = o(d1/2−δ). Let γ∗n be defined in (3.4). For any sequence
{γn}n≥1 such that γn = o(γ∗n), any hypothesis test is asymptotically powerless, namely,

lim
n→∞

sup
Σ
R∗n[G0(Σ),G1(Σ; γn)] = 1.

By Theorem 3.1, we observe a phase transition in the necessary SNR for powerful detection when α
decreases from one to zero. Starting with rate s log d/n in the supervised setting where α = 1, the
required SNR gradually increases as label qualities decrease. Finally, when α reaches zero, which
corresponds to the unsupervised setting, powerful detection requires the SNR to be Ω(

√
s log d/n).

It is worth noting that when α = (s log d/n)1/4, we still have (n3s log d)1/4 uncorrupted labels.
However, our lower bound (along with the upper bound shown in Theorem 3.2) indicates that the
information contained in these uncorrupted labels are buried in the noise, and cannot essentially
improve the detection quality compared with the unsupervised setting.
Next we establish a matching upper bound for the detection problem in (3.3). We denote the condition
number of the covariance matrix Σ by κ, i.e., κ := λmax(Σ)/λmin(Σ), where λmax(Σ) and λmin(Σ)
are the largest and smallest eigenvalues of Σ, repectively. Note that marginally Y is uniformly
distributed over {0, 1}. For ease of presentation, we assume that the sample size is 2n and each class
contains exactly n data points. Note that we can always discard some samples in the larger class to
make the sample sizes of both classes to be equal. Due to the law of large numbers, this trick will not
affect the analysis of sample complexity in the sense of order wise.
Given 2n i.i.d. samples {(yi,xi)}2ni=1 of (Y,X) ∈ {0, 1} × Rd, we define

wi = Σ−1/2(x2i − x2i−1), for all i ∈ [n]. (3.5)

In addition, we split the dataset {(yi,xi)}2ni=1 into two disjoint parts {(0,x(0)
i )}ni=1 and {(1,x(1)

i )}ni=1,
and define

ui = x
(1)
i − x

(0)
i , for all i ∈ [n]. (3.6)

We note that computing sample differences in (3.5) and (3.6) is critical for our problem because we
focus on detecting the difference betweenµ0 andµ1, and computing differences can avoid estimating
EPθ

(X) that might be dense. For any integer s ∈ [d], we define B2(s) := B0(s) ∩ Sd−1 as the set
of s-sparse vectors on the unit sphere in Rd. With {wi}ni=1 and {ui}ni=1, we introduce two test
functions

φ1 := 1

{
sup

v∈B2(s)

1

n

n∑

i=1

(v>Σ−1wi)
2

2v>Σ−1v
≥ 1 + τ1

}
, (3.7)

φ2 := 1

{
sup

v∈B2(1)

1

n

n∑

i=1

〈v,diag(Σ)−1/2ui〉 ≥ τ2
}
, (3.8)

where τ1, τ2 > 0 are algorithmic parameters that will be specified later. To provide some intuitions,
we consider the case where Σ = I. Test function φ1 seeks a sparse direction that explains the most
variance of wi. Therefore, such a test is closely related to the sparse principal component detection
problem [3]. Test function φ2 simply selects the coordinate of n−1

∑n
i=1 ui that has the largest

magnitude and compares it with τ2. This test is closely related to detecting sparse normal mean
in high dimensions [16]. Based on these two ingredients, we construct our final testing function φ
as φ = φ1 ∨ φ2, i.e., if any of φ1 and φ2 is true, then φ rejects the null. The following theorem
establishes a sufficient condition for test function φ to be asymptotically powerful.

Theorem 3.2. Consider the testing problem (3.3) where Σ is known and has condition number κ.
For test functions φ1 and φ2 defined in (3.7) and (3.8) with parameters τ1 and τ2 given by

τ1 = κ
√
s log(ed/s)/n, τ2 =

√
8 log d/n.

We define the ultimate test function as φ = φ1 ∨ φ2. We assume that s ≤ C · d for some absolute
constant Cs and n ≥ 64 · s log(ed/s). Then if

γn ≥ C ′κ · [
√
s log(ed/s)/n ∧ (1/α2 · s log d/n)], (3.9)

6



where C ′ is an absolute constant, then test function φ is asymptotically powerful. In specific, we have

sup
θ∈G0(Σ)

Pnθ(φ = 1) + sup
θ∈G1(Σ;γn)

Pnθ(φ = 0) ≤ 20/d. (3.10)

Theorem 3.2 provides a non-asymptotic guarantee. When n goes to infinity, (3.10) implies that
the test function φ is asymptotically powerful. When s = o(

√
d) and κ is a constant, (3.9) yields

γn = Ω[
√
s log d/n∧(1/α2·s log d/n)], which matches the lower bound given in Theorem 3.1. Thus

we conclude that γ∗n defined in (3.4) is the minimax rate of testing problem in (3.3). We remark that
when s = Ω(d), α = 1, i.e., the standard (low-dimensional) setting of two sample testing, the bound
provided in (3.9) is sub-optimal as [22] shows that SNR rate

√
d/n is sufficient for asymptotically

powerful detection when n = Ω(
√
d). It is thus worth noting that we focus on the highly sparse

setting s = o(
√
d) and provided sharp minimax rate for this regime. In the definition of φ1 in

(3.7), we search over the set B2(s). Since B2(s) contains
(
d
s

)
distinct sets of supports, computing φ1

requires exponential running time.

3.2 Computational Limits

In this section, we characterize the computationally tractable minimax rate γ∗n given in Definition 2.3.
Moreover, we focus on the setting where Σ is known a priori and the parameter spaces for the null
and alternative hypotheses are defined in (3.1) and (3.2), respectively. The main result is that, in
highly sparse setting where s = o(

√
d), we have

γ∗n =
√
s2/n ∧ (1/α2 · s log d/n). (3.11)

We first present the lower bound in the next result.

Theorem 3.3. For the testing problem in (3.3) with Σ known a priori, we make the same assumptions
as in Theorem 3.1. For any sequence {γn}n≥1 such that

γn = o
{
γ∗n ∨

[√
s2/n ∧ (1/α2 · s/n)

]}
, (3.12)

where γ∗n is defined in (3.4), any computationally tractable test is asymptotically powerless under the
statistical query model. That is, for any constant η > 0 and any A ∈ A(dη), there exists an oracle
r ∈ R[ξ, n, Tn, η(QA )] such that limn→∞R

∗
n[G0(Σ),G1(Σ, γn); A , r] = 1.

We remark that the lower bound in (3.12) differs from γ∗n in (3.11) by a logarithmic term when√
1/n ≤ α2 ≤

√
s log d/n. We expect this gap to be eliminated by more delicate analysis under the

statistical query model.
Now putting Theorems 3.1 and 3.3 together, we describe the “more supervision, less computation”
phenomenon as follows.
(i) When 0 ≤ α ≤ (log2 d/n)1/4, the computational lower bound implies that the uncorrupted
labels are unable to improve the quality of computationally tractable detection compared with the
unsupervised setting. In addition, in this region, the gap between γ∗n and γ∗n remains the same.
(ii) When (log2 d/n)1/4 < α ≤ (s log d/n)1/4, the information-theoretic lower bound shows that
the uncorrupted labels cannot improve the quality of detection compared with unsupervised setting.
However, more uncorrupted labels improve the statistical performances of hypothesis tests that are
computationally tractable by shrinking the gap between γ∗n and γ∗n.
(iii) When (s log d/n)1/4 < α ≤ 1, having more uncorrupted labels improves both statistical
optimality and the computational efficiency. In specific, in this case, the gap between γ∗n and γ∗n
vanishes and we have γ∗n = γ∗n = 1/α2 · s log d/n.
Now we derive a nearly matching upper bound under the statistical query model, which establishes
the computationally tractable minimax rate together with Theorem 3.3. We construct a computation-
ally efficient testing procedure that combines two test functions which yields the two parts in γ∗n
respectively. Similar to φ1 defined in (3.7), the first test function discards the information of labels,
which works for the purely unsupervised setting where α = 0. For j ∈ [d], we denote by σj the j-th
diagonal element of Σ. Under the statistical query model, we consider the 2d query functions

qj(y,x) := xj/
√
σj · 1{|xj/

√
σj | ≤ R ·

√
log d}, (3.13)

q̃j(y,x) := (x2j/σj − 1) · 1{|xj/
√
σj | ≤ R ·

√
log d}, for all j ∈ [d], (3.14)
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where R > 0 is an absolute constant. Here we apply truncation to the query functions to obtain
bounded queries, which is specified by the statistical query model in Definition 2.2. We denote by zqj
and zq̃j the realizations of the random variables output by the statistical oracle for query functions qj
and q̃j , respectively. As for the second test function, similar to (3.8), we consider

qv(y,x) = (2y − 1) · v>diag(Σ)−1/2x · 1
{
|v>diag(Σ)−1/2x| ≤ R ·

√
log d

}
(3.15)

for all v ∈ B2(1). We denote by Zqv the output of the statistical oracle corresponding to query
function qv. With these 4d query functions, we introduce test functions

φ1 := 1

{
sup
j∈[d]

(zq̃j − z2qj ) ≥ Cτ1
}
, φ2 := 1

{
sup

v∈B2(1)

zqv ≥ 2τ2

}
, (3.16)

where τ1 and τ2 are positive parameters that will be specified later and C is an absolute constant.

Theorem 3.4. For the test functions φ1 and φ2 defined in (3.16) , we define the ultimate test function
as φ = φ1 ∨ φ2. We set

τ1 = R2 log d ·
√

log(4d/ξ)/n, τ2 = R
√

log d ·
√

log(4d/ξ)/n, (3.17)
where ξ = o(1). For the hypothesis testing problem in (3.3), we further assume that ‖µ0‖∞ ∨
‖µ1‖∞ ≤ C0 for some constant C0 > 0. Under the assumption that

sup
j∈[d]

(µ0,j − µ1,j)
2/σj = Ω

{[
1/α2 · log2 d · log(d/ξ)/n

]
∧ log d ·

√
log(d/ξ)/n

}
, (3.18)

the risk of φ satisfies that R
∗
n(φ) = supθ∈G0(Σ) Pθ(φ = 1) + supθ∈G1(Σ,γn) Pθ(φ = 0) ≤ 5ξ. Here

we denote by µ0,j and µ1,j the j-th entry of µ0 and µ1, respectively.
If we set the tail probability of the statistical query model to be ξ = 1/d, (3.18) shows that φ
is asymptotically powerful if supj∈[d](µ0,j − µ1,j)

2/σj = Ω[(1/α2 · log3 d/n) ∧ (log3 d/n)1/2].
When the energy of µ0 −µ1 is spread over its support, ‖µ0 −µ1‖∞ and ‖µ0 −µ1‖2/

√
s are close.

Under the assumption that the condition number κ of Σ is a constant, (3.18) is implied by
γn & (s2 log3 d/n)1/2 ∧ (1/α2 · s log3 d/n).

Compared with Theorem 3.3, the above upper bound matches the computational lower bound up to
a logarithmic factor and γ∗n is between

√
s2/n ∧ (1/α2 · s log d/n) and (s2 log3 d/n)1/2 ∧ (1/α2 ·

s log3 d/n). Note that the truncation on query functions in (3.13) and (3.14) yields an additional
logarithmic term, which could be reduced to (s2 log d/n)1/2∧ (1/α2 ·s log d/n) using more delicate
analysis. Moreover, the test function φ1 is essentially based on a diagonal thresholding algorithm
performed on the covariance matrix of X . The work in [6] provides a more delicate analysis of
this algorithm which establishes the

√
s2/n rate. Their algorithm can also be formulated into the

statistical query model; we use the simpler version in (3.16) for ease of presentation. Therefore, with
more sophicated proof techinique, it can be shown that

√
s2/n ∧ (1/α2 · s log d/n) is the critical

threshold for asymptotically powerful detection with computational efficiency.

3.3 Implication for Estimation

Our aforementioned phase transition in the detection problems directly implies the statistical and
computational trade-offs in the problem of estimation. We consider the problem of estimating the
parameter ∆µ = µ0−µ1 of the binary classification model in (2.1) and (2.2), where ∆µ is s-sparse
and Σ is known a priori. We assume that the signal to noise ratio is ρ(θ) = ∆µ>Σ−1∆µ ≥ γn =
o(γ∗n). For any constant η > 0 and any A ∈ A(T ) with T = O(dη), suppose we obtain an estimator
∆µ̂ of ∆µ by algorithm A under the statistical query model. If ∆µ̂ converges to ∆µ in the sense that

(∆µ̂−∆µ)>Σ−1(∆µ̂−∆µ) = o[γ2n/ρ(θ)],

we have |∆µ̂>Σ−1∆µ̂ − ∆µ>Σ−1∆µ| = o(γn). Thus the test function φ = 1{∆µ̂>Σ∆µ̂ ≥
γn/2} is asymptotically powerful, which contradicts the computational lower bound in Theorem 3.3.
Therefore, there exists a constant C such that (∆µ̂−∆µ)>Σ−1(∆µ̂−∆µ) ≥ Cγ2n/ρ(θ) for any
estimator ∆µ̂ constructed from polynomial number of queries.
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A Proofs of the Main Results

A.1 Proof of Theorem 3.1

In this section, we prove the information-theoretic lower bound. In specific, we focus on the restricted
testing problem

H0 : θ = (0,0, I, α) versus. H1 : θ = (−v/2,v/2, I, α), (A.1)
where

v ∈ H(s) := {u ∈ {0, β}d : ‖u‖0 = s}.
Here we set sβ2 = γn to ensure that (−v/2,v/2, I, α) belongs to the alternative parameter space
G(Σ; γn). For notational simplicity, we denote the distribution of model (−v/2,v/2, I, α) by Pv

and the product distribution of n i.i.d. samples by Pnv. By the definition of the minimax risk in (2.4),
we have

sup
Σ
R∗n [G0(Σ),G1(Σ; γn)] ≥ inf

φ


Pn0(φ = 1) +

1

|H(s)|
∑

v∈H(s)

Pnv(φ = 0)


 .

We thus reduce the minimax risk to the risk of a simple-against-simple hypothesis test where the al-
ternative hypothesis corresponds to a uniform mixture of {Pv : v ∈ H(s)}. For notational simplicity,
we define PnH := 1/|H(s)| ·∑v∈H(s) Pnv. By Neyman-Pearson Lemma, we have

R∗n [G0,G1(Σ; γn)] ≥ 1− TV(Pn0 ,PnH).

Using Pinsker’s inequality TV(Pn0 ,PnH) ≤
√
Dχ2(PnH,Pn0), for showingR∗n[G0(Σ),G1(Σ; γn)]→ 1

as n goes to infinity, it suffices to show that Dχ2(PnH,Pn0) = o(1). By calculation we have

Dχ2(PnH,Pn0) = EPn0

{[
dPnH
dPn0

(Y,X)− 1

]2}
= EPn0

{[
dPnH
dPn0

(Y,X)

]2}
− 1

=
1

|H(s)|2
∑

v1,v2∈H(s)

EPn0

[
dPnv1

dPnv2

dPn0dPn0
(Y,X)

]
− 1

=
1

|H(s)|2
∑

v1,v2∈H(s)

{
EP0

[
dPv1dPv2

dP0dP0
(Y,X)

]}n
− 1. (A.2)

We utilize the following lemma to obtain an upper bound for the last term of (A.2). See §B.1 for the
proof.

Lemma A.1. For any v1,v2 ∈ H(s), we have

EP0

[
dPv1

dP0

dPv2

dP0
(Y,X)

]
= cosh (〈v1,v2〉/2) + α2 sinh (〈v1,v2〉/2) .

By Lemma A.1, we have
Dχ2(PnH,Pn0)

=
1

|H(s)|2
∑

v1,v2∈H(s)

[
cosh (1/2 · 〈v1,v2〉) + α2 sinh (1/2 · 〈v1,v2〉)

]n − 1. (A.3)

We define C := {S ⊆ [d] : |S| = s}, and let UC be the uniform distribution over C. Let S1,S2 ∼ UC
be two independent random sets. Then by (A.3), we have

Dχ2(PnH,Pn0) = ES1,S2
[
cosh(β2/2 · |S1 ∩ S2|) + α2 sinh(β2/2 · |S1 ∩ S2|)

]n − 1.

We use the next lemma, proved in §B.2, to bound the above right-hand side.

Lemma A.2. For any x ≥ 0 and v ∈ [0, 1], we have

cosh(x) + v sinh(x) ≤ exp(2vx) ∨ cosh(2x). (A.4)

10



Proceeding with this result and letting random variable Z ∼ |S1 ∩ S2|, we have
Dχ2(PnH,Pn0) ≤ EZ

[
exp(α2β2Z) ∨ cosh(β2Z)

]n − 1

= EZ
[
exp(nα2β2Z) ∨ cosh(β2Z)n

]
− 1

= EZ
{

exp(nα2β2Z) ∨ EU
[
exp(β2ZU)

]}
− 1, (A.5)

where in the last step, we introduce a random variable U that is the summation of n independent
Rademacher random variables over {−1, 1}. Then we have cosh(β2Z)n = EU [exp(β2ZU)]. By
(A.5), we have

Dχ2(PnH,Pn0) ≤ EZEU
[
exp(nα2β2Z) ∨ exp(β2ZU)

]
− 1

= EUEZ
{

exp(nα2β2) ∨ exp(β2U)
}Z − 1

≤ EU
{

sup
S1∈C

ES2
[
exp(nα2β2) ∨ exp(β2U)

]|S1∩S2|
}
− 1. (A.6)

Now we turn to bound the expectation over S2 in (A.6). For any fixed S1, we have

|S1 ∩ S2| =
∑

i∈S1

Vi,

where Vi is binary random variable that indicates whether i ∈ S2. It is known that V1, . . . , Vd are
negative associated. Hence we have

ES2
[
exp(nα2β2) ∨ exp(β2U)

]|S1∩S2| ≤
∏

i∈S1

EVi
[
exp(nα2β2) ∨ exp(β2U)

]Vi

=
{

1 + s/d ·
[
exp(nα2β2) ∨ exp(β2U)− 1

]}s
. (A.7)

Plugging (A.7) into (A.6) and expanding the polynomial term, we have

Dχ2(PnH,Pn0) ≤
s∑

k=1

(
s

k

)
· (s/d)k · EU

[
exp(nα2β2) ∨ exp(β2U)− 1

]k

=

s∑

k=1

(
s

k

)
· (s/d)

k ·
( [

exp(nα2β2)− 1
]k · P(U < nα2)

+ EU
{[

exp(β2U)− 1
]k ∣∣U ≥ α2n

}
· P(U ≥ nα2)

)
,

≤ T1 + T2,

where T1 and T2 are defined as

T1 :=

s∑

k=1

(
s

k

)
· (s/d)

k ·
[
exp(nα2β2)− 1

]k

T2 :=

s∑

k=1

(
s

k

)
· (s/d)

k · EU
{[

exp(β2U)− 1
]k |U ≥ 0

}
· P(U ≥ 0).

It remains to bound T1 and T2 respectively.

Bounding T1. Under condition sβ2 = γn = o(1/α2 · s log d/n), we have β2 = o(1/α2 · log d/n).
Hence, for any small constant C > 0, we have β2 ≤ C · 1/α2 · log d/n when n is sufficiently large.
Note that we assume s = o(d1/2−δ) for some fixed constant δ > 0. Then we have

T1 ≤
s∑

k=1

(
s

k

)
· (s/d)

k · exp(α2β2nk) ≤
s∑

k=1

[
s2e/(kd)

]k · exp(α2β2nk)

≤
s∑

k=1

[
s2e/(kd)

]k · exp(Ck log d) =

s∑

k=1

(s2e/k · dC−1)k ≤
s∑

k=1

(e/k · dC−2δ)k,

where the second step follows from the fact that
(
s
k

)
≤ (es/k)k. Note that C is chosen arbitrarily,

hence we can always choose C ≤ δ. It implies that e/k ·dC−2δ = o(1). We thus conclude T1 = o(1).
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Bounding T2. For term T2, we observe that

T2 ≤
s∑

k=1

(e/k · s2/d)k · EU
{[

exp(β2|U |)− 1
]k}

≤
s∑

k=1

(e/k · s2/d)k · EU
[
(β2|U |)k + exp(β2k|U |) · 1(β2|U | ≥ 1)

]

≤ T3 + T4,

where T3 and T4 are defined as

T3 :=

s∑

k=1

EU (e/k · s2β2/d · |U |)k,

T4 :=

s∑

k=1

(e/k · s2/d)k · EU
[
exp(β2k|U |) · 1(β2|U | ≥ 1)

]
.

Note that U is summation of n i.i.d. centered sub-Gaussian random variables Ui each with Orlicz ψ2-
norm equal to one. Therefore,U is also centered sub-Gaussian random variable with ||U ||ψ2 ≤ C

√
n

for some constant C. Thus it holds that
E(|U |k) ≤ (

√
k · ||U ||ψ2)k ≤ (C

√
nk)k.

Hence for term T3, we have

T3 ≤
s∑

k=1

[
Ces2β2

√
n/(
√
kd)
]k
,

Under the condition sβ2 = o(
√
s log d/n), we have

Ces2β2
√
n/(
√
kd) = o

(
s
√
s log d/d

)
.

Since s = o(
√
d), we have s

√
s log d/d = o(1), which implies T3 = o(1).

To obtain an upper bound for term T4, we let W = β2U . So W is centered sub-Gaussian with Orlicz
norm cβ2

√
n. Computing integral by parts, we have

EU
[
exp(β2k|U |) · 1(β2|U | ≥ 1)

]
= ek · P(|W | ≥ 1) +

∫ ∞

w=1

kewk · P(|W | ≥ w)dw. (A.8)

Using the property of sub-Gaussianity, we have P[W ≥ t] ≤ C1 exp[−C2t
2/(β2

√
n)2] for some

absolute constants C1, C2 > 0. Proceeding with (A.8) and using shorthand σ = β2
√
n, we obtain

EU
[
exp(β2k|U |) · 1(β2|U | ≥ 1)

]
≤ C1e

ke−C2/σ
2

+ C1k

∫ ∞

w=1

ewke−C2w
2/σ2

dw

= C1e
ke−C2/σ

2

+ C1ke
k2σ2/(4C2)

∫ ∞

w=1

e−
C2
σ2

(w− kσ22C2
)2dw ≤ C1e

k + C3ke
k2σ2/(4C2)σ,

where C3 is a constant that depends on C1 and C2. Thus we have

T4 ≤
s∑

k=1

C1

[
s2e2/(kd)

]k

︸ ︷︷ ︸
T5

+

s∑

k=1

C3σk
[
s2e2/(kd) · exp(k/4 · σ2/C2)

]k

︸ ︷︷ ︸
T6

. (A.9)

Note that s2/d = o(1), we thus have T5 = o(1). Under condition sβ2 = o(
√
s log d/n), for any

small constant C > 0, when n is large enough, we have
exp(k/4 · σ2/C2) ≤ exp(Ck log d/s) ≤ exp(C log d) ≤ dC .

Plugging (A.9) into T6 and using s2 = o(d1−2δ), we have that each term in the summation is less
that

T6 ≤
s∑

k=1

σk
[
e2/(kd2δ−C)

]k
.

s∑

k=1

k
√

log d/s ·
[
e2/(d2δ−C)

]k
.
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Since the constant C is chosen arbitrarily, we have T6 = o(1). Accordingly, T4 = o(1) and T2 =
o(1).
Finally, combining everything together, we have Dχ2(PnH,Pn0) = o(1), which completes the proof.

A.2 Proof of Theorem 3.2

We begin with some basic properties of sample sets {wi}ni=1 and {ui}ni=1. We introduce the random
vector W := X −X ′ to capture the distribution of samples {wi}ni=1. Here X follows the model
given in (2.1)-(2.2), andX ′ is an independent copy ofX . We note that the marginal distribution of
X is given by 1/2 · N (µ0,Σ) + 1/2 · N (µ1,Σ). ThusW follows a mixture distribution

W ∼ 1/2 · N (0, 2Σ) + 1/4 · N (µ1 − µ0, 2Σ) + 1/4 · N (µ0 − µ1, 2Σ). (A.10)
Moreover, conditioning on the observed label Y , the distribution ofX is given by

X|Y = 0 ∼ (1 + α)/2 · N (µ0,Σ) + (1− α)/2 · N (µ1,Σ), (A.11)
X|Y = 1 ∼ (1 + α)/2 · N (µ1,Σ) + (1− α)/2 · N (µ0,Σ). (A.12)

We introduce a random vectorU := X(1)−X(0) that corresponds to samples {ui}ni=1. Here random
vectorsX(0) andX(1) are independent and have distributions given in (A.11), (A.12), respectively.
The distribution of U is given by
U ∼ (1+α)2/4·N (µ1−µ0, 2Σ)+(1−α2)/2·N (0, 2Σ)+(1−α)2/4·N (µ0−µ1, 2Σ). (A.13)

Now we turn to prove Theorem 3.2. It suffices to prove this result by bounding type-I and type-II
errors separately. In the end, we will show that

sup
θ∈G0(Σ)

Pnθ(φ = 1) ≤ 4d−1 and sup
θ∈G1(Σ;γn)

Pnθ(φ = 0) ≤ 16d−1.

Type-I error. Under the null hypothesis θ ∈ G0(Σ), (A.10) and (A.13) reduce to
W ∼ N (0, 2Σ), U ∼ N (0, 2Σ).

To bound the type-I error of function φ1, we first note that

1

n

n∑

i=1

(v>Σ−1wi)
2 = v>Σ̂Wv,

where we let Σ̂W := 1/n ·∑n
i=1 Σ−1wiw

>
i Σ−1, i.e., an empirical covariance matrix of random

vector Σ−1W ∼ N (0, 2Σ−1). For any matrix A ∈ Rd×d and S ⊆ [d], we let [A]S ∈ R|S|×|S| be
the submatrix of A, which contains the entries with row and column indices in S. By standard tail
bound of Gaussian covariance estimation (see Lemma C.2), for any fixed S ∈ [d] with |S| = s, and
any ε ∈ (0, 1), when n ≥ Cs/ε2 for some constant C, we have

Pnθ
[
|||(Σ̂W − 2Σ−1)S |||2 ≥ 2ε|||(Σ−1)S |||2

]
≤ 2e−n. (A.14)

Note that |||(Σ−1)S |||2 ≤ |||Σ−1|||2 for all S ⊆ [d]. By taking union bound over all subsets with size s
in [d], we have

Pnθ

[
sup

S∈[d],|S|=s
|||(Σ̂W − 2Σ−1)S |||2 ≥ 2ε|||Σ−1|||2

]
≤ 2

(
d

s

)
e−n

(a)

≤ 2 exp [−n+ s log(ed/s)]
(b)

≤ 2[s/(ed)]s ≤ 2d−1.

Here step (a) follows from the fact that
(
d
s

)
≤ (ed/s)s and step (b) follows from the assumption

that n ≥ 2s log(ed/s). In the last step we use the fact that function f(s) = (s/d)s is monotonically
decreasing for s ∈ [1, d/e]. We set ε =

√
s log(ed/s)/n. Under condition n ≥ 2s log(ed/s), we

have ε < 1. Moreover, when s ≤ C ′d for sufficiently small constant C ′ that depends on C, we have
n ≥ Cs/ε2. Therefore, such value of ε leads to (A.14). Thus we conclude that

Pnθ

[
v>Σ̂Wv − 2v>Σ−1v

2v>Σ−1v
≥
√
s log(ed/s)

n
· |||Σ

−1|||2
v>Σ−1v

, for all v ∈ B2(s)

]
≤ 2d−1
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Note that |||Σ−1|||2/(v>Σ−1v) ≤ |||Σ−1|||2|||Σ|||2 = κ. Our choice of τ1 ensures the type-I error of
φ1 does not exceed 2d−1.
Now we turn to analyze the performance of φ2. Recall that φ1 simply selects the coordinate of
ū := 1/n ·∑n

i=1 ui that has the largest magnitude (scaled with diag(Σ)−1/2) and compare it with
τ2. It suffices to show all coordinates are well bounded around 0 under null hypothesis. Denote the
j-th coordinate of ū by ūj . Denote the j-th diagonal term of Σ by σj . We have ūj ∼ N (0, 2σj/n).
Recall that for standard normal random variable X , we have

P(|X| ≥ t) ≤ 2 exp(−t2/2) for any t ≥ 1. (A.15)
Using this property and taking union bound over j ∈ [d], we have

Pnθ

(
sup
j∈[d]
|ūj |/

√
σj ≥ 8 log d/n

)
≤ 2d · exp(−2 log d) = 2d−1.

Accordingly, our choice of τ2 can ensure type-I error of φ2 is controlled within 2d−1.

Type-II error. Under the alternative hypothesis θ ∈ G1(Σ; γn). Note that φ = 0 if and only if
φ1 = 0 and φ2 = 0. Thus, for any θ ∈ G1(Σ; γn), we have

Pnθ(φ = 0) = Pnθ(φ1 = 0 ∩ φ2 = 0) ≤ Pnθ(φ1 = 0) ∧ Pnθ(φ2 = 0). (A.16)
We assume γn ≥ Cκ[

√
s log d/n ∨ (1/α2 · s log d/n)]. It suffices to bound the type-II error by

considering these two cases: (i) when γn & κ
√
s log d/n, we show that Pnθ(φ1 = 0) ≤ 16d−1; (ii)

when γn & κ/α2 · s log d/n and 16/α2 · s log d/n ≤
√
s log d/n, we show Pnθ [φ2 = 0] ≤ 7d−1.

Case (i). Now we consider the first case. We denote ∆µ := µ1 − µ0. Let v∗ := ∆µ/‖∆µ‖2.
Since v∗ ∈ B2(s), we have

sup
v∈B2(s)

v>Σ̂Wv

2v>Σ−1v
≥ v∗>Σ̂Wv∗

2v∗>Σ−1v∗
.

It remains to show the right hand side is larger than 1 + τ1 with high probability. Note that

v∗>Σ̂Wv∗ =
1

n

n∑

i=1

(v∗>Σ−1wi)
2.

We define a random variable W̃ := v∗>Σ−1W , whose probability distribution is given by
1/2 · N (0, ν) + 1/4 · N (m, ν) + 1/4 · N (−m, ν), (A.17)

where we define m := ρ(θ)/‖∆µ‖2 and ν := 2ρ(θ)/‖∆µ‖22. Recall that ρ(θ) := ∆µ>Σ−1∆µ.
Let w̃i := v∗>Σ−1wi. Due to the mixture structure (A.17), we can thus cluster {w̃i}ni=1 into three
groups {w̃(k)

i }nki=1, k ∈ {1, 2, 3}, based on the latent labels. The k-th group corresponds to the k-th
term in (A.17). Note that E(n1) = n/2,E(n2) = E(n3) = n/4. Define event E1 as

E1 := {|n1 − n/2| ≤ 1/8 · n, |n2 − n/4| ≤ 1/8 · n, |n3 − n/4| ≤ 1/8 · n} . (A.18)
By Hoeffding’s inequality, we have P(E1) ≥ 1− 6 exp(−n2/32).
From now on, we condition on event E1. By the standardχ2-tail bound (Lemma C.1), for any t ∈ (0, 1)
and k ∈ {1, 2, 3}, we have

Pnθ

(∣∣∣∣∣
nk∑

i=1

(w̃
(k)
i −mk)2 − nkν

∣∣∣∣∣ ≥ nkνt
)
≤ 2e−nkt

2/8 ≤ 2e−nt
2/64, (A.19)

where m1 = 0,m2 = −m3 = m. Moreover, using tail bound of Gaussian (A.15), for t′ ≥ 1/
√
nk

and k = 2, 3,

Pnθ

(∣∣∣∣∣
nk∑

i=1

w̃
(k)
i − nkmk

∣∣∣∣∣ ≥ nk
√
νt′

)
≤ 2e−nkt

′2/2 ≤ 2e−nt
′2/16. (A.20)
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Excluding the small chance events in (A.19) and (A.20), we find that
n∑

i=1

w̃2
i =

3∑

k=1

nk∑

i=1

(w̃
(k)
i −mk)2 + 2

3∑

k=2

nk∑

i=1

mkw̃
(k)
i − (n2 + n3)m2

≥ nν(1− t) + 2

3∑

k=2

nk∑

i=1

mkw̃
(k)
i − (n2 + n3)m2

≥ nν(1− t) + (n2 + n3)m2 − 2(n2 + n3)
√
νt′m

≥ nν(1− t) + 1/4 · nm2 − 3/2 · n√νt′m,
where the last step follows from (A.18). Note that 2v∗>Σ−1v∗ = ν. We thus have

v
∗>Σ̂Wv∗

2v∗>Σ−1v∗
− 1 =

∑n
i=1 w̃

2
i

2nv∗>Σ−1v∗
− 1 ≥ m2

4ν
− t− 3mt′

2
√
ν

= 1/8 · ρ(θ)− t− 3t′/4 ·
√

2ρ(θ). (A.21)

Now we choose t = t′ = 8
√
s log(ed/s)/n, which is less than one under condition n ≥

64s log(ed/s). When ρ(θ) ≥ Cκ
√
s log(ed/s)/n for sufficiently large constant C, we can have

t ≤ ρ(θ)/32 and t′ ≤
√
t′ ≤

√
ρ(θ)/48. Accordingly, proceeding with (A.21) gives

1/2 · v∗>Σ̂Wv∗/v∗>Σ−1v∗ − 1 ≥ 1/16 · ρ(θ) ≥ τ1.
Plugging the value of t, t′ into the tail bounds in (A.19) (A.20) and using the probability of event E1,
we have the type-II error of φ1 is most 10d−1 + 6e−n

2/32 ≤ 16d−1.

Case (ii). Now we turn to analyze the performance of φ2. We introduce shorthands µ̃ :=
diag(Σ)−1/2∆µ and Λ := diag(Σ)1/2. Then it holds that

ρ(θ) = ∆µ>Σ−1∆µ = ∆µ>Λ−1ΛΣ−1ΛΛ−1∆µ ≤ ‖µ̃‖22|||ΛΣ−1Λ|||op
≤ ‖µ̃‖22|||Λ|||22|||Σ−1|||2 ≤ κ‖µ̃‖22,

where the last step follows from the fact that |||diag(Σ)|||2 ≤ |||Σ|||2. Suppose the j-th coordinate of µ̃,
denoted by β, has largest magnitude. Since ‖ũ‖22 ≤ sβ2, we have β2 ≥ ρ(θ)/(sκ). Under condition

ρ(θ) ≥ γn ≥
400κs log d

α2n
,

we have

β ≥ 20
√

log d/(α2n). (A.22)

Let v∗ = sign(β) · ej . We have

sup
v∈B2(1)

〈
v,Λ−1ū

〉
≥
〈
v∗,Λ−1ū

〉
=

∣∣∣∣∣
1

n

n∑

i=1

ũij

∣∣∣∣∣ ,

where we denote the j-th coordinate of Λ−1ui by ũij .
Let Uj be the j-th coordinate of U . Note that {ũij}ni=1 are i.i.d. samples of Uj/

√
σj . Recall that σj

is the j-th diagonal term of Σ. According to (A.13), Uj/
√
σj has the mixture distribution

(1 + α)2/4 · N (β, 2) + (1− α2)/2 · N (0, 2) + (1− α)2/4 · N (−β, 2). (A.23)

We can cluster these samples into three groups {ũ(k)ij }nki=1, k ∈ {1, 2, 3} based on latent labels, where
k-th group corresponds to the k-th term in (A.23). Using tail bound of Gaussian (A.15), we have for
t ≥ 1 and k ∈ {1, 2, 3},

Pnθ

(∣∣∣∣∣
nk∑

i=1

ũ
(k)
ij − nkmk

∣∣∣∣∣ ≥
√

2nkt

)
≤ 2e−t

2/2,

where m1 = −m3 = β,m2 = 0. Therefore, with probability at least 1− 6e−t
2/2, it holds that∣∣∣∣∣

1

n

n∑

i=1

ũij −
(n1 − n3)β

n

∣∣∣∣∣ ≤ t ·
3∑

k=1

√
2nk
n2
≤ 5t√

n
. (A.24)
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It remains to bound n1 − n3. Note that n1 − n3 is a summation of n i.i.d. random variables Vi
satisfying P(Vi = 1) = (1 +α)2/4, P(Vi = 0) = (1−α2)/2, and P(Vi = −1) = (1−α)2/4. Then
Vi has mean α, variance (1− α2)/2 ≤ 1− α, and |Vi − E(Vi)| ≤ 2. By Bernstein’s inequality, we
have that for t′ > 0,

P (|n1 − n3 − αn| ≥ t′) ≤ exp

[
− t′2

2(1− α)n+ 4t′/3

]
.

Choosing t′ = αn/2, we thus have

P (|n1 − n3 − α · n| ≥ αn/2) ≤ exp

[
− α2n

8(1− α) + 8α/3

]
≤ exp(−α2n/8) ≤ d−1, (A.25)

where the last step follows from condition 8s log d/(α2n) ≤
√
s log(ed/s)/n ≤ 1. Combining

(A.24) and (A.25), we have that with high probability 1− 6e−t
2/2 − d−1,∣∣∣∣∣1/n ·

n∑

i=1

ũij

∣∣∣∣∣ ≥ αβ/2− 5t/
√
n ≥ 10

√
log d/n− 5t/

√
n ≥ τ2,

where the second step follows from (A.22) and the last inequality holds by setting t =
√

2 log d,
which gives the type-II error of φ2 is at most 7d−1.

Using (A.16) and the conclusions in the above two cases, we thus show Type-II error of φ is at most
16d−1 and thus complete the proof.

A.3 Proof of Theorem 3.3

In this section, we prove the computational lower bound. We first show that the information-theoretic
lower bound in (3.4) is a lower bound of the computationally tractable minimax rate. To see this,
we consider the oracle r∗ that returns sample average n−1

∑n
i=1 q(yi,xi) for any query function q.

As discussed in §2.2, Bernstein’s inequality in (2.6) and uniform concentration of empirical process
imply that r∗ ∈ R[ξ, n, Tn, η(QA )]. In addition, every test function φ that is based on the responses
of r∗ is also a function of {(yi,xi)}ni=1. Thus combining (2.4) and (2.7), it holds that

R
∗
n(G0,G1; A , r∗) ≥ R∗n(G0,G1).

Therefore, by Theorem 3.1, for any γn satisfying

γn = o
[√

s log d/n ∧ (1/α2 · s log d/n)
]
,

we have limn→∞R
∗
n[G0,G1(γn); A , r∗] = 1. Here the equality holds because a test based on purely

random guess incurs risk one.
Based on this observation, to show Theorem 3.3, it the following, we assume that

γn = o
[√

s2/n ∧ (1/α2 · s/n)
]
. (A.26)

We show that under this assumption, there exists an oracle r such that the minimax testing risk is
not negligible. Similar to the derivation of the information theoretical lower bound, we also focus
on the restricted testing problem defined in (A.1). Following the same notations, we denote by P0

the distribution of model (0,0, I, α) and by Pv the distribution of model (−v/2,v/2, I, α) for all
v ∈ H(s) = {u ∈ {0, β}d : ‖u‖0 = s}. Here we assume that the SNR under H1 satisfies β2s = γn.
Moreover, we define P0 as the distribution of the random variables returned by the statistical query
model under the null hypothesis H0 and define Pv correspondingly. Then the minimax testing risk
R
∗
n(G0,G1; A , r) defined in (2.7) is lower bounded by

sup
Σ
R
∗
n[G0(Σ),G1(Σ; γn); A , r] ≥ inf

φ∈H(A ,r)


P0(φ = 1) +

1

|H(s)|
∑

v∈H(s)

Pv(φ = 0)


 .

The following lemma establishes a sufficient condition that any hypothesis test under the statistical
query model is asymptotically powerless. See [27] and [8] for a proof.
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Lemma A.3. For any algorithm A ∈ A(T ) and any query function q ∈ QA , we define

C1(q) = {v ∈ H(s) : EPv [q(Y,X)]− EP0 [q(Y,X)] > τq(Pv)} ,
C2(q) = {v ∈ H(s) : EP0 [q(Y,X)]− EPv [q(Y,X)] > τq(Pv)} .

Here τq(Pv) is the tolerance parameter defined in (2.5) when (Y,X) ∼ Pv. Then if T ·
supq∈QA

(|C1(q)|+ |C2(q)|) /|H(s)| = o(1), there exists an oracle r ∈ R[ξ, n, T, η(QA )] such that

inf
φ∈H(A ,r)


P0(φ = 1) +

1

|H(s)|
∑

v∈H(s)

Pv(φ = 0)


 = 1.

By this lemma, we need to construct an upper bound for supq∈QA
(|C1(q)|+ |C2(q)|). In the sequel,

we achieve this goal by studying the uniform mixture of {Pv : v ∈ C`(q)} for ` ∈ {1, 2}. Specifically,
we define

PC1(q) =
1

|C1(q)|
∑

v∈C1(q)

Pv and PC2(q) =
1

|C2(q)|
∑

v∈C2(q)

Pv. (A.27)

The following lemma, obtained from [8], establishes an upper bound for the χ2-divergence between
PC`(q) and P0.

Lemma A.4. For ` ∈ {1, 2} we define

C`(q,v) = argmax
C

{
1

|C|
∑

v′∈C⊆H(s)

EP0

[
dPv

dP0

dPv′

dP0
(Y,X)

]
− 1

∣∣∣∣ |C| = |C`(q)|
}
. (A.28)

Then the χ2-divergence between PC`(q) and P0 is bounded by

Dχ2(PC`(q),P0) ≤ sup
v∈C`(q)

1

|C`(q)|
∑

v′∈C`(q,v)

EP0

[
dPv

dP0

dPv′

dP0
(Y,X)

]
− 1. (A.29)

Notice that Lemma A.1 enables us to compute the right-hand side of (A.29) in closed form. For any
α ∈ [0, 1], function hα(t) = cosh[β2/2 ·(s− t)]+α2 sinh[β2/2 ·(s− t)] is monotone nonincreasing
for t ∈ {0, . . . , s} and f(s) = 0. In addition, for any v ∈ H(s) and any j ∈ {0, . . . , s}, we define

Cj(v) = {v′ ∈ H(s) : | supp(v) ∩ supp(v′)| = s− j} . (A.30)
For ` ∈ {1, 2}, any query function q ∈ QA , and any v ∈ C`(q), by Lemma A.1 and the definition
of C`(q,v) in (A.28), there exists an integer k`(q,v) that satisfies

C`(q,v) = C0(v) ∪ C1(v) ∪ · · · ∪ Ck`(q,v)−1(v) ∪ C′`(q,v), (A.31)

where C′`(q,v) = C`(q,v) \⋃k`(q,v)−1j=0 Cj(v) has cardinality

|C′`(q,v)| = |C`(q)| −
k`(q,v)−1∑

j=0

|Cj(v)| < |Ck`(q,v)(v)|. (A.32)

Thus we can sandwich the cardinality of C`(q,v) by
k`(q,v)∑

j=0

|Cj(v)| > |C`(q,v)| ≥
k`(q,v)−1∑

j=0

|Cj(v)|. (A.33)

Combining Lemmas A.1 and A.4, we further have

1 +Dχ2(PC`(q),P0) ≤
∑k`(q,v)−1
i=0 hα(j) · |Cj(v)|+ hα[k`(q,v)] · |C′`(q,v)|

∑k`(q,v)−1
j=0 |Cj(v)|+ |C′`(q,v)|

, for all v ∈ C`(q).

(A.34)

Moreover, by (A.34) and the monotonicity of hα(t) we obtain

1 +Dχ2(PC`(q),P0) ≤
∑k`(q,v)−1
i=0 hα(j) · |Cj(v)|
∑k`(q,v)−1
j=0 |Cj(v)|

. (A.35)
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By the definition of Cj(v) in (A.30), the cardinality of Cj(v) does not depend on the choice of
v ∈ H(s) and we have |Cj(v)| =

(
s
s−j
)(
d−s
j

)
. Thus for any j ∈ {0, . . . , s− 1} we have

|Cj+1(v)|/|Cj(v)| = (s− j) · (d− s− j)/(j + 1)2 ≥ (d− 2s)/s2. (A.36)
Under the assumption that s2/d = o(1), the right-hand side of (A.36) is lower bounded by ζ =
d/(2s2) when d and s are sufficiently large. Then we have |Cj(v)| ≤ ζj−s|Cs(v)| for j ∈ {0, . . . , s}.
By the definition of k`(q,v) in (A.31) and (A.32), for any q ∈ QA , we further obtain

|C`(q)| ≤
k`(q,v)∑

j=0

|Cj(v)| ≤ |Cs(v)|
k`(q,v)∑

j=0

ζj−s

≤ ζ−[s−k`(q,v)]|H(s)|
1− ζ−1 ≤ 2ζ−[s−k`(q,v)]|H(s)|, (A.37)

where the last inequality follows from the fact that ζ−1 = 2s2/d = o(1).
Moreover, for any two positive sequences {ai}si=0 and {bi}si=0 satisfying ai/ai−1 ≥ bi/bi−1 > 1
for all i ∈ [s], since hα(t) is nonincreasing, for any k ∈ [s], we have∑

0≤i<j≤k

(aibj − ajbi) · [hα(i)− hα(j)] ≤ 0. (A.38)

Further simplifying the terms in (A.38), we have
∑k
i=0[aihα(i)]
∑k
i=0 ai

≤
∑k
i=0[bihα(i)]
∑k
i=0 bi

. (A.39)

In what follows, we upper bound k`(q,v) for ` ∈ {1, 2} and v ∈ C`(q). We employ the shorthand
k` = k`(q,v) to simplify the notations. Combining (A.29), (A.35), and (A.39) with aj = |Cj(v)| and
bj = ζj , we have

1 +Dχ2(PC`(q),P0) ≤
∑k`−1
j=0 ζjhα(j)
∑k`−1
j=0 ζj

=

∑k`−1
j=0 ζj

{
cosh

[
β2/2 · (s− j)

]
+ α2 sinh

[
β2/2 · (s− j)

]}
∑k`−1
j=0 ζj

≤
{∑k`−1

j=0 ζj cosh
[
β2(s− j)

]
∑k`−1
j=0 ζj

}∨{∑k`−1
j=0 ζj exp

[
α2β2(s− j)

]
∑k`−1
j=0 ζj

}
. (A.40)

Here the second inequality follows from Lemma A.2. We bound the two terms in (A.40) separately.
Note that for notational simplicity, we denote for any t ∈ {0, . . . , s}, we define

f(t) = cosh
[
β2(s− t)

]
, g(t) = exp

[
α2β2(s− t)

]
.

Note that both h(t) and g(t) are monotone non-increasing, and thus f(t) ≥ f(s) = 1 and g(t) ≥
g(s) = 1. Moreover, by calculation, we have f(j−1)/f(j) ≥ cosh(β2) for all j ∈ {1, . . . , s}. Thus
we have

f(j) ≤ f(k` − 1) ·
[
cosh(β2)

]k`−j−1
, for all j ∈ {0, . . . , k` − 1}.

Then we have ∑k`−1
j=0 ζjf(j)
∑k`−1
j=0 ζj

≤ f(k` − 1) ·
∑k`−1
j=0 ζj

[
cosh(β2)

]k`−j+1

∑k`−1
j=0 ζj

≤ f(k` − 1) ·
∑k`−1
j=0

[
cosh(β2)/ζ

]k`−j+1

∑k`−1
j=0 ζ−(k`−j+1)

= f(k` − 1) · 1−
[
cosh(β2)/ζ

]k`
1− ζ−k` · 1− ζ−1

1− ζ−1 cosh(β2)
. (A.41)
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Since cosh(β2) > 1, by (A.41) we have
∑k`−1
j=0 ζj cosh

[
β2(s− j)

]
∑k`−1
j=0 ζj

≤ 1− ζ−1
1− ζ−1 cosh(β2)

· cosh
[
β2(s− k` + 1)

]
. (A.42)

In addition, since g(j − 1)/g(j) = exp(α2β2), similar to (A.41) we have
∑k`−1
j=0 ζj exp

[
α2β2(s− j)

]
∑k`−1
j=0 ζj

≤ 1− ζ−1
1− ζ−1 exp(α2β2)

· exp
[
α2β2(s− k` + 1)

]
(A.43)

Combining (A.42) and (A.43), we obtain that
1 +Dχ2(PC`(q),P0)

≤
{

(1− ζ−1) cosh
[
β2(s− k` + 1)

]

1− ζ−1 cosh(β2)

}∨{
(1− ζ−1) exp

[
α2β2(s− k` + 1)

]

1− ζ−1 exp(α2β2)

}
. (A.44)

Moreover, we use the following lemma obtained from [27] to establish a lower bound for
Dχ2(PC`(q),P0).

Lemma A.5. For any query function q and ` ∈ {1, 2}, we have

Dχ2(PC`(q),P0) ≥ log(T/ξ)/n.

We denote
√

log(T/ξ)/n by τ for simplicity of notations. Combining (A.44), Lemma A.5 and
inequality cosh(x) ≤ exp(x2/2), at least one of the two inequality holds

(1 + τ2) ·
[
1− ζ−1 cosh(β2/2)

]
/(1− ζ−1) ≤ exp

[
β4/2 · (s− k` + 1)2

]
, (A.45)

(1 + τ2) ·
[
1− ζ−1 exp(α2β2)

]
/(1− ζ−1) ≤ exp

[
α2β2(s− k` + 1)

]
. (A.46)

If (A.45) holds, taking the logarithm of the both sides, we have

β4/2 · (s− k` + 1)2 ≥ log(1 + τ2)− log

[
1− ζ−1

1− ζ−1 cosh(β2)

]
. (A.47)

Whereas if (A.46) is true, it holds that

α2β2(s− k` + 1) ≥ log(1 + τ2)− log

[
1− ζ−1

1− ζ−1 exp(α2β2)

]
. (A.48)

In addition, by Taylor expansion and the fact that [cosh(β2/2) + exp(α2β2)]/ζ = o(1), we have

log

[
1− ζ−1

1− ζ−1 cosh(β2)

]
= log

{
1 +

ζ−1
[
cosh(β2)− 1

]

1− ζ−1 cosh(β2)

}
= O(ζ−1β4), (A.49)

log

[
1− ζ−1

1− ζ−1 exp(α2β2)

]
= log

{
1 +

ζ−1
[
exp(α2β2)− 1

]

1− ζ−1 exp(α2β2))

}
= O(ζ−1α2β2). (A.50)

Since γn = sβ2, by (A.26) we have (α2β2) ∨ β4 = o(log d/n). Hence, by (A.49) and (A.50), the
second terms on the right-hand sides of (A.47) and (A.48) are asymptotically negligible compared
with log(1 + τ2). Therefore, by (A.47) and (A.48), for ` ∈ {1, 2}, at least one of the following two
arguments hold:

k`(q,v) ≤ s+ 1−
√

log(1 + τ2)/β4, k`(q,v) ≤ s+ 1− log(1 + τ2)/(2α2β2).

Equivalently, we have

k`(q,v) ≤
[
s+ 1−

√
log(1 + τ2)/β4

]
∨
[
s+ 1− log(1 + τ2)/(2α2β2)

]
. (A.51)

Recall that τ =
√

log(T/ξ)/n where ξ = o(1). For any constant η > 0, we set T = O(dη). By
combining Lemmas A.3 and A.4, (A.37), and (A.51), we further obtain

T · supq∈QA
(|C1(q)|+ |C2(q)|)
|H(s)| ≤ 4T · exp

{
− log ζ ·

[√
log(1 + τ2)/β4 − 1

]}
∧

4T · exp
{
− log ζ ·

[
log(1 + τ2)/(2α2β2)− 1

]}
. (A.52)

Under the assumption of the theorem, there is a sufficiently small constant δ > 0 such that s2/d1−δ =
O(1). Thus we have ζ = d/(2s2) = Ω(dδ). By inequality log(1 + x) ≥ x/2, it holds that log(1 +
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τ2) ≥ τ2/2 = log(T/ξ)/(2n). Under the condition in (A.26) , we have
log(T/ξ)

2nβ4

∨ log(T/ξ)

4nα2β2
>

log(1/ξ)

2nβ4

∨ log(1/ξ)

4α2β2
→∞. (A.53)

Hence if n is sufficiently large, the left-hand side in (A.53) is greater than an absolute constant C
satisfiying δ(C − 1) > η. Then by (A.52) we have

T · supq∈QA
(|C1(q)|+ |C2(q)|)
|H(s)| = O[4dηζ−(C−1)] = O[4dηd−δ(C−1)] = o(1). (A.54)

Combining (A.54) and Lemma A.3, we conclude that R
∗
n(G0,G1; A , r) → 1 if (A.26) holds. This

concludes the proof of Theorem 3.3.

A.4 Proof of Theorem 3.4

To ease notation, we denote the joint distribution of (Y,X) by Pθ where the model parameter is
given by θ = (µ0,µ1,Σ, α). In addition, we let ∆µ = µ1 − µ0. Thus ∆µ = 0 for all θ ∈ G0(Σ)
and ∆µ ∈ B(s) for all θ ∈ G1(Σ; γn). In what follows, we bound the type-I and type-II errors of φ
respectively.

Type-I error. For any θ ∈ G0(Σ), by the definition of φ, the type-I error is bounded by
Pθ(φ = 1) ≤ Pθ(φ1 = 1) + Pθ(φ2 = 1).

For test function φ1, since marginally,X ∼ 1/2 ·N (µ0,Σ)+1/2 ·N (µ1,Σ), for any θ ∈ G0(Σ)∪
G1(Σ; γn), for any j ∈ [d], we have

EPθ
(X2

j /σj − 1)−
[
EPθ

(Xj/
√
σj)
]2

= 1/4 · (µ0,j − µ1,j)
2/σj = 1/4 · (∆µ)2j/σj , (A.55)

Here µ0,j and µ1,j denote the j-th entries of µ0 and µ1, and (∆µ)j is the j-th entry of ∆µ. In
addition, by the definition of qj in (3.13) we have∣∣∣
[
EPθ

qj(Y,X)
]2 −

[
EPθ

(Xj/
√
σj)
]2∣∣∣

≤ 2
∣∣EPθ

(Xj/
√
σj)
∣∣ ·
∣∣EPθ

(Xj/
√
σj)− EPθ

qj(Y,X)
∣∣+
∣∣EPθ

(Xj/
√
σj)− EPθ

qj(Y,X)
∣∣2.

SinceXj/
√
σj−qj(Y,X) = Xj/

√
σj ·1{|Xj/

√
σj | > R ·√log d}, by Cauchy-Schwarz inequality

we have∣∣EPθ
(Xj/

√
σj)− EPθ

qj(Y,X)
∣∣2 ≤ EPθ

(X2
j /σj) · Pθ

(
|Xj/

√
σj | > R ·

√
log d

)
. (A.56)

Since ‖µ0‖∞ ∨ ‖µ1‖∞ ≤ C0 and {Xj/
√
σj}di=1 are sub-Gaussian random variables, for any t > 0,

there exists a constant C1 such that
Pθ

(
|Xj/

√
σj | > t

)
≤ 2 exp(−C1t

2). (A.57)
Thus setting t = R · √log d for some sufficiently large R, by (A.56) and (A.57) we obtain∣∣EPθ

(Xj/
√
σj)− EPθ

qj(Y,X)
∣∣ ≤ C2d

−1

for some constant C2. Thus we have∣∣∣
[
EPθ

qj(Y,X)
]2 −

[
EPθ

(Xj/
√
σj)
]2∣∣∣ ≤ 2C0 · C2d

−1 + C2
2d
−2 ≤ 1/16 · (∆µ)2j/σj . (A.58)

In addition, since X2
j /σj − 1 − q̃j(Y,X) = (X2

j /σj − 1) · 1{|Xj/
√
σj | > R · √log d}, for q̃j

defined in (3.14), we similarly we obtain∣∣EPθ
q̃j(Y,X)− EPθ

(X2
j /σj − 1)

∣∣ ≤ 1/16 · (∆µ)2j/σj . (A.59)
Combining (A.58) and (A.59) we have

EPθ
q̃j(Y,X)− [EPθ

qj(Y,X)]
2 ≥ 1/8 · (∆µ)2j/σj for all j ∈ [d].

Taking supremum over j ∈ [d], we have

sup
j∈[d]

{
EPθ

q̃j(Y,X)− [EPθ
qj(Y,X)]

2
}
≥ 1/8 · sup

j∈[d]

[
(∆µ)2j/σj

]
. (A.60)
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Note that the test function φ involves 4d queries functions. Thus, for any θ ∈ G0(Σ) ∪ G1(Σ; γn),
under Pθ the tolerance parameters for qj and q̃j are given by

τqj ≤ R
√

log d ·
√

[log(4d/ξ)]/n, τq̃j ≤ R2 log d ·
√

[log(4d/ξ)]/n, for all j ∈ [d]. (A.61)
Under the assumption that

sup
j∈[d]

(∆µ)2j/σj = Ω
[
log2 d · log(d/ξ)/(α2n) ∧ log d ·

√
log(d/ξ)/n

]
,

we have
τqj ∨ τq̃j ≤ R2 log d ·

√
[log(4d/ξ)]/n

≤ (1/C) ·
{

sup
j∈[d]

[(∆µ)2j/σj ] ∨ α · sup
j∈[d]
|(∆µ)j/

√
σj |
}
, (A.62)

where the absolute constant C is the same as in (3.16). Note that we denoteR2 log d ·
√

log(4d/ξ)/n
by τ1. Hence by (A.62), for any θ ∈ G0(Σ), the type-I error of φ1 is bounded by

Pθ

[
sup
j∈[d]

(Zq̃j − Z2
qj ) ≥ Cτ1

]

= Pθ

(⋃
j∈[d]

{
(Zq̃j − Z2

qj )−
{
EPθ

q̃j(Y,X)− [EPθ
qj(Y,X)]2

}
≥ Cτ1

})

≤ Pθ

(⋃
j∈[d]

{
Zq̃j − EPθ

q̃j(Y,X) ≥ τ1
})

+ Pθ

(⋃
j∈[d]

{
Z2
qj − [EPθ

qj(Y,X)]2 ≥ (C − 1)τ1

})
.

For the first term, we have

Pθ

(⋃
j∈[d]

{
Zq̃j − EPθ

q̃j(Y,X) ≥ τ1
})

≤ Pθ

(⋃
j∈[d]

{∣∣Zq̃j − EPθ
q̃j(Y,X)

∣∣ ≥ τq̃j
})
≤ ξ. (A.63)

Note that under the null hypothesis θ ∈ G0(Σ), we have EPθ
qj(Y,X) = µ0,j/

√
σj . Under the

assumption that ‖µ0‖∞ ∨ ‖µ1‖∞ ≤ C0, when n is sufficiently large such that
τ1 ≤ 3(C − 1)−1C0/

√
σj ,

by Z2
qj − [EPθ

qj(Y,X)]2 ≥ (C − 1)τ1 we have

|Zqj − EPθ
qj(Y,X)| ≥ (C − 1)τ1 ·

√
σj/(3C0). (A.64)

Thus we can set absolute constant C sufficiently large such that |Zqj −EPθ
qj(Y,X)| ≥ τ1. Thus by

(A.64) we have

Pθ

(⋃
j∈[d]

{
Z2
qj − [EPθ

qj(Y,X)]2 ≥ (C − 1)τ1

})

≤ Pθ

(⋃
j∈[d]

{∣∣Zqj − EPθ
qj(Y,X)

∣∣ ≥ τqj
})
≤ ξ. (A.65)

Combining (A.63) and (A.65), we can bound the type-I error of φ1 by 2ξ. For the type-I error of
φ2, we define Z = (2Y − 1) ·X . Under the data-generating model defined in (2.1) and (2.2), the
distribution of Z is given by

Z ∼ 1 + α

4
N (−µ0,Σ) +

1 + α

4
N (µ1,Σ) +

1− α
4
N (µ0,Σ) +

1− α
4
N (−µ1,Σ).

Then by definition, for all θ ∈ G0(Σ), we have
EPθ

[v>diag(Σ)−1/2Z] = 0, for all v ∈ B2(1). (A.66)
In addition, for any θ ∈ G1(Σ; γn), by the distribution of Z, for all v ∈ B2(1), we have

EPθ
[v>diag(Σ)−1/2Z] = α/2 · v>diag(Σ)−1/2∆µ. (A.67)

Moreover, by definition we have
v>diag(Σ)−1/2Z − qv(Y,X) = v>diag(Σ)−1/2Z · 1

{
|v>diag(Σ)−1/2Z| ≤ R

√
log d

}
.

By setting the constant R sufficiently large, for any for any θ ∈ G0(Σ) ∪ G1(Σ; γn), we have∣∣EPθ
qv(Y,X)− EPθ

(v>diag(Σ)−1/2Z)
∣∣ ≤ α/4 · |(∆µ)j/

√
σj |.
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Combining (A.66) and (A.67) we obtain that
EPθ

qv(Y,X) ≤ α/4 · |(∆µ)j/
√
σj | for all θ ∈ G0(Σ);

EPθ
qv(Y,X) ≥ α/4 · |(∆µ)j/

√
σj | for all θ ∈ G1(Σ, γn).

Thus, taking the supremum over B2(1) yields
sup

v∈B2(1)

EPθqv(Y,X) ≥ α/4 · sup
j∈[d]
|(∆µ)j/

√
σj | for all θ ∈ G1(Σ, γn). (A.68)

In addition, since we have 4d queries, by Definition 2.2, the tolerance parameters for qv’s are bouded
by

τqv ≤ R
√

log d ·
√

[log(4d/ξ)]/n, for all v ∈ B2(1).

Note that we denote τ2 = R
√

log d ·
√

[log(4d/ξ)]/n. Similar to (A.62), we have

τqv ≤ τ1 ≤ (1/C) ·
{

sup
j∈[d]

[(∆µ)2j/σj ] ∨ sup
j∈[d]

α|(∆µ)j/
√
σj |
}
. (A.69)

Hence by (A.69), for any θ ∈ G0(Σ), the type-I error of φ2 is bounded by

Pθ

(
sup

v∈B2(1)

Zqv ≥ 2τ1

)
= Pθ

(⋃
v∈B2(1)

{
Zqv − EPθ

[qv(Y,X)] > τ1
})

≤ Pθ

(⋃
v∈B2(1)

{∣∣Zqv − EPθ
[qv(Y,X)]

∣∣ ≥ τqv
})
≤ ξ. (A.70)

Combining (A.63), (A.65), and (A.70), we have
Pθ(φ = 1) ≤ 3ξ, for all θ ∈ G0(Σ).

Type-II error. Now we consider θ ∈ G1(Σ; γn). Note that φ = 0 if φ1 = 0 and φ2 = 0. Thus, for
any θ ∈ G1(Σ; γn), we have

Pθ(φ = 0) = Pθ(φ1 = 0 ∩ φ2 = 0) ≤ Pθ(φ1 = 0) ∧ Pθ(φ2 = 0).

Recall that we denote ∆µ = µ1 − µ0. Similar to the proof of Theorem 3.2, we consider two cases
of the condition

sup
j∈[d]

(∆µ)2j/σj = Ω
[
log(d/ξ)/(α2 · n) ∧

√
log(d/ξ)/n

]
.

Case (i). We show that the type-II error of φ1 is negligible under the assumption that

sup
j∈[d]

(∆µ)2j/σj = Ω
[√

log(d/ξ)/n
]
.

Let j∗ = argmaxj∈[d](∆µ)2j/σj . Then by (A.62), when we have

1 + Cτ ≤ (∆µ)2j∗/σj∗ + 1− Cτ = EPθ
q̃j∗(Y,X)− [EPθ

qj∗(Y,X)]2 − Cτ. (A.71)
Thus combining (A.58), (A.59), and (A.71), we have

Pθ

[
sup
j∈[d]

(Zqj − Z2
q̃j

) < Cτ1

]

≤ Pθ

{
Zq̃∗j − Z

2
qj < EPθ

q̃j∗(Y,X)− [EPθ
qj∗(Y,X)]2 − Cτ1

}

≤ Pθ

[
EPθ

q̃j∗(Y,X)− Zq̃j∗ > τ1
]

+ Pθ

{
[EPθ

qj∗(Y,X)]2 − Z2
q∗j
> (C − 1)τ1

}
. (A.72)

Moreover, by (A.62) the first term on the right-hand side of (A.72) can be further bounded by
Pθ

[
EPθ

q̃j∗(Y,X)− Zq̃j∗ > τ1
]

≤ Pθ

{
EPθ

q̃j∗(Y,X)− Zq̃j∗ ≥ τq̃j∗
}

≤ Pθ

(⋃
j∈[d]

{
|Zq̃j − EPθ

q̃j(Y,X)]| ≥ τq̃j
})
≤ ξ. (A.73)
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Similarly, for the second term on the right-hand side of (A.72), by (A.62) and (A.64)we have

Pθ

{
[EPθ

qj∗(Y,X)]2 − Z2
q∗j
> (C − 1)τ1

}

≤ Pθ

(⋃
j∈[d]

{∣∣Zqj − EPθ
q̃j(Y,X)]

∣∣ ≥ τqj
})
≤ ξ. (A.74)

Therefore, combining (A.73) and (A.74), we conclude that the type-II error of φ2 is no more than 2ξ.

Case (ii). Now we assume study the type-II error of φ2 under the assumption that
sup
j∈[d]

(∆µ)2j/σj = Ω
[
log(d/ξ)/(α2 · n)

]
.

Let j∗ = argmaxj∈[d](∆µ)2j/σj and v∗ = argmaxv∈B2(1) EPθqv(Y,X). Then by (A.62) and
(A.68), when C > 4 we have

2τ2 ≤ α/2 · sup
j∈[d]
|(∆µ)j/

√
σj | − 2τ2 = EPθqv∗(Y,X)− 2τ2. (A.75)

Then by (A.69) and (A.75) the type-II error of φ2 is bounded by

Pθ

(
sup

v∈B2(1)

Zqv < 2τ2

)
≤ Pθ

[
sup

v∈B2(1)

Zqv < EPθqv∗(Y,X)− 2τ2

]

≤ Pθ

[
Zqv∗ < EPθqv∗(Y,X)− 2τ2

]

≤ Pθ

(⋃
v∈B2(1)

{∣∣Zqv − EPθ
[qv(Y,X)]

∣∣ ≥ τqv
})
≤ ξ. (A.76)

Thus by (A.76), the type-II error of φ2 is no more than ξ. Then together with Case (i), we have
Pθ(φ) ≤ 2ξ for all θ ∈ G1(Σ; γn). Therefore the total risk of φ is bounded by

Rn(φ) = sup
θ∈G0(Σ)

Pθ(φ = 1) + sup
θ∈G1(Σ;γn)

Pθ(φ = 0) ≤ 5ξ.

B Proofs for Technical Lemmas
In this section, we prove the technical lemmas which appear in the proofs of the main results.

B.1 Proof of Lemma A.1

Under P0,X and Y are independent withX ∼ N (0, I) and Y is uniform over {0, 1}. We denote by
f(x;µ) the density of N (µ, I) and by p0(y,x) the density of P0. Then for any y ∈ {0, 1} and x ∈
Rd, we have p0(y,x) = 1/2 · f(x; 0). In addition, for any v ∈ H(s), we denote the density of
Pv by pv(y,x). By the definition of the statistical model, we have

pv(1,x) = (1 + α)/4 · f(x; v/2) + (1− α)/4 · f(x;−v/2),

pv(0,x) = (1− α)/4 · f(x; v/2) + (1 + α)/4 · f(x;−v/2).

Thus for any y ∈ {0, 1} and x ∈ Rd, we have
dPv

dP0
(y,x) =

1

2
·
[
f(x; v/2)

f(x; 0)
+
f(x;−v/2)

f(x; 0)

]
+
α(2y − 1)

2
·
[
f(x; v/2)

f(x; 0)
− f(x;−v/2)

f(x; 0)

]
.

(B.1)

Note that by definition, for any µ ∈ Rd, we have
g(x;µ) := f(x;µ)/f(x; 0) = exp(µ>x− 1/2 · ‖µ‖22).

Thus (B.1) is reduced to
dPv

dP0
(y,x) = [g(x,v/2) + g(x;−v/2)] /2 + α(2y − 1) · [g(x,v/2)− g(x;−v/2)] /2. (B.2)

For any v1,v2 ∈ H(s), by (B.2) we have

EP0

[
dPv1

dP0

dPv2

dP0
(Y,X)

]

= EP0 {[g(X,v1/2) + g(X;−v1/2)] · [g(X,v2/2) + g(X;−v2/2)] /4}
+ α2 · EP0 {[g(X,v1/2)− g(X;−v1/2)] · [g(X,v2/2)− g(X;−v2/2)] /4} , (B.3)
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where we use the independence of Y andX under P0. In what follows, we calculate the two terms
on the right-hand side of (B.3), respectively. Let η1 and η2 be two independent Rademacher random
variables over {−1, 1}. Then for ` ∈ {1, 2}, we have

[g(X,v`/2) + g(X;−v`/2)] /2 = Eη` [g(X, η`v`/2)] , (B.4)
[g(X,v`/2)− g(X;−v`/2)] /2 = Eη` [η` · g(X, η`v`/2)] . (B.5)

Then by (B.4) and (B.5) we have
EP0 {[g(X,v1/2) + g(X;−v1/2)] · [g(X,v2/2) + g(X;−v2/2)] /4}

= EP0Eη1,η2 [g(X; η1v1/2) · g(X; η2v2/2)]

= Eη1,η2EP0 exp
[
X>(η1v1 + η2v2)/2− 1/8 · (‖v1‖22 + ‖v2‖22)

]
. (B.6)

Using the moment-generating function ofX , by (B.6) we have
EP0 {[g(X,v1/2) + g(X;−v1/2)] · [g(X,v2/2) + g(X;−v2/2)] /4}

= Eη1,η2
[
exp(1/2 · η1η2 · v>1 v2) = cosh(1/2 · 〈v1,v2〉)

]
.

Similarly, for (B.5) we have
EP0 {[g(X,v1/2)− g(X;−v1/2)] · [g(X,v2/2)− g(X;−v2/2)] /4}

= EP0Eη1,η2 [η1η2 · g(X; η1v1/2) · g(X; η2v2/2)]

= Eη1,η2
[
η1η2 · exp(1/2 · η1η2 · v>1 v2)

]
= sinh(1/2 · 〈v1,v2〉).

Thus we conclude the proof of Lemma A.1.

B.2 Proof of Lemma A.2

It is straightforward to verify (A.4) holds when x = 0. We focus on region x > 0. It is then sufficient
to prove the result for these two cases below.

Case 1: We consider the case v ≤ 1/(2x) · log[cosh(2x)]. Then we need to prove
cosh(x) + v sinh(x) ≤ cosh(2x). (B.7)

Using the bound of v, it remains to show the function
f(x) = 1/(2x) · log[cosh(2x)] · sinh(x) + cosh(x)− cosh(2x) ≤ 0.

holds for all x > 0. It’s easy to verify f(x) is monotonically decreasing over (0,∞] and
limx→0 f(x) = 0. We thus finish proving (B.7).

Case 2: We consider the case v ≥ 1/(2x) · log[cosh(2x)]. We would like to show
cosh(x) + v sinh(x) ≤ exp(2vx). (B.8)

Let us define g(v) := exp(2vx)− cosh(x)− v sinh(x). We have that for any x ≥ 0,
g′(v) = 2x exp(2vx)− sinh(x) ≥ 2x cosh(2x)− sinh(x) ≥ 0.

Hence, g(v) is a monotonically increasing function. We thus have
g(v) ≥ g {1/(2x) · log[cosh(2x)]}

= cosh(2x)− cosh(x)− 1/(2x) · log[cosh(2x)] · sinh(x) = −f(x) ≥ 0.

We thus finish proving (B.8).

C Supporting Lemmas
In this section we list the supporting lemmas that establish two concentration inequalities for Gaussian
random variables.

Lemma C.1 (χ2-tail bound, [16]). Let X1, . . . , Xn be n i.i.d. standard normal random variables.
For all t ∈ (0, 1),

P

(∣∣∣∣∣
1

n

n∑

i=1

X2
i − 1

∣∣∣∣∣ ≥ t
)
≤ 2 exp(−nt2/8).

Lemma C.2 (Gaussian covariance estimation, [25]). Suppose {Xi}ni=1 are n i.i.d. Gaussian random
vectors in Rd and X1 ∼ N (0,Σ). For every ε ∈ (0, 1), and t ≥ 1, if n ≥ C(t/ε)2d for some
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constant C, then with probability at least 1− 2e−t
2n,

|||Σ̂−Σ|||2 ≤ ε|||Σ|||2,
where Σ̂ := 1/n ·∑n

i=1XiX
>
i .
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