
A Proofs

This appendix section gathers detailed proofs of all of our main results. In Appendix A.1, we

prove a contraction lemma used as a tool in the proof of our general factor graph Rademacher

complexity bounds (Appendix A.3). In Appendix A.8, we further extend our bounds to the Voted Risk

Minimization setting. Appendix A.5 gives explicit upper bounds on the factor graph Rademacher

complexity of several commonly used hypothesis sets. In Appendix A.9, we prove a general upper

bound on a loss function used in structured prediction in terms of a convex surrogate.

A.1 Contraction lemma

The following contraction lemma will be a key tool used in the proofs of our generalization bounds

for structured prediction.

Lemma 5. Let H be a hypothesis set of functions mapping X to Rc. Assume that for all i = 1, . . . , m,

i

: Rc ! R is µ
i

-Lipschitz for Rc equipped with the 2-norm. That is:

|
i

(x

0
) �

i

(x)|  µ
i

kx0 � xk
2

,

for all (x,x0
) 2 (Rc

)

2. Then, for any sample S of m points x
1

, . . . , x
m

2 X , the following inequality
holds

1

m
E
�

"

sup

h2H

m

X

i=1

�
i

i

(h(x
i

))

#


p

2

m
E
✏

2

4

sup

h2H

m

X

i=1

c

X

j=1

✏
ij

µ
i

h
j

(x
i

)

3

5 , (11)

where ✏ = (✏
ij

)

i,j

and ✏
ij

s are independent Rademacher variables uniformly distributed over {±1}.

Proof. Fix a sample S = (x
1

, . . . , x
m

). Then, we can rewrite the left-hand side of (11) as follows:

1

m
E
�

"

sup

h2H

m

X

i=1

�
i

i

(h(x
i

))

#

=

1

m
E

�1,...,�

m�1

h

E
�

m

h

sup

h2H
U

m�1

(h) + �
m

m

(h(x
m

))

ii

,

where U
m�1

(h) =

P

m�1

i=1

�
i

i

(h(x
i

)). Assume that the suprema can be attained and let h

1

,h
2

2
H be the hypotheses satisfying

U
m�1

(h

1

) +

m

(h

1

(x
m

)) = sup

h2H
U

m�1

(h) +

m

(h(x
m

))

U
m�1

(h

2

) �
m

(h

2

(x
m

)) = sup

h2H
U

m�1

(h) �
m

(h(x
m

)).

When the suprema are not reached, a similar argument to what follows can be given by considering

instead hypotheses that are ✏-close to the suprema for any ✏ > 0. By definition of expectation, since

�
m

is uniformly distributed over {±1}, we can write

E
�

m

h

sup

h2H
U

m�1

(h) + �
m

m

(h(x
m

))

i

=

1

2

sup

h2H
U

m�1

(h) +

m

(h(x
m

)) +

1

2

sup

h2H
U

m�1

(h) �
m

(h(x
m

))

=

1

2

[U
m�1

(h

1

) +

m

(h

1

(x
m

))] +

1

2

[U
m�1

(h

2

) �
m

(h

2

(x
m

))].

Next, using the µ
m

-Lipschitzness of

m

and the Khintchine-Kahane inequality, we can write

E
�

m

h

sup

h2H
U

m�1

(h) + �
m

m

(h(x
m

))

i

 1

2

[U
m�1

(h

1

) + U
m�1

(h

2

) + µ
m

kh
1

(x
m

) � h

2

(x
m

)k
2

]

 1

2

"

U
m�1

(h

1

) + U
m�1

(h

2

) + µ
m

p
2 E
✏
m1,...,✏

mc



�

�

�

c

X

j=1

✏
mj

�

h
1j

(x
m

) � h
2j

(x
m

)

�

�

�

�

�

#

.

10

Now, let ✏
m

denote (✏
m1

, . . . , ✏
mc

) and let s(✏
m

) 2 {±1} denote the sign of

P

c

j=1

✏
mj

�

h
1j

(x
m

) �
h

2j

(x
m

)

�

. Then, the following holds:

E
�

m

h

sup

h2H
U

m�1

(h) + �
m

(

m

� h)(x
m

)

i

 1

2

E
✏
m



U
m�1

(h

1

) + U
m�1

(h

2

) + µ
m

p
2

�

�

�

c

X

j=1

✏
mj

�

h
1j

(x
m

) � h
2j

(x
m

)

�

�

�

�

�

=

1

2

E
✏
m



U
m�1

(h

1

) + µ
m

p
2 s(✏

m

)

c

X

j=1

✏
mj

h
1j

(x
m

)

+ U
m�1

(h

2

) � µ
m

p
2 s(✏

m

)

c

X

j=1

✏
mj

h
2j

(x
m

)

�

 1

2

E
✏
m



sup

h2H

⇣

U
m�1

(h) + µ
m

p
2 s(✏

m

)

c

X

j=1

✏
mj

h
j

(x
m

)

⌘

+ sup

h2H

⇣

U
m�1

(h) � µ
m

p
2 s(✏

m

)

c

X

j=1

✏
mj

h
j

(x
m

)

⌘

�

= E
✏
m



E
�

m

h

sup

h2H
U

m�1

(h) + µ
m

p
2�

m

c

X

j=1

✏
mj

h
j

(x
m

)

i

�

= E
✏
m



sup

h2H
U

m�1

(h) + µ
m

p
2

c

X

j=1

✏
mj

h
j

(x
m

)

i

�

,

Proceeding in the same way for all other �
i

s (i < m) completes the proof.

A.2 Contraction lemma for k · k1,2

-norm

In this section, we present an extension of the contraction Lemma 5, that can be used to remove the

dependency on the alphabet size in all of our bounds.

Lemma 6. Let H be a hypothesis set of functions mapping X ⇥ [d] to Rc. Assume that for all
i = 1, . . . , m,

i

is µ
i

-Lipschitz for Rc⇥d equipped with the norm-(1, 2) for some µ
i

> 0. That is

|
i

(x

0
) �

i

(x)|  µ
i

kx0 � xk1,2

,

for all (x,x0
) 2 (Rc⇥d

)

2. Then, for any sample S of m points x
1

, . . . , x
m

2 X , there exists a
distribution U over [d]

c⇥m such that the following inequality holds:

1

m
E
�

"

sup

h2H

m

X

i=1

�
i

i

(h(x
i

))

#


p

2

m
E

�⇠U,✏

2

4

sup

h2H

m

X

i=1

c

X

j=1

✏
ij

µ
i

h
j

(x
i

, �
mj

)

3

5 , (12)

where ✏ = (✏
ij

)

i,j

and ✏
ij

s are independent Rademacher variables uniformly distributed over {±1}
and � = (�

i,j

)

i,j

is a sequence of random variables distributed according to U . Note that �
i,j

s
themselves do not need to be independent.

Proof. Fix a sample S = (x
1

, . . . , x
m

). Then, we can rewrite the left-hand side of (11) as follows:

1

m
E
�

"

sup

h2H

m

X

i=1

�
i

i

(h(x
i

))

#

=

1

m
E

�1,...,�

m�1

h

E
�

m

h

sup

h2H
U

m�1

(h) + �
m

m

(h(x
m

))

ii

,

where U
m�1

(h) =

P

m�1

i=1

�
i

i

(h(x
i

)). Assume that the suprema can be attained and let h

1

,h
2

2
H be the hypotheses satisfying

U
m�1

(h

1

) +

m

(h

1

(x
m

)) = sup

h2H
U

m�1

(h) +

m

(h(x
m

))

U
m�1

(h

2

) �
m

(h

2

(x
m

)) = sup

h2H
U

m�1

(h) �
m

(h(x
m

)).

11

When the suprema are not reached, a similar argument to what follows can be given by considering

instead hypotheses that are ✏-close to the suprema for any ✏ > 0. By definition of expectation, since

�
m

is uniformly distributed over {±1}, we can write

E
�

m

h

sup

h2H
U

m�1

(h) + �
m

m

(h

1

(x
m

))

i

=

1

2

sup

h2H
U

m�1

(h) +

m

(h

1

(x
m

)) +

1

2

sup

h2H
U

m�1

(h) �
m

(h(x
m

))

=

1

2

[U
m�1

(h

1

) +

m

(h

1

(x
m

))] +

1

2

[U
m�1

(h

2

) �
m

(h

2

(x
m

))].

Next, using the µ
m

-Lipschitzness of

m

and the Khintchine-Kahane inequality, we can write

E
�

m

h

sup

h2H
U

m�1

(h) + �
m

(

m

� h)(x
m

)

i

 1

2

[U
m�1

(h

1

) + U
m�1

(h

2

) + µ
m

kh
1

(x
m

) � h

2

(x
m

)k1,2

]

 1

2

"

U
m�1

(h

1

) + U
m�1

(h

2

) + µ
m

p
2 E
✏
m1,...,✏

mc



�

�

�

c

X

j=1

✏
mj

kh
1,j

(x
m

, ·) � h
2,j

(x
m

, ·)k1
�

�

�

�

#

.

Define the random variables �
mj

= �
mj

(�) = argmax

k2[d]

|h
1,j

(x
m

, k) � h
2,j

(x
m

, k)|.
Now, let ✏

m

denote (✏
m1

, . . . , ✏
mc

) and let s(✏
m

) 2 {±1} denote the sign of

P

c

j=1

✏
mj

kh
1,j

(x
m

, ·) � h
2,j

(x
m

, ·)k1. Then, the following holds:

E
�

m

h

sup

h2H
U

m�1

(h) + �
m

(

m

� h)(x
m

)

i

 1

2

E
✏
m



U
m�1

(h

1

) + U
m�1

(h

2

) + µ
m

p
2

�

�

�

c

X

j=1

✏
mj

kh
1,j

(x
m

, ·) � h
2,j

(x
m

, ·)k1
�

�

�

�

 1

2

E
✏
m



U
m�1

(h

1

) + U
m�1

(h

2

)

+ µ
m

p
2 s(✏

m

)

c

X

j=1

✏
mj

|h
1,j

(x
m

, �
mj

) � h
2,j

(x
m

, �
mj

)|
�

=

1

2

E
✏
m



U
m�1

(h

1

) + U
m�1

(h

2

)

+ µ
m

p
2 s(✏

m

)

c

X

j=1

✏
mj

(h
1,j

(x
m

, �
mj

) � h
2,j

(x
m

, �
mj

))

�

=

1

2

E
✏
m



U
m�1

(h

1

) + µ
m

p
2 s(✏

m

)

c

X

j=1

✏
mj

h
1,j

(x
m

, �
mj

)

+ U
m�1

(h

2

) � µ
m

p
2 s(✏

m

)

c

X

j=1

✏
mj

h
2,j

(x
m

, �
mj

)

�

.

12

After taking expectation over �, the rest of the proof proceeds the same way as the argument in

Lemma 5:

1

2

E
�⇠U,✏

m



U
m�1

(h

1

) + µ
m

p
2 s(✏

m

)

c

X

j=1

✏
mj

h
1,j

(x
m

, �
mj

)

+ U
m�1

(h

2

) � µ
m

p
2 s(✏

m

)

c

X

j=1

✏
mj

h
2,j

(x
m

, �
mj

)

�

 1

2

E
�⇠U,✏

m



sup

h2H

⇣

U
m�1

(h) + µ
m

p
2 s(✏

m

)

c

X

j=1

✏
mj

h
j

(x
m

, �
mj

)

⌘

+ sup

h2H

⇣

U
m�1

(h) � µ
m

p
2 s(✏

m

)

c

X

j=1

✏
mj

h
j

(x
m

, �
mj

)

⌘

�

= E
�⇠U,✏

m



E
�

m

h

sup

h2H
U

m�1

(h) + µ
m

p
2�

m

c

X

j=1

✏
mj

h
j

(x
m

, �
mj

)

i

�

= E
�⇠U,✏

m



sup

h2H
U

m�1

(h) + µ
m

p
2

c

X

j=1

✏
mj

h
j

(x
m

, �
mj

)

i

�

,

Proceeding in the same way for all other �
i

s (i < m) completes the proof.

A.3 General structured prediction learning bounds

In this section, we give the proof of several general structured prediction bounds in terms of the notion

of factor graph Rademacher complexity. We will use the additive and multiplicative margin losses of

a hypothesis h, which are the population versions of the empirical margin losses we introduced in (5)

and (6) and are defined as follows:

Radd

⇢

(h) = E
(x,y)⇠D



�

⇤
✓

max

y

0 6=y

L(y0, y) � 1

⇢

⇥

h(x, y) � h(x, y0
)

⇤

◆�

Rmult

⇢

(h) = E
(x,y)⇠D



�

⇤
✓

max

y

0 6=y

L(y0, y)

⇣

1 � 1

⇢

[h(x, y) � h(x, y0
)]

⌘

◆�

.

The following is our general margin bound for structured prediction.

Theorem 1. Fix ⇢ > 0. For any � > 0, with probability at least 1 � � over the draw of a sample S
of size m, the following holds for all h 2 H,

R(h)  Radd
⇢

(h)  bRadd
S,⇢

(h) +

4

p
2

⇢
RG

m

(H) + M

s

log

1

�

2m
,

R(h)  Rmult
⇢

(h)  bRmult
S,⇢

(h) +

4

p
2M

⇢
RG

m

(H) + M

s

log

1

�

2m
.

Proof. Let �

u

(v) = �

⇤
(u � v

⇢

), where �

⇤
(r) = min(M, max(0, r)). Observe that for any u 2

[0, M], u1

v0

 �

u

(v) for all v. Therefore, by Lemma 4 and monotonicity of �

⇤
,

R(h)  E
(x,y)⇠D

[max

y

0 6=y

�L(y0
,y)

(h(x, y) � h(x, y0
))]

= E
(x,y)⇠D

"

�

⇤

max

y

0 6=y

⇣

L(y0, y) � h(x, y) � h(x, y0
)

⇢

⌘

!#

= Radd

⇢

(h).

13

Define

H
0

=

(

(x, y) 7! �

⇤
⇣

max

y

0 6=y

⇣

L(y0, y) � h(x, y) � h(x, y0
)

⇢

⌘⌘

: h 2 H
)

,

H
1

=

(

(x, y) 7! max

y

0 6=y

⇣

L(y0, y) � h(x, y) � h(x, y0
)

⇢

⌘

: h 2 H
)

.

By standard Rademacher complexity bounds (Koltchinskii and Panchenko [2002]), for any � > 0,

with probability at least 1 � �, the following inequality holds for all h 2 H:

Radd

⇢

(h)  bRadd

S,⇢

(h) + 2R
m

(H
0

) + M

s

log

1

�

2m
,

where R
m

(H
0

) is the Rademacher complexity of the family H
0

:

R
m

(H
0

) =

1

m
E

S⇠Dm

E
�

"

sup

h2H

m

X

i=1

�
i

�

⇤
⇣

max

y

0 6=y

i

⇣

L(y0, y
i

) � h(x
i

, y
i

) � h(x
i

, y0
)

⇢

⌘⌘

#

and where � = (�
1

, . . . ,�
m

) with �
i

s independent Rademacher random variables uniformly dis-

tributed over {±1}. Since �

⇤
is 1-Lipschitz, by Talagrand’s contraction lemma (Ledoux and Tala-

grand [1991], Mohri et al. [2012]), we have

bR
S

(H
0

)  bR
S

(H
1

). By taking an expectation over S,

this inequality carries over to the true Rademacher complexities as well. Now, observe that by the

sub-additivity of the supremum, the following holds:

bR
S

(H
1

)  1

m
E
�

"

sup

h2H

m

X

i=1

�
i

max

y

0 6=y

i

⇣

L(y0, y
i

) +

h(x
i

, y0
)

⇢

⌘

#

+

1

m
E
�

"

sup

h2H

m

X

i=1

�
i

h(x
i

, y
i

)

⇢

#

,

where we also used for the last term the fact that ��
i

and �
i

admit the same distribution. We use

Lemma 5 to bound each of the two terms appearing on the right-hand side separately. To do so, we

we first show the Lipschitzness of h 7! max

y

0 6=y

i

⇣

L(y0, y
i

) +

h(x

i

,y

0
)

⇢

⌘

. Observe that the following

chain of inequalities holds for any h,eh 2 H:

�

�

�

�

�

max

y 6=y

i

L(y, y
i

) +

h(x
i

, y)

⇢

!

� max

y 6=y

i

L(y, y
i

) +

eh(x
i

, y)

⇢

!

�

�

�

�

�

 1

⇢
max

y 6=y

i

�

�

�

h(x
i

, y) � eh(x
i

, y)

�

�

�

 1

⇢
max

y2Y

�

�

�

h(x
i

, y) � eh(x
i

, y)

�

�

�

=

1

⇢
max

y2Y

�

�

�

X

f2F

i

(h
f

(x
i

, y
f

) � eh
f

(x
i

, y
f

))

�

�

�

 1

⇢

X

f2F

i

max

y2Y

�

�

�

(h
f

(x
i

, y
f

) � eh
f

(x
i

, y
f

))

�

�

�

=

1

⇢

X

f2F

i

max

y2Y
f

�

�

�

(h
f

(x
i

, y) � eh
f

(x
i

, y))

�

�

�


p|F

i

|
⇢

s

X

f2F

i

h

max

y2Y
f

|(h
f

(x
i

, y) � eh
f

(x
i

, y))|
i

2

=

p|F
i

|
⇢

s

X

f2F

i

max

y2Y
f

|(h
f

(x
i

, y) � eh
f

(x
i

, y))|2


p|F

i

|
⇢

s

X

f2F

i

X

y2Y
f

|(h
f

(x
i

, y) � eh
f

(x
i

, y))|2.

14

We can therefore apply Lemma 5, which yields

1

m
E
�

"

sup

h2H

m

X

i=1

�
i

max

y

0 6=y

i

⇣

L(y0, y
i

) +

h(x
i

, y0
)

⇢

⌘

#


p

2

m
E
✏

"

sup

h2H

m

X

i=1

X

f2F

i

X

y2Y
f

✏
i,f,y

p|F
i

|
⇢

h
f

(x
i

, y)

#

=

p
2

⇢
bRG

S

(H).

Similarly, for the second term, observe that the following Lipschitz property holds:

�

�

�

h(x
i

, y
i

)

⇢
�
eh(x

i

, y
i

)

⇢

�

�

�

 1

⇢
max

y2Y

�

�

�

h(x
i

, y) � eh(x
i

, y)

�

�

�


p|F

i

|
⇢

s

X

f2F

i

X

y2Y
|(h

f

(x
i

, y) � eh
f

(x
i

, y))|2.

We can therefore apply Lemma 5 and obtain the following:

1

m
E
�

"

sup

h2H

m

X

i=1

�
i

h(x
i

, y
i

)

⇢

#


p

2

m
E
✏

"

sup

h2H

m

X

i=1

X

f2F

i

X

y2Y
f

✏
i,f,y

p|F
i

|
⇢

h
f

(x
i

, y)

#

=

p
2

⇢
bRG

S

(H).

Taking the expectation over S of the two inequalities shows that R
m

(H
1

)  2

p
2

⇢

RG

m

(H), which

completes the proof of the first statement.

The second statement can be proven in a similar way with �

u

(v) = �

⇤
(u(1 � v

⇢

)). In particular,

by standard Rademacher complexity bounds, McDiarmid’s inequality, and Talagrand’s contraction

lemma, we can write

Rmult

⇢

(h)  bRmult

S,⇢

(h) + 2R
m

(

eH
1

) + M

s

log

1

�

2m
,

where

eH
1

=

(

(x, y) 7! max

y

0 6=y

L(y0, y)

⇣

1 � h(x, y) � h(x, y0
)

⇢

⌘

: h 2 H
)

.

We observe that the following inequality holds:

�

�

�

�

�

max

y 6=y

i

L(y, y
i

)

1 � h(x
i

, y
i

) � h(x
i

, y)

⇢

!

� max

y 6=y

i

L(y, y
i

)

1 �
eh(x

i

, y
i

) � eh(x
i

, y)

⇢

!

�

�

�

�

�

 2M

⇢
max

y2Y

�

�

�

h(x
i

, y) � eh(x
i

, y)

�

�

�

.

Then, the rest of the proof follows from Lemma 5 as in the previous argument.

In the proof above, we could have applied McDiarmid’s inequality to bound the Rademacher

complexity of H
0

by its empirical counterpart at the cost of slightly increasing the exponential

concentration term:

Radd

⇢

(h)  bRadd

S,⇢

(h) + 2

bR
S

(H
0

) + 3M

s

log

1

�

2m
.

Since Talagrand’s contraction lemma holds for empirical Rademacher complexities and the remainder

of the proof involves bounding the empirical Rademacher complexity of H
1

before taking an

expectation over the sample at the end, we can apply the same arguments without the final expectation

to arrive at the following analogue of Theorem 1 in terms of empirical complexities:

15

Theorem 7. Fix ⇢ > 0. For any � > 0, with probability at least 1 � � over the draw of a sample S
of size m, the following holds for all h 2 H,

R(h)  Radd
⇢

(h)  bRadd
S,⇢

(h) +

4

p
2

⇢
bRG

S

(H) + 3M

s

log

1

�

2m
,

R(h)  Rmult
⇢

(h)  bRmult
S,⇢

(h) +

4

p
2M

⇢
bRG

S

(H) + 3M

s

log

1

�

2m
.

This theorem will be useful for many of our applications, which are based on bounding the empirical

factor graph Rademacher complexity for different hypothesis classes.

A.4 Concentration of the empirical factor graph Rademacher complexity

In this section, we show that, as with the standard notion of Rademacher complexity, the empirical

factor graph Rademacher complexity also concentrates around its mean.

Lemma 8. Let H be a family of scoring functions mapping X ⇥ Y ! R bounded by a constant C.
Let S be a training sample of size m drawn i.i.d. according to some distribution D on X ⇥ Y , and
let DX be the marginal distribution on X . For any point x 2 X , let F

x

denote its associated set of
factor nodes. Then, with probability at least 1 � � over the draw of sample S ⇠ Dm,

�

�

�

bRG

S

(H) � RG

m

(H)

�

�

�

 2C sup

x2supp(DX)

X

f2F

x

|Y
f

|
p

|F
x

|
s

log

2

�

2m
.

Proof. Let S = (x
1

, x
2

, . . . , x
m

) and S0
= (x0

1

, x0
2

, . . . , x0
m

) be two samples differing by one point

x
j

and x0
j

(i.e. x
i

= x0
i

for i 6= j). Then

bRG

S

(H) � bRG

S

0(H)  1

m
E
✏

"

sup

h2H

m

X

i=1

X

f2F

i

X

y2Y
f

p

|F
i

| ✏
i,f,y

h
f

(x
i

, y)

#

� 1

m
E
✏

"

sup

h2H

m

X

i=1

X

f2F

i

X

y2Y
f

p

|F
i

| ✏
i,f,y

h
f

(x0
i

, y)

#

=

1

m
E
✏

"

sup

h2H

X

f2F

x

j

X

y2Y
f

q

|F
j

| ✏
j,f,y

h
f

(x
j

, y)

�
X

f

02F

x

0
j

X

y2Y0
f

q

|F
x

0
j

| ✏
j,f

0
,y

h
f

(x0
j

, y)

#

 2

m
sup

x2supp(DX)

sup

h2H

X

f2F

x

X

y2Y
f

p

|F
x

||h
f

(x, y)|.

The same upper bound also holds for

bRG

S

0(H) � bRG

S

(H). The result now follows from McDiarmid’s

inequality.

A.5 Bounds on the factor graph Rademacher complexity

The following lemma is a standard bound on the expectation of the maximum of n zero-mean

bounded random variables, which will be used in the proof of our bounds on factor graph Rademacher

complexity.

Lemma 9. Let X
1

. . . X
n

be n � 1 real-valued random variables such that for all j 2 [1, n],
X

j

=

P

m

j

i=1

Y
ij

where, for each fixed j 2 [1, n], Y
ij

are independent zero mean random variables
with |Y

ij

|  t
ij

. Then, the following inequality holds:

E
h

max

j2[1,n]

X
j

i

 t
p

2 log n,

16

with t =

q

max

j2[1,n]

P

m

j

i=1

t2
ij

.

The following are upper bounds on the factor graph Rademacher complexity for H
1

and H
2

, as

defined in Section 3. Similar guarantees can be given for other hypothesis sets H
p

with p > 1.

Theorem 2. For any sample S = (x
1

, . . . , x
m

), the following upper bounds hold for the empirical
factor graph complexity of H

1

and H
2

:

bRG

S

(H
1

)  ⇤

1

r1
m

p

s log(2N), bRG

S

(H
2

)  ⇤

2

r
2

m

q

P

m

i=1

P

f2F

i

P

y2Y
f

|F
i

|,
where r1 = max

i,f,y

k
f

(x
i

, y)k1, r
2

= max

i,f,y

k
f

(x
i

, y)k
2

and where s is a sparsity factor
defined by s = max

j2[1,N]

P

m

i=1

P

f2F

i

P

y2Y
f

|F
i

|1

j

(x

i

,y) 6=0

.

Proof. By definition of the dual norm and Lemma 9 (or Massart’s lemma), the following holds:

mbRG

S

(H
1

) = E
✏



sup

kwk1⇤1

w ·
m

X

i=1

X

f2F

i

X

y2Y
f

p

|F
i

|✏
i,f,y

f

(x
i

, y)

�

= ⇤

1

E
✏



�

�

�

�

m

X

i=1

X

f2F

i

X

y2Y
f

p

|F
i

|✏
i,f,y

f

(x
i

, y)

�

�

�

�

1

�

= ⇤

1

E
✏

2

4

max

j2[1,N],�2{�1,+1}
�

m

X

i=1

X

f2F

i

X

y2Y
f

p

|F
i

|✏
i,f,y

f,j

(x
i

, y)

3

5

= ⇤

1

E
✏

2

4

max

j2[1,N],�2{�1,+1}
�

m

X

i=1

X

f2F

i

X

y2Y
f

p

|F
i

|✏
i,f,y

f,j

(x
i

, y)1

f,j

(x

i

,y) 6=0

3

5

 ⇤

1

v

u

u

t

2

⇣

max

j2[1,N]

m

X

i=1

X

f2F

i

X

y2Y
f

|F
i

|1

j

(x

i

,y) 6=0

⌘

r21 log(2N)

= ⇤

1

r1
p

2s log(2N),

which completes the proof of the first statement. The second statement can be proven in a similar

way using the the definition of the dual norm and Jensen’s inequality:

mbRG

S

(H
2

) = E
✏



sup

kwk2⇤2

w ·
m

X

i=1

X

f2F

i

X

y2Y
f

p

|F
i

|✏
i,f,y

f

(x
i

, y)

�

= ⇤

2

E
✏



�

�

�

�

m

X

i=1

X

f2F

i

X

y2Y
f

p

|F
i

|✏
i,f,y

f

(x
i

, y)

�

�

�

�

2

�

= ⇤

2

E
✏



�

�

�

�

m

X

i=1

X

f2F

i

X

y2Y
f

p

|F
i

|✏
i,f,y

f

(x
i

, y)

�

�

�

�

2

2

�

!

1
2

= ⇤

2

m

X

i=1

X

f2F

i

X

y2Y
f

|F
i

|k
f

(x
i

, y)k2

2

!

1
2

 ⇤

2

r
2

v

u

u

t

m

X

i=1

X

f2F

i

X

y2Y
f

|F
i

|,

which concludes the proof.

A.6 Learning guarantees for structured prediction with linear hypotheses

The following result is a direct consequence of Theorem 7 and Theorem 2.

17

Corollary 10. Fix ⇢ > 0. For any � > 0, with probability at least 1 � � over the draw of a sample S
of size m, the following holds for all h 2 H

1

,

R(h)  bRadd
S,⇢

(h) +

4

p
2

⇢m
⇤

1

r1
p

s log(2N) + 3M

s

log

2

�

2m
,

R(h)  bRmult
S,⇢

(h) +

4

p
2M

⇢m
⇤

1

r1
p

s log(2N) + 3M

s

log

2

�

2m
.

Similarly, for any � > 0, with probability at least 1 � � over the draw of a sample S of size m, the
following holds for all h 2 H

2

,

R(h)  bRadd
S,⇢

(h) +

4

p
2

⇢m
⇤

2

r
2

q

P

m

i=1

P

f2F

i

P

y2Y
f

|F
i

| + 3M

s

log

2

�

2m
,

R(h)  bRmult
S,⇢

(h) +

4

p
2M

⇢m
⇤

2

r
2

q

P

m

i=1

P

f2F

i

P

y2Y
f

|F
i

| + 3M

s

log

2

�

2m
.

A.7 Learning guarantees for multi-class classification with linear hypotheses

The following result is a direct consequence of Corollary 10 and the observation that for multi-class

classification |F
i

| = 1 and d
i

= max

f2F

i

|Y
f

| = c. Note that our multi-class learning guarantees

hold for arbitrary bounded losses. To the best of our knowledge this is a novel result in this setting.

In particular, these guarantees apply to the special case of the standard multi-class zero-one loss

L(y, y0
) = 1{y 6=y

0} which is bounded by M = 1.

Corollary 11. Fix ⇢ > 0. For any � > 0, with probability at least 1 � � over the draw of a sample S
of size m, the following holds for all h 2 H

1

,

R(h)  bRadd
S,⇢

(h) +

4

p
2⇤

1

r1
⇢

r

c log(2N)

m
+ 3M

s

log

2

�

2m
,

R(h)  bRmult
S,⇢

(h) +

4

p
2⇤

1

r1
⇢

r

c log(2N)

m
+ 3M

s

log

2

�

2m
.

Similarly, for any � > 0, with probability at least 1 � � over the draw of a sample S of size m, the
following holds for all h 2 H

2

,

R(h)  bRadd
S,⇢

(h) +

4

p
2⇤

2

r
2

⇢

r

c

m
+ 3M

s

log

2

�

2m
,

R(h)  bRmult
S,⇢

(h) +

4

p
2⇤

2

r
2

⇢

r

c

m
+ 3M

s

log

2

�

2m
.

Consider the following set of linear hypothesis:

H
2,1

= {x 7! w · (x, y) : kwk
2,1

 ⇤

2,1

, y 2 [c]},

where (x, y) = (0, . . . 0,
y

(x), 0, . . . , 0)

T 2 RN1⇥...,N

c

and w = (w

1

, . . . ,w
c

) with

kwk
2,1

=

P

c

y=1

kw
y

k
2

. In this case, w · (x, y) = w

y

·
y

(x). The standard scenario in

multi-class classification is when

y

(x) = (x) is the same for all y.

Corollary 12. Fix ⇢ > 0. For any � > 0, with probability at least 1 � � over the draw of a sample S
of size m, the following holds for all h 2 H

2,1

,

R(h)  bRadd
S,⇢

(h) +

16⇤

2,1

r
2,1(log(c))1/4

⇢
p

m
+ 3M

s

log

2

�

2m
,

R(h)  bRmult
S,⇢

(h) +

16⇤

2,1

r
2,1(log(c))1/4

⇢
p

m
+ 3M

s

log

2

�

2m
,

where r
2,1 = max

i,y

k
y

(x
i

)k
2

.

18

Proof. By definition of the dual norm and H
2,1

, the following holds:

mbRG

S

(H
2,1

) = E
✏



sup

kwk2,1⇤
w ·

m

X

i=1

X

y2[c]

✏
i,y

 (x
i

, y)

�

= ⇤E
✏



�

�

�

�

m

X

i=1

X

y2[c]

✏
i,y

 (x
i

, y)

�

�

�

�

2,1

�

= ⇤E
✏

"

max

y

�

�

�

�

m

X

i=1

✏
i,y

y

(x
i

)

�

�

�

�

2

#

 ⇤

E
✏

"

max

y

�

�

�

�

m

X

i=1

✏
i,y

y

(x
i

)

�

�

�

�

2

2

#!

1/2

= ⇤

E
✏



max

y

m

X

i=1

�

�

�

�

y

(x
i

)

�

�

�

�

2

2

+

X

i 6=j

✏
i,y

✏
j,y

y

(x
i

) ·
y

(x
j

)

�

!

1/2

 ⇤

max

y

m

X

i=1

�

�

�

�

y

(x
i

)

�

�

�

�

2

2

+ E
✏



max

y

X

i 6=j

✏
i,y

✏
j,y

y

(x
i

) ·
y

(x
j

)

�

!

1/2

By Lemma 9 (or Massart’s lemma), the following bound holds:

E
✏



max

y

X

i 6=j

✏
i,y

✏
j,y

y

(x
i

) ·
y

(x
j

)

�

 mr
2,1

p

log(c).

Since, max

y

P

m

i=1

k
y

(x
i

)k2

2

 mr2

2,1, we obtain that the following result holds:

bRG

S

(H
2,1

) 
p

2⇤r
2,1(log(c))1/4

p
m

,

and applying Theorem 1 completes the proof.

A.8 VRM structured prediction learning bounds

Here, we give the proof of our structured prediction learning guarantees in the setting of Voted Risk

Minimization. We will use the following lemma.

Lemma 13. The function �⇤ is sub-additive: �⇤
(x + y)  �

⇤
(x) + �

⇤
(y), for all x, y 2 R.

Proof. By the sub-additivity of the maximum function, for any x, y 2 R, the following upper bound

holds for �

⇤
(x + y):

�

⇤
(x + y) = min(M, max(0, x + y))  min(M, max(0, x) + max(0, y))

 min(M, max(0, x)) + min(M, max(0, y))

= �

⇤
(x) + �

⇤
(y),

which completes the proof.

For the following proof, for any ⌧ � 0, the margin losses Radd

⇢,⌧

(h) and Rmult

⇢,⌧

(h) are defined as the

population counterparts of the empirical losses define by (7) and (8).

Theorem 3. Fix ⇢ > 0. For any � > 0, with probability at least 1 � � over the draw of a sample S
of size m, each of the following inequalities holds for all f 2 F:

R(f) � bRadd
S,⇢,1

(f)  4

p
2

⇢

T

X

t=1

↵
t

RG

m

(H
k

t

) + C(⇢, M, c, m, p),

R(f) � bRmult
S,⇢,1

(f)  4

p
2M

⇢

T

X

t=1

↵
t

RG

m

(H
k

t

) + C(⇢, M, c, m, p).

19

where

C(⇢, M, c, m, p) =

2M

⇢

r

log p

m
+ 3M

s

l

4

⇢

2 log

�

c

2
⇢

2
m

4 log p

�

m

log p

m
+

log

2

�

2m
.

Proof. The proof makes use of Theorem 1 and the proof techniques of Kuznetsov et al. [2014][Theo-

rem 1] but requires a finer analysis both because of the general loss functions used here and because

of the more complex structure of the hypothesis set.

For a fixed h = (h
1

, . . . , h
T

), any ↵ in the probability simplex � defines a distribution over

{h
1

, . . . , h
T

}. Sampling from {h
1

, . . . , h
T

} according to ↵ and averaging leads to functions g of

the form g =

1

n

P

T

i=1

n
t

h
t

for some n = (n
1

, . . . , n
T

) 2 NT

, with

P

T

t=1

n
t

= n, and h
t

2 H
k

t

.

For any N = (N
1

, . . . , N
p

) with |N| = n, we consider the family of functions

GF,N =

⇢

1

n

p

X

k=1

N

k

X

j=1

h
k,j

| 8(k, j) 2 [p] ⇥ [N
k

], h
k,j

2 H
k

�

,

and the union of all such families GF,n

=

S

|N|=n

GF,N. Fix ⇢ > 0. For a fixed N, the empirical

factor graph Rademacher complexity of GF,N can be bounded as follows for any m � 1:

bRG

S

(GF,N)  1

n

p

X

k=1

N
k

bRG

S

(H
k

),

which also implies the result for the true factor graph Rademacher complexities.

Thus, by Theorem 1, the following learning bound holds: for any � > 0, with probability at least

1 � �, for all g 2 GF,N,

Radd

⇢,

1
2
(g) � bRadd

S,⇢,

1
2
(g)  1

n

4

p
2

⇢

p

X

k=1

N
k

RG

m

(H
k

) + M

s

log

1

�

2m
.

Since there are at most pn

possible p-tuples N with |N| = n,

3

by the union bound, for any � > 0,

with probability at least 1 � �, for all g 2 GF,n

, we can write

Radd

⇢,

1
2
(g) � bRadd

S,⇢,

1
2
(g)  1

n

4

p
2

⇢

p

X

k=1

N
k

RG

m

(H
k

) + M

s

log

p

n

�

2m
.

Thus, with probability at least 1� �, for all functions g =

1

n

P

T

i=1

n
t

h
t

with h
t

2 H
k

t

, the following

inequality holds

Radd

⇢,

1
2
(g) � bRadd

S,⇢,

1
2
(g)  1

n

4

p
2

⇢

p

X

k=1

X

t:k

t

=k

n
t

RG

m

(H
k

t

) + M

s

log

p

n

�

2m
.

Taking the expectation with respect to ↵ and using E↵[n
t

/n] = ↵
t

, we obtain that for any � > 0,

with probability at least 1 � �, for all g, we can write

E
↵
[Radd

⇢,

1
2
(g) � bRadd

S,⇢,

1
2
(g)]  4

p
2

⇢

T

X

t=1

↵
t

RG

m

(H
k

t

) + M

s

log

p

n

�

2m
.

Fix n � 1. Then, for any �
n

> 0, with probability at least 1 � �
n

,

E
↵
[Radd

⇢,

1
2
(g) � bRadd

S,⇢,

1
2
(g)]  4

p
2

⇢

T

X

t=1

↵
t

RG

m

(H
k

t

) + M

s

log

p

n

�

n

2m
.

3

The number S(p, n) of p-tuples N with |N| = n is known to be precisely

�
p+n�1
p�1

�
.

20

Choose �
n

=

�

2p

n�1 for some � > 0, then for p � 2,

P

n�1

�
n

=

�

2(1�1/p)

 �. Thus, for any � > 0

and any n � 1, with probability at least 1 � �, the following holds for all g:

E
↵
[Radd

⇢,

1
2
(g) � bRadd

S,⇢,

1
2
(g)]  4

p
2

⇢

T

X

t=1

↵
t

RG

m

(H
k

t

) + M

s

log

2p

2n�1

�

2m
. (13)

Now, for any f =

P

T

t=1

↵
t

h
t

2 F and any g =

1

n

P

T

i=1

n
t

h
t

, using (4), we can upper bound R(f),

the generalization error of f , as follows:

R(f) = E
h

L(f(x), y)1

⇢

f

(x,y)0

i

(14)

 E
h

L(f(x), y)1

⇢

f

(x,y)�(g(x,y)�g(x,y

f

))<�⇢/2

i

+ E
h

L(f(x), y)1

g(x,y)�g(x,y

f

)⇢/2

i

 M Pr

h

⇢
f

(x, y) � (g(x, y) � g(x, y
f

)) < �⇢/2

i

+ E
h

L(f(x), y)1

g(x,y)�g(x,y

f

)⇢/2

i

,

where for any function ' : X ⇥ Y ! [0, 1], we define y
'

as follows: y
'

= argmax

y

0 6=y

'(x, y).

Using the same arguments as in the proof of Lemma 4, one can show that

E
h

L(f(x), y))1

g(x,y)�g(x,y

f

)<⇢/2

i

 Radd

⇢,

1
2
(g).

We now give a lower-bound on

bRadd

S,⇢,1

(f) in terms of Radd

S,⇢,

1
2
(g). To do so, we start with the expression

of

bRadd

S,⇢,

1
2
(g):

bRadd

S,⇢,

1
2
(g) = E

(x,y)⇠S

h

�

⇤�
max

y

0 6=y

L(y0, y) +

1

2

� 1

⇢

[g(x, y)�g(x, y0
)]

�

i

By the sub-additivity of max, we can write

max

y

0 6=y

L(y0, y) +

1

2

� 1

⇢

[g(x, y)�g(x, y0
)]

 max

y

0 6=y

(

L(y, y0
) + 1 � f(x, y) � f(x, y0

)

⇢

)

+ max

y

0 6=y

(

� 1

2

+

f(x, y) � f(x, y0
)

⇢
� g(x, y) � g(x, y0

)

⇢

)

= X + Y,

where X and Y are defined by

X = max

y

0 6=y

L(y, y0
) + 1 � f(x, y) � f(x, y0

)

⇢

!

,

Y = �1

2

+ max

y

0 6=y

f(x, y) � f(x, y0
)

⇢
� g(x, y) � g(x, y0

)

⇢

!

.

In view of that, since �

⇤
is non-decreasing and sub-additive (Lemma 13), we can write

bRadd

S,⇢,

1
2
(g)  E

(x,y)⇠S

[�

⇤
(X + Y)] (15)

 E
(x,y)⇠S

[�

⇤
(X) + �

⇤
(Y)] = E

(x,y)⇠S

[�

⇤
(X)] + E

(x,y)⇠S

[�

⇤
(Y)]

=

bRadd

S,⇢,1

(f) + E
(x,y)⇠S

[�

⇤
(Y)]

 bRadd

S,⇢,1

(f) + M E
(x,y)⇠S

[1

Y >0

]

=

bRadd

S,⇢,1

(f) + M Pr

(x,y)⇠S

h

max

y

0 6=y

�

f(x, y) � g(x, y) + (g(x, y0
) � f(x, y0

))

> ⇢/2

i

.

21

Combining (14) and (15) shows that R(f) � bRadd

S,⇢,1

(f) is bounded by

Radd

⇢,

1
2
(g) � bRadd

S,⇢,

1
2
(g) + M Pr

h

⇢
f

(x, y) � (g(x, y) � g(x, y
f

)) < �⇢/2

i

+ M Pr

(x,y)⇠S

h

max

y

0 6=y

{f(x, y) � g(x, y) + (g(x, y0
) � f(x, y0

))} > ⇢/2

i

.

Taking the expectation with respect to ↵ shows that R(f) � bRadd

S,⇢,1

(f) is bounded by

E
↵

h

Radd

⇢,

1
2
(g) � bRadd

S,⇢,

1
2
(g)

i

+ M E
(x,y)⇠D,↵

h

1

⇢

f

(x,y)�(g(x,y)�g(x,y

f

))<�⇢/2

i

+ M E
(x,y)⇠S,↵

h

1

max

y

0 6=y

{f(x,y)�g(x,y)+(g(x,y

0
)�f(x,y

0
))}>⇢/2

i

. (16)

By Hoeffding’s bound, the following holds:

E
↵

h

1

⇢

f

(x,y)�(g(x,y)�g(x,y

f

))<�⇢/2

i

= Pr

↵

h

(f(x, y) � f(x, y
f

)) � (g(x, y) � g(x, y
f

)) < �⇢/2

i

 e�n⇢

2
/8.

Similarly, using the union bound and Hoeffding’s bound, the third expectation term appearing in (16)

can be bounded as follows:

E
↵

h

1

max

y

0 6=y

{f(x,y)�g(x,y)+(g(x,y

0
)�f(x,y

0
))}>⇢/2

i

= Pr

↵

h

max

y

0 6=y

{f(x, y) � g(x, y) + (g(x, y0
) � f(x, y0

))} > ⇢/2

i


X

y

0 6=y

Pr

↵

h

f(x, y) � g(x, y) + (g(x, y0
) � f(x, y0

)) > ⇢/2

i

 (c � 1)e�n⇢

2
/8.

Thus, for any fixed f , we can write

R(f) � bRadd

S,⇢,1

(f)  cMe�n⇢

2
/8

+ E
↵

h

Radd

⇢,

1
2
(g) � bRadd

S,⇢,

1
2
(g)

i

.

Therefore, the following quantity upper bounds sup

f

R(f) � bRadd

S,⇢,1

(f):

cMe�n⇢

2
/8

+ sup

g

E
↵

h

Radd

⇢,

1
2
(g) � bRadd

S,⇢,

1
2
(g)

i

,

and, in view of (13), for any � > 0 and any n � 1, with probability at least 1 � �, the following holds

for all f :

R(f) � bRadd

S,⇢,1

(f)  cMe�n⇢

2
/8

+

4

p
2

⇢

T

X

t=1

↵
t

RG

m

(H
k

t

) + M

s

log

2p

2n�1

�

2m
.

Choosing n =

l

4

⇢

2 log

�

c

2
⇢

2
m

4 log p

�

m

yields the following inequality:

4

R(f) � bRadd

S,⇢,1

(f)  4

p
2

⇢

T

X

t=1

↵
t

RG

m

(H
k

t

) +

2M

⇢

r

log p

m

+ 3M

s

l

4

⇢

2 log

�

c

2
⇢

2
m

4 log p

�

m

log p

m
+

log

2

�

2m
,

and concludes the proof.

4

To select n we consider f(n) = ce

�nu

+

p
nv, where u = ⇢

2
/8 and v = log p/m. Taking the derivative

of f , setting it to zero and solving for n, we obtain n = � 1
2uW�1(� v

2c2u
) where W�1 is the second branch of

the Lambert function (inverse of x 7! xe

x

). Using the bound � log x  �W�1(�x)  2 log x leads to the

following choice of n: n =

⌃
� 1

2u log(

v

2c2u
)

⌥
.

22

Table 1: Description of datasets.

Dataset Full name Sentences Tokens Unique tokens Labels

Basque Basque UD Treebank 8993 121443 26679 16

Chinese Chinese Treebank 6.0 28295 782901 47570 37

Dutch UD Dutch Treebank 13735 200654 29123 16

English UD English Web Treebank 16622 254830 23016 17

Finnish Finnish UD Treebank 13581 181018 53104 12

Finnish-FTB UD_Finnish-FTB 18792 160127 46756 15

Hindi UD Hindi Treebank 16647 351704 19232 16

Tamil UD Tamil Treebank 600 9581 3583 14

Turkish METU-Sabanci Turkish Treebank 5635 67803 19125 32

Twitter Tweebank 929 12318 4479 25

By applying Theorem 7 instead of Theorem 1 and keeping track of the slightly increased exponential

concentration terms in the proof above, we arrive at the following analogue of Theorem 3 in terms of

empirical complexities:

Theorem 14. Fix ⇢ > 0. For any � > 0, with probability at least 1 � � over the draw of a sample S
of size m, each of the following inequalities holds for all f 2 F:

R(f) � bRadd
S,⇢,1

(f)  4

p
2

⇢

T

X

t=1

↵
t

ˆRG

m

(H
k

t

) + C(⇢, M, c, m, p),

R(f) � bRmult
S,⇢,1

(f)  4

p
2M

⇢

T

X

t=1

↵
t

ˆRG

m

(H
k

t

) + C(⇢, M, c, m, p).

where

C(⇢, M, c, m, p) =

2M

⇢

r

log p

m
+ 9M

s

l

4

⇢

2 log

�

c

2
⇢

2
m

4 log p

�

m

log p

m
+

log

2

�

2m
.

A.9 General upper bound on the loss based on convex surrogates

Here, we present the proof of a general upper bound on a loss function in terms of convex surrogates.

Lemma 4. For any u 2 R
+

, let �
u

: R ! R be an upper bound on v 7! u1

v0

. Then, the following
upper bound holds for any h 2 H and (x, y) 2 X ⇥ Y ,

L(h(x), y)  max

y

0 6=y

�L(y0
,y)

(h(x, y) � h(x, y0
)). (17)

Proof. If h(x) = y, then L(h(x), y) = 0 and the result follows. Otherwise, h(x) 6= y and the

following bound holds:

L(h(x), y) = L(h(x), y)1

⇢

h

(x,y)0

 �L(h(x),y)

(⇢
h

(x, y))

= �L(h(x),y)

(h(x, y) � max

y

0 6=y

h(x, y0
))

= �L(h(x),y)

(h(x, y) � h(x, h(x)))

 max

y

0 6=y

�L(y0
,y)

(h(x, y) � h(x, y0
)),

which concludes the proof.

B Experiments

B.1 Datasets

This section reports the results of preliminary experiments with the VCRF algorithm. The experiments

in this section are meant to serve as a proof of concept of the benefits of VRM-type regularization as

23

suggested by the theory developed in this paper. We leave an extensive experimental study of other

aspects of our theory, including general loss functions, convex surrogates and p-norms, to future

work.

For our experiments, we chose the part-of-speech task (POS) that consists of labeling each word

of a sentence with its correct part-of-speech tag. We used 10 POS datasets: Basque, Chinese,

Dutch, English, Finnish, Finnish-FTB, Hindi, Tamil, Turkish and Twitter. The detailed

description of these datasets is in Appendix B.1. Our VCRF algorithm can be applied with a variety

of different families of feature functions H
k

mapping X ⇥ Y to R. Details concerning features and

complexity penalties r
k

s are provided in Appendix B.2, while an outline of our hyperparameter

selection and cross-validation procedure is given in Appendix B.3.

The average error and the standard deviation of the errors are reported in Table 2 for each data set.

Our results show that VCRF provides a statistically significant improvement over L
1

-CRF on every

dataset, with the exception of English and Dutch. One-sided paired t-test at 5% level was used to

assess the significance of the results. It should be noted that for all of the significant results, VCRF

outperformed L
1

-CRF on every fold. Furthermore, our results indicate that VCRF tends to produce

models that are sparser than those of L
1

-CRF. This is highlighted in Table 3 of Appendix B.2. As can

be seen, VCRF tends to produce models that are much more sparse due to its heavy penalization on

the large number of higher-order features. In a separate set of experiments, we have also tested the

robustness of our algorithm to erroneous annotations and noise. The details and the results of these

experiments are given in Appendix B.4.

Further details on the datasets and the specific features as well as more experimental results are

provided below.

Table 1 provides some statistics for each of the datasets that we use. These datasets span a variety of

sizes, in terms of sentence count, token count, and unique token count. Most are annotated under

the Universal Dependencies (UD) annotation system, with the exception of the Chinese (Palmer

et al. [2007]), Turkish (Oflazer et al. [2003], Atalay et al. [2003]), and Twitter (Gimpel et al. [2011],

Owoputi et al. [2013]) datasets.

B.2 Features and complexities

The standard features that are used in POS tagging are usually binary indicators that signal the

occurrence of certain words, tags or other linguistic constructs such as suffixes, prefixes, punctuation,

capitalization or numbers in a window around a given position in the sequence. In our experiments,

we use the union of a broad family of products of such indicator functions. Let V denote the input

vocabulary over alphabet ⌃. For x 2 V and t � 0, let suff(x, t) be the suffix of length t for the word

x and pref(x, t) the prefix. Then for k
1

, k
2

, k
3

� 0, we can define the following three families of

base features:

Hw

k1
(s) =

n

x 7! 1

x

s+r

s�t+1=x

0 : t, r 2 N, r + t = k
1

, x0 2 V k1

o

,

H tag

k2
(s) = {y 7! 1

y

s

s�k2+1=y

0
: y0 2 �k2},

Hsp

k3
(s) =

n

x 7! 1

suff(x

s

,t)=S

1

pref(x

s

,r)=P

: t, r 2 N, t + r = k
3

, S 2 ⌃t, P 2 ⌃r

o

.

We can then define a family of features H
k1,k2,k3 that consists of functions of the form

 (x, y) =

l

X

s=1

 (x, y, s),

where (x, y, s) = h
1

(x)h
2

(y)h
3

(x), for some h
1

2 Hw

k1
(s), h

2

2 Htag

k2
(s), h

3

2 Hsp

k3
(s).

As an example, consider the following sentence:

DET NN VBD RB JJ

The cat was surprisingly agile

24

The cat was surprisingly agile

NN VBD RB JJDET

X
3

k
2
= 2

k
1
= 3

suff(x
3
, 2)

y
3

Figure 2: Example of features for a POS task.

Table 2: Experimental results for both VCRF and CRF. VCRF refers to the conditional random field

objective with both VRM-style regularization and L
1

regularization while CRF refers to the objective

with only L
1

regularization. Boldfaced results are statistically significant at a 5% confidence level.

VCRF error (%) CRF error(%)
Dataset Token Sentence Token Sentence

Basque 7.26 ± 0.13 57.67 ± 0.82 7.68 ± 0.20 59.78 ± 1.39

Chinese 7.38 ± 0.15 67.73 ± 0.46 7.67 ± 0.12 68.88 ± 0.49

Dutch 5.97 ± 0.08 49.27 ± 0.71 6.01 ± 0.92 49.48 ± 1.02

English 5.51 ± 0.04 44.40 ± 1.30 5.51 ± 0.06 44.32 ± 1.31

Finnish 7.48 ± 0.05 55.96 ± 0.64 7.86 ± 0.13 57.17 ± 1.36

Finnish-FTB 9.79 ± 0.22 51.23 ± 1.21 10.55 ± 0.22 52.98 ± 0.75

Hindi 4.84 ± 0.10 51.69 ± 1.07 4.93 ± 0.08 53.18 ± 0.75

Tamil 19.82 ± 0.69 89.83 ± 2.13 22.50 ± 1.57 92.00 ± 1.54

Turkish 11.28 ± 0.40 59.63 ± 1.55 11.69 ± 0.37 61.15 ± 1.01

Twitter 17.98 ± 1.25 75.57 ± 1.25 19.81 ± 1.09 76.96 ± 1.37

Then, at position s = 3, the following features h
1

2 Hw

3

(3), h
2

2 Htag

2

(3), h
3

2 Hsp

1

(3) would

activate:

h
1

(x) = 1

x2=‘was’, x3=‘surprisingly’, x4=‘agile’

(x)

h
2

(y) = 1

y2=’VBD’, y3=‘RB’

(y)

h
3

(x) = 1

suff(x3,2)=‘ly’

(x).

See Figure 2 for an illustration.

Now, recall that the VCRF algorithm requires knowledge of complexities r(H
k1,k2,k3). By definition

of the hypothesis set and r
k

s

r(H
k1,k2,k3) 

r

2(k
1

log |V | + k
2

log |�| + k
3

log |⌃|
m

, (18)

which is precisely the complexity penalty used in our experiments.

The impact of this added penalization can be seen in Table 3, where it is seen that the number of

non-zero features for VCRF can be dramatically smaller than the number for L
1

-regularized CRF.

B.3 Hyperparameter tuning and cross-validation

Recall that the VCRF algorithm admits two hyperparameters � and �. In our experiments, we

optimized over �,� 2 {1, 0.5, 10

�1, . . . , 10

�5, 0}. We compared VCRF against L
1

-regularized

CRF, which is the special case of VCRF with � = 0. For gradient computation, we used the

procedure in Section D.2.1, which is agnostic to the choice of the underlying loss function. While

our algorithms can be used with very general families of loss functions this choice allows an easy

direct comparison with the CRF algorithm. We ran each algorithm for 50 full passes over the entire

training set or until convergence.

In each of the experiments, we used 5-fold cross-validation for model selection and performance

evaluation. Each dataset was randomly partitioned into 5 folds, and each algorithm was run 5 times,

with a different assignment of folds to the training set, validation set and test set for each run. For

each run i 2 {0, . . . , 4}, fold i was used for validation, fold i + 1(mod 5) was used for testing, and

the remaining folds were used for training. In each run, we selected the parameters that had the lowest

token error on the validation set and then measured the token and sentence error of those parameters

on the test set. The average error and the standard deviation of the errors are reported in Table 2 for

each data set.

25

Table 3: Average number of features for VCRF and L
1

-CRF.

Dataset VCRF CRF Ratio

Basque 7028 94712653 0.00007

Chinese 219736 552918817 0.00040

Dutch 2646231 2646231 1.00000

English 4378177 357011992 0.01226

Finnish 32316 89333413 0.00036

Finnish-FTB 53337 5735210 0.00930

Hindi 108800 448714379 0.00024

Tamil 1583 668545 0.00237

Turkish 498796 3314941 0.15047

Twitter 18371 26660216 0.000689

Table 4: Experimental results of both VCRF and CRF with 20% random noise added to the training

set. Labels of tokens are flipped uniformly at random with 20% probability. Boldfaced results are

statistically significant at a 5% confidence level.

VCRF error (%) CRF error(%)
Dataset Token Sentence Token Sentence

Basque 9.13 ± 0.18 67.43 ± 0.93 9.42 ± 0.31 68.61 ± 1.08

Chinese 96.43 ± 0.33 100.00 ± 0.01 96.81 ± 0.43 100.00 ± 0.01

Dutch 8.16 ± 0.52 62.15 ± 1.77 8.57 ± 0.30 63.55 ± 0.87

English 8.79 ± 0.23 61.27 ± 1.21 9.20 ± 0.11 63.60 ± 1.18

Finnish 9.38 ± 0.27 64.96 ± 0.89 9.62 ± 0.18 65.91 ± 0.93

Finnish-FTB 11.39 ± 0.29 72.56 ± 1.30 11.76 ± 0.25 73.63 ± 1.19

Hindi 6.63 ± 0.51 63.84 ± 2.86 7.85 ± 0.33 71.93 ± 1.20

Tamil 20.77 ± 0.70 93.00 ± 1.35 21.36 ± 0.86 93.50 ± 1.78

Turkish 14.28 ± 0.46 69.72 ± 1.51 14.31 ± 0.53 69.62 ± 2.04

Twitter 90.92 ± 1.67 100.00 ± 0.00 92.27 ± 0.71 100.00 ± 0.00

B.4 More experiments

In this section, we present our results for a POS tagging task when noise is artificially injected into

the labels. Specifically, for tokens corresponding to features that commonly appear in the dataset (at

least five times in our experiments), we flip their associated POS label to some other arbitrary label

with 20% probability.

The results of these experiments are given in Table 4. They demonstrate that VCRF outperforms

L
1

-CRF in the majority of cases. Moreover, these differences can be magnified from the original

scenario, as can be seen on the English and Twitter datasets.

C Voted Structured Boosting (VStructBoost)

In this section, we consider algorithms based on the StructBoost surrogate loss, where we choose

�

u

(v) = ue�v

. Let � (x, y, y0
) = (x, y)� (x, y0

). This then leads to the following optimization

problem:

min

w

1

m

m

X

i=1

max

y 6=y

i

L(y, y
i

)e�w·� (x

i

,y

i

,y)

+

p

X

k=1

(�r
k

+ �)kw
k

k
1

. (19)

One disadvantage of this formulation is that the first term of the objective is not differentiable. Upper

bounding the maximum by a sum leads to the following optimization problem:

min

w

1

m

m

X

i=1

X

y 6=y

i

L(y, y
i

)e�w·� (x

i

,y

i

,y)

+

p

X

k=1

(�r
k

+ �)kw
k

k
1

. (20)

We refer to the learning algorithm based on the optimization problem (20) as VStructBoost. To

the best of our knowledge, the formulations (19) and (20) are new, even with the standard L
1

- or

L
2

-regularization.

D Optimization solutions

Here, we show how the optimization problems in (10) and (20) can be solved efficiently when the

feature vectors admit a particular factor graph decomposition that we refer to as Markov property.

26

D.1 Markovian features

We will consider in what follows the common case where Y is a set of sequences of length l over

a finite alphabet � of size r. Other structured problems can be treated in similar ways. We will

denote by " the empty string and for any sequence y = (y
1

, . . . , y
l

) 2 Y , we will denote by

ys

0

s

= (y
s

, . . . , y
s

0
) the substring of y starting at index s and ending at s0

. For convenience, for s  0,

we define y
s

by y
s

= ".

One common assumption that we shall adopt here is that the feature vector admits a Markovian
property of order q. By this, we mean that it can be decomposed as follows for any (x, y) 2 X ⇥ Y :

 (x, y) =

l

X

s=1

 (x, ys

s�q+1

, s). (21)

for some position-dependent feature vector function defined over X ⇥�q ⇥ [l]. This also suggests

a natural decomposition of the family of feature vectors = (

1

, . . . ,
p

) for the application of

VRM principle where

k

is a Markovian feature vector of order k. Thus, F
k

then consists of the

family of Markovian feature functions of order k. We note that we can write =

P

p

k=1

˜

k

with

˜

k

= (0, . . . ,
k

, . . . , 0). In the following, abusing the notation, we will simply write

k

instead

of

˜

k

. Thus, for any x 2 X and y 2 Y ,

5

 (x, y) =

p

X

k=1

k

(x, y). (22)

For any k 2 [1, p], let
k

denote the position-dependent feature vector function corresponding to

k

.

Also, for any x 2 X and y 2 �l

, define

e by

e (x, ys

s�p+1

, s) =

P

p

k=1

k

(x, ys

s�k+1

, s). Observe

then that we can write

 (x, y) =

p

X

k=1

k

(x, y) =

p

X

k=1

l

X

s=1

k

(x, ys

s�k+1

, s)

=

l

X

s=1

p

X

k=1

k

(x, ys

s�k+1

, s)

=

l

X

s=1

e (x
i

, ys

s�p+1

, s). (23)

In Sections D.2 and D.3, we describe algorithms for efficiently computing the gradient by leveraging

the underlying graph structure of the problem.

D.2 Efficient gradient computation for VCRF

In this section, we show how Gradient Descent (GD) and Stochastic Gradient Descent (SGD) can

be used to solve the optimization problem of VCRF. To do so, we will show how the subgradient of

the contribution to the objective function of a given point x
i

can be computed efficiently. Since the

computation of the subgradient of the regularization term presents no difficulty, it suffices to show

that the gradient of F
i

, the contribution of point x
i

to the empirical loss term for an arbitrary i 2 [m],

can be computed efficiently. In the special case of the Hamming loss or when loss is omitted from

the objective altogether, this coincides with the standard CRF training procedure. We extend this to

more general families of loss function.

Fix i 2 [m]. For the VCRF objective, F
i

can be rewritten as follows:

F
i

(w) =

1

m
log

✓

X

y2Y
eL(y,y

i

)�w·� (x

i

,y

i

,y)

◆

=

1

m
log

✓

X

y2Y
eL(y,y

i

)+w· (x

i

,y)

◆

�w · (x
i

, y
i

)

m
.

The following lemma gives the expression of the gradient of F
i

and helps identify the key computa-

tionally challenging terms qw.

5

Our results can be straightforwardly generalized to more complex decompositions of the form (x, y) =P
Q

q=1

P
p

k=1 q,k

(x, y).

27

Lemma 15. The gradient of F
i

at any w can be expressed as follows:

rF
i

(w) =

1

m

l

X

s=1

X

z2�p

"

X

y : y

s

s�p+1=z

qw(y)

#

e (x
i

, z, s) � (x
i

, y
i

)

m
,

where, for all y 2 Y ,

qw(y) =

eL(y,y

i

)+w· (x

i

,y)

Zw
,

Zw =

X

y2Y
eL(y,y

i

)+w· (x

i

,y).

Proof. In view of the expression of F
i

given above, the gradient of F
i

at any w is given by

rF
i

(w) =

1

m

X

y2Y

eL(y,y

i

)+w· (x

i

,y)

P

ỹ2Y eL(ỹ,y

i

)+w· (x

i

,ỹ)

 (x
i

, y) � (x
i

, y
i

)

m

=

1

m
E

y⇠qw
[(x

i

, y)] � (x
i

, y
i

)

m
.

By (23), we can write

E
y⇠qw

[(x
i

, y)] =

X

y2�l

qw(y)

l

X

s=1

e (x
i

, ys

s�p+1

, s) =

l

X

s=1

X

z2�p

"

X

y : y

s

s�p+1=z

qw(y)

#

e (x
i

, z, s),

which completes the proof.

The lemma implies that the key computation in the gradient is

Qw(z, s) =

X

y : y

s

s�p+1=z

qw(y) =

X

y : y

s

s�p+1=z

eL(y,y

i

)

Q

l

t=1

ew·e (x

i

,y

t

t�p+1,t)

Zw
, (24)

for all s 2 [l] and z 2 �p

. The sum defining these terms is over a number of sequences y that is

exponential in |�|. However, we will show in the following sections how to efficiently compute

Qw(z, s) for any s 2 [l] and z 2 �p

in several important cases: (0) in the absence of a loss; (1) when

L is Markovian; (2) when L is a rational loss; and (3) when L is the edit-distance or any other tropical
loss.

D.2.1 Gradient computation in the absence of a loss

In that case, it suffices to show how to compute Z 0
w =

P

y2Y ew· (x

i

,y)

and the following term,

ignoring the loss factors:

Q0
w(z, s) =

X

y : y

s

s�p+1=z

l

Y

t=1

ew·e (x

i

,y

t

t�p+1,t), (25)

for all s 2 [l] and z 2 �p

. We will show that Q0
w(z, s) coincides with the flow through an edge

of a weighted graph we will define, which leads to an efficient computation. We will use for any

y 2 �l

, the convention y
s

= " if s  0. Now, let A be the weighted finite automaton (WFA) with

the following set of states:

QA =

n

(yt

t�p+1

, t) : y 2 �l, t = 0, . . . , l
o

,

with IA = (", 0) its single initial state, FA = {(yl

l�p+1

, l) : y 2 �l} its set of final states, and a

transition from state (yt�1

t�p+1

, t � 1) to state (yt�1

t�p+2

b, t) with label b and weight !(yt�1

t�p+1

b, t) =

ew·e (x

i

,y

t�1
t�p+1b,t)

, that is the following set of transitions:

EA =

n⇣

(yt�1

t�p+1

, t � 1), b,!(yt�1

t�p+1

b, t), (yt�1

t�p+2

b, t)
⌘

: y 2 �l, b 2 �, t 2 [l]
o

.

28

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

· · ·

· · ·

· · ·

· · ·
· · ·

.

.

.

.

.

.

(y
1

, 1)

(y
r

, 1)

(✏, 0) (y
t�1

, t � 1)

(y
t

, t)

↵((y
t�1

, t � 1))

�((y
t

, t))

(y
t�1

, 1)

y
t

/!(t, y
t�1

y
t

)

Figure 3: Illustration of WFA A for p = 2.

Figure 3 illustrates this construction in the case p = 2. The WFA A is deterministic by construction.

The weight of a path in A is obtained by multiplying the weights of its constituent transitions. In view

of that, Q0
w(z, s) can be seen as the sum of the weights of all paths in A going through the transition

from state (z

p�1

1

, s � 1) to (z

p

2

, s) with label z
p

.

For any state (yt

t�p+1

, t) 2 QA, let ↵((yt

t�p+1

, t)) denote the sum of the weights of all paths in A

from IA to (yt

t�p+1

, t) and �((yt

t�p+1

, t)) the sum of the weights of all paths from (yt

t�p+1

, t) to a

final state. Then, Q0
w(z, s) is given by

Q0
w(z, s) = ↵

�

(z

p�1

1

, s � 1)

�⇥ !(z, s) ⇥ �
�

(z

p

2

, s)
�

.

Note also that Z 0
w is simply the sum of the weights of all paths in A, that is Z 0

w = �((", 0)).

Since A is acyclic, ↵ and � can be computed for all states in linear time in the size of A using a

single-source shortest-distance algorithm over the (+, ⇥) semiring or the so-called forward-backward

algorithm. Thus, since A admits O(l|�|p) transitions, we can compute all of the quantities Q0
w(z, s),

s 2 [l] and z 2 �p

and Z 0
w, in time O(l|�|p).

D.2.2 Gradient computation with a Markovian loss

We will say that a loss function L is Markovian if it admits a decomposition similar to the features,

that is for all y, y0 2 Y ,

L(y, y0
) =

l

X

t=1

L
t

(yt

t�p+1

, y0t
t�p+1

).

In that case, we can absorb the losses in the transition weights and define new transition weights !0
as follows:

!0
(t, yt�1

t�p+1

b) = eL

t

(y

t�1
t�p+1 b,(y

i

)

t�1
t�p+1 b)!(yt�1

t�p+1

b, t).

Using the resulting WFA A0
and precisely the same techniques as those described in the previous

section, we can compute all Qw(z, s) in time O(l|�|p). In particular, we can compute efficiently

these quantities in the case of the Hamming loss which is a Markovian loss for p = 1.

D.3 Efficient gradient computation for VStructBoost

In this section, we briefly describe the gradient computation for VStructBoost, which follows along

similar lines as the discussion for VCRF.

Fix i 2 [m] and let F
i

denote the contribution of point x
i

to the empirical loss in VStructBoost.

Using the equality L(y
i

, y
i

) = 0, F
i

can be rewritten as

F
i

(w) =

1

m

X

y 6=y

i

L(y, y
i

)e�w·� (x

i

,y

i

,y)

=

1

m
e�w· (x

i

,y

i

)

X

y2�l

L(y, y
i

)ew· (x

i

,y).

The gradient of F
i

can therefore be expressed as follows:

rF
i

(w) =

1

m
e�w· (x

i

,y

i

)

X

y2�l

L(y, y
i

)ew· (x

i

,y)

 (x
i

, y) (26)

� 1

m
e�w· (x

i

,y

i

)

 (x
i

, y
i

)

X

y2�l

L(y, y
i

)ew· (x

i

,y).

29

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

· · ·

· · ·

· · ·

· · ·
· · ·

.

.

.

.

.

.

(y
1

, 1)

(y
r

, 1)

(y
t�1

, t � 1)

(y
t

, t)

(y
t�1

, 1)(", 0)

y
t

/w· e (x, y
t�1

y
t

, t)

y
1

/w· e (x, y
1

, 1)

y
r

/w· e (x, y
r

, 1)

Figure 4: Illustration of the WFA A0
for p = 2.

Efficient computation of these terms is not straightforward, since the sums run over exponentially

many sequences y. However, by leveraging the Markovian property of the features, we can reduce

the calculation to flow computations over a weighted directed graph, in a manner analogous to what

we demonstrated for VCRF.

D.4 Inference

In this section, we describe an efficient algorithm for inference when using Markovian features. The

algorithm consists of a standard single-source shortest-path algorithm applied to a WFA A0
differs

from the WFA A only by the weight of each transition, defined as follows:

EA0
=

n⇣

(ȳt�1

t�p+1

, t � 1), b,w · e (x, yt�1

t�p+1

b, t), (ȳt�1

t�p+2

b, t)
⌘

: y 2 �l, b 2 �, t 2 [l]
o

.

Furthermore, here, the weight of a path is obtained by adding the weights of its constituent transitions.

Figure 4 shows A0
in the special case of p = 2. By construction, the weight of the unique accepting

path in A0
labeled with y 2 �l

is

P

l

t=1

w · e (x, yt�1

t�p+1

b, t) = w · (x, y).

Thus, the label of the single-source shortest path, argmin

y2�l

w · (x, y), is the desired predicted

label. Since A0
is acyclic, the running-time complexity of the algorithm is linear in the size of A0

,

that is O(l|�|l).

30

Appendix References
N. B. Atalay, K. Oflazer, and B. Say. The annotation process in the turkish treebank. In LINC, 2003.

K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. Mills, J. Eisenstein, M. Heilman, D. Yogatama, J. Flanigan,

and N. A. Smith. Part-of-speech tagging for twitter: annotation, features, and experiments. In ACL, 2011.

V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of

combined classifiers. Annals of Statistics, 30, 2002.

V. Kuznetsov, M. Mohri, and U. Syed. Multi-class deep boosting. In Proceedings of NIPS, 2014.

M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes. Springer, 1991.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. The MIT Press, 2012.

K. Oflazer, B. Say, D. Z. Hakkani-Tür, and G. Tür. Building a turkish treebank. In Text, Speech and Language
Technology, volume 20, pages 261–277. Springer Netherlands, 2003.

O. Owoputi, B. O’Connor, C. Dyer, K. Gimpel, N. Schneider, and N. A. Smith. Improved part-of-speech tagging

for online conversational text with word clusters. In Proceedings of NAACL-HLT, pages 380–390, 2013.

M. Palmer, N. Xue, F. Xia, F.-D. Chiou, Z. Jiang, and M. Chang. Chinese treebank 6.0 LDC2007T36. Web
Download, 2007.

31

