
A Appendix to Optimistic Gittins Indices

A.1 Proof of Proposition 3.1

Proof. First, letting �n = 1� 1/n, we show that
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Let H ⇠ Geo(1/n) be an exogenous geometric random variable that is independent of ✓ and not
observed by the agent. As an abbreviation, define µ⇤

= Eq [µ⇤
(✓)]. We then have
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Let q,Q be the density and CDF, respectively, of the prior distribution. Now, by Theorem 3, part 1 of
[14], there exists (an efficient) policy ⇡̃, such that as n becomes sufficiently large
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Therefore for some prior-dependent constant Cq, we have Regret (⇡̃, n)  Cq log
2 n. Let �(✓)

denote worst case single period regret under parameter ✓, that is, �(✓) = maxi µ(✓⇤)� µ(✓i). Let
� denote its expectation over ✓, from which we obtain the lower bound,
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where (10) holds by optimality of the Gittins Index. The bound (11) follows from the memoryless
property of the Geometric distribution, from Jensen’s inequality and the fact that function log

2 x is a
concave function on [e,+1). Thus, equation (7) is implied by the bounds (9) and (11).

Now, for any policy ⇡, we define ˜L⇡(m) := mµ⇤ �Pm
t=1 X⇡t,t to be the random m period shortfall

against the expected Bayes’ optimal arm and let gk = 1� 1/2k�1. We break up the time horizon T
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into geometrically growing epochs and bound, conservatively, the Bayes’ risk in each one:
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where (14) follows from equation (7) and (13) holds because regret increases if history is discarded.

A.2 Proof of Lemma 3.2

Proof. Fix � > 0 and an arm i. Let V�(y) be the value of the RHS of (2) with the per-period reward
of �, and define ˆV K

� (y), similarly, for problem (3) (where y is, as before, the state of an arm). Notice
that because rewards are generated according to an unknown parameter ✓i, which needs to be learned,
that if we condition on a fixed ✓i, we have for any stopping time ⌧ that
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where the expectation is also taken over the agent’s prior on ✓i. Simply put, the best performance
in the bandit game can be achieved if the parameter governing expected rewards is known from the
beginning by the agent. Now recall that R(yi,t) is a random variable drawn from the prior on the
arm’s mean reward at time t. We also define the function

r�,K(t, x) =

⇢

� t < K
max(x,�) otherwise
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Let ⌧ be the stopping time at which the agent retires and define ⌧K = ⌧ ^ (K + 1). We then bound
V�(y),

V�(y) = sup

⌧>1
E
"

⌧�1
X

t=1

�t�1Xi,t + �⌧�1 �

1� �

�

�

�

�

�

yi,1 = y

#

= sup

⌧>1
E
"

E
"

⌧�1
X

t=1

�t�1Xi,t + �⌧�1 �

1� �

�

�

�

�

�

✓i

#

�

�

�

�

�

yi,1 = y

#

= sup

⌧>1
E
"

⌧K�1
X

t=1

�t�1Xi,t + E
"

⌧�1
X

t=⌧K

�t�1Xi,t + �⌧�1 �

1� �

�

�

�

�

�

✓i

#

�

�

�

�

�

yi,1 = y

#

 sup

⌧>1
E
"

⌧K�1
X

t=1

�t�1Xi,t + E
"

⌧�1
X

t=⌧K

�t�1µ(✓i) + �⌧�1 �

1� �

�

�

�

�

�

✓i

#

�

�

�

�

�

yi,1 = y

#

(16)

= sup

⌧>1
E
"

⌧K�1
X

t=1

�t�1Xi,t + E


�⌧K�1 r�,K(⌧K , µ(✓i))

1� �

�

�

�

�

✓i

�

�

�

�

�

�

yi,1 = y

#

= sup

⌧>1
E
"

⌧K�1
X

t=1

�t�1Xi,t +
�⌧K�1

1� �
E [E [r�,K(⌧K , µ(✓i)) | ✓i] | F⌧K�1]

#

= sup

⌧>1
E

2

6

4

⌧K�1
X

t=1

�t�1Xi,t +
�⌧K�1

1� �
E [r�,K(⌧K , R(yi,⌧K ))]

| {z }

=R�,K(⌧K ,yi,⌧K
)

�

�

�

�

�

�

�

yi,1 = y

3

7

5

= sup

1<⌧K+1
E
"

⌧
X

t=1

�t�1Xi,t + �⌧�1R�,K(⌧, yi,⌧ )

1� �

�

�

�

�

�

yi,1 = y

#

=

ˆV K
� (y).

The main step in the above is (16) where we bound on the inner conditional expection (in terms of ✓i)
by applying (15). We also used the fact that µ(✓i) | Ft�1 ⇠ R(yi,t) for all t. Finally observe that
both ˆV K

� (y) and V�(y) are increasing in � for any fixed y. Therefore if �1 = (1 � �) ˆV K
�1
(y) and

�2 = (1 � �)V�2(y), then, because V�(y)  ˆV K
� (y) for any �, it must be that �1 � �2. A simple

argument shows this, which we omit.

A.3 Results for the frequentist regret bound proof

A.3.1 Definitions and properties of Binomial distributions

We list notation and facts related to Beta and Binomial distributions, which are used through this
section.
Definition A.1. FB

n,p(.) is the CDF of the Binomial distribution with parameters n and p, and F �
a,b(.)

is the CDF of the Beta distribution with parameters a and b.
Fact A.1. Let a and b be positive integers and y 2 [0, 1],

F �
a,b(y) = 1� FB

a+b�1,y(a� 1)

Proof. Proof is found in [2].

Fact A.2. The median of a Binomial(n, p) distribution is either dnpe or bnpc.

Proof. Proof is found in [11].

Corollary A.1 (Corollary of Fact A.2). Let n be a positive integer and p 2 (0, 1). For any nonnega-
tive integer s < np

Fn,p(s)  1/2

Fact A.3. Let n be a positive integer and p 2 [0, 1]. Then for any k 2 {0, . . . , n},

(1� p)Fn�1,p(k)  Fn,p(k)  FB
n�1,p(k)
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Proof. To prove Fn,p(k)  FB
n�1,p(k), we let X1, . . . , Xn be i.i.d samples from a Bernoulli(p)

distribution. We then have

FB
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n
X
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!

 P
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X
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!

= FB
n�1,p(k)

Now to prove (1� p)Fn�1,p(k)  Fn,p(k), it’s enough to observe that Fn,p(k) = pFn�1,p(k� 1)+

(1� p)Fn�1,p(k).

A.3.2 Ratio of Binomial CDFs

Lemma A.1. Let 0 < q < p < 1. Let n be a positive integer such that e
n
2 d(q,p) � (n+ 1)

4 and let
k be a nonnegative integer such that k < nq. It then follows that
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n
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Proof. From the method of types (see [8]), we have for any r 2 (0, 1) and j < nr

e�nd(j/n,r)

(1 + n)2
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Because k < nq < np, by applying (17) to both the numerator and denominator, we get
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Examining the exponent, we find
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where the bound holds because the expression is decreasing in k, and k < nq. Therefore,

Fn,q(k)
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4
=

e
n
2 d(q,p)

(n+ 1)

4
e

n
2 d(q,p) � e

n
2 d(q,p). (18)

The final lower bound in (18) follows from the assumption on n.

A.3.3 Optimistic Gittins Index results

Lemma A.2. Let � 2 (0, 1) and

� = sup{x 2 [0, 1] : E [V ] + �E
⇥

(x� V )

+
⇤ � x} (19)

where V is a continuous random variable with support [0, 1] and E [V ] > 0. For all y 2 (0, 1), the
following equivalence holds

� < y () E [V ] + �E
⇥

(y � V )

+
⇤

< y. (20)

Proof. As a shorthand let g(z) = E [V ] + �E [(z � V )

+
]. First let’s assume � < y. If y  g(y),

then � would not be the supremum over all real numbers z 2 [0, 1] such that z  g(z). Therefore
g(y) < y.

For the converse, assume � � y. Observe that g(z) is convex. Also, one can verify through the
bounded convergence theorem that g(z) is differentiable [the event {V = z}, at which (z � V )

+ is
not differentiable, has measure zero]. Thirdly, because g(.) is continuous on [0, 1], by the Intermediate
Value Theorem, it has a fixed point and in particular � = g(�). Therefore let ✏ < (1� �)/2 and from
the first direction of the proof, we have �+ ✏ > g(�+ ✏). Thus

g(�+ ✏) � g(�) + ✏g0(�) = �+ ✏g0(�)
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where the inequality follows from g(.) being convex and differentiable. This implies that g0(�) < 1

and, moreover, because g(z) is also increasing, it follows that g0(�) 2 (0, 1), whence

g(y) � g(�)� (�� y)g0(�)

= �� (�� y)g0(�)

= (1� g0(�))�+ g0(�)y

� min(y,�) = y.

Corollary A.2. Let vi,t be the approximate Optimistic Gittins Index, under the Bernoulli problem
with uniform priors, of arm i at time t and let x 2 (0, 1). The following equivalence holds

{vi,t < x} = {E [Vt] + �tE
⇥

(x� Vt)
+
⇤

< x}
where Vt ⇠Beta(st + 1, jt � st + 1), jt denotes the number of pulls of arm i and st the number of
successes observed.

Proof. By the definition in Equation (4), vi,t can be characterized with the relation

vi,t = sup

�

u 2 [0, 1] : u  E [Vt] + �tE
⇥

(u� Vt)
+
⇤ 

.

The conclusion then follows from Lemma A.2.

A.4 Proof of Lemma 4.1

Proof. Define � := (✓1 � ⌘)/2 and ⌘0 := ⌘ + �. In other words, � is half the distance between ⌘ and
✓1; ⌘0 is the point half-way. The proof consists of showing two claims

Claim 1: {v1,t < ⌘} ✓ �

FB
jt+1,⌘0(st) <

1
�t

 

:

Let Vt ⇠Beta(st + 1, jt � st + 1) be the agent’s posterior on the optimal arm. Using Corollary A.2,
we find that

{v1,t < ⌘} =

�

E [Vt] + �tE
⇥

(⌘ � Vt)
+
⇤

< y
 

=

⇢

E
⇥

(Vt � ⌘)+
⇤

<
1

t

�

(21)

where the second equality is obtained from rearranging terms. We approximate the conditional
expectation in (21) with

E
⇥

(Vt � ⌘)+
�

� st, jt
⇤

= E [(Vt � ⌘) {Vt � ⌘}]
= E [(Vt � ⌘) {⌘ + � > Vt � ⌘}]

+ E [(Vt � ⌘) {Vt � ⌘ + �}]
> E [(Vt � ⌘) {Vt � ⌘ + �}]
� �P (Vt � ⌘0)

= �(1� Fst+1,jt�st+1(⌘
0
)) = �FB

jt+1,⌘0(st) (22)

The last equality is due to Fact A.1 and this proves the claim.

Claim 2:
P1

t=1 P
�

FB
jt+1,⌘0(st) <

1
�t

�  C1 where C1 is a constant:

Let us fix the sequence ft = � log �t
log(1�⌘0) � 1 = O(log t). We then have

P
✓

FB
jt+1,⌘0(st) <

1

�t

◆

= P
✓

FB
jt+1,⌘0(st) <

1

�t
, jt > ft

◆

+ P
✓

FB
jt+1,⌘0(st) <

1

�t
, jt  ft

◆

. (23)
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For the second term in the RHS of (23) we have the following bound,

P
✓

FB
jt+1,⌘0(st) <

1

�t
, jt  ft

◆

 P
✓

FB
jt+1,⌘0(0) <

1

�t
, jt  ft

◆

= P
✓

(1� ⌘0)jt+1 <
1

�t
, jt  ft

◆

 P
✓

(1� ⌘0)ft+1 <
1

�t

◆

= 0. (24)

Now we use the following fact to bound the left term on the RHS of (23). Define the function

F�B
n,p (u) := inf{x : FB

n,p(x) � u}
which is the inverse CDF. Then it is known that if U ⇠ Unif(0, 1), then F�B

n,p (U) ⇠ Binomial(n, p).
Furthermore, FB

n,p(F
�B
n,p (U)) � U due to the definition of the inverse CDF.

Now let us only consider large t, in particular t > M = M(✓1, ⌘0) where:

1. M is such that ed(⌘
0,✓1)fM/2 > (fM + 1)

4

2. M > 4
(1�⌘0)�

3. dfMe > 0 and FB
dfMe,⌘0(fM⌘0) > 1/4. Note that there is a large enough integer for this

because FB
dfte,⌘0(ft⌘0) ! 1

2 as t ! 1.

Suppose that t > M . It then follows that the event {FB
jt,⌘0(st) <

1
(1�⌘0)�t , st � jt⌘0, jt > ft} has

measure zero because of the assumptions made on M . Therefore if t > M , we have
✓

FB
jt+1,⌘0(st) <

1

�t
, jt > ft

◆

 P
✓

FB
jt,⌘0(st) <

1

(1� ⌘0)�t
, jt > ft

◆

(25)

= P
✓

FB
jt,⌘0(st) <

1

(1� ⌘0)�t
, st < jt⌘

0, jt > ft

◆

= P
 

FB
jt,✓1(st)

FB
jt,⌘0(st)

FB
jt,✓1

(st)
<

1

(1� ⌘0)�t
, st < jt⌘

0, jt > ft

!

 P
✓

FB
jt,✓1(st)e

jtD <
1

(1� ⌘0)�t
, jt > ft

◆

(26)

 P
✓

FB
jt,✓1(st)e

ftD <
1

(1� ⌘0)�t

◆

= P
✓

FB
jt,✓1(F

�B
jt,✓1

(U)) <
e�ftD

(1� ⌘0)�t

◆

(27)

 P
✓

U <
e�ftD

(1� ⌘0)�t

◆

=

e�ftD

(1� ⌘0)�t

= O

✓

1

t1+Dc⌘0

◆

(28)

where D = d(⌘0, ✓1) > 0 and c⌘0
= � log

�1
(1� ⌘0) > 0 are constant. The bound (25) holds due to

Fact (A.3). Bound (26) follows from an application of Lemma A.1 and the fact that t > M . Equation
(27) follows from st ⇠ Binomial(jt, ✓1) and the inverse sampling technique. By combining bounds
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(28), (24) and (23), we get

1
X

t=1

P
✓

FB
jt+1,⌘0(st) <

1

�t

◆

 M +

1
X

t=M+1

P
✓

FB
jt+1,⌘0(st) <

1

�t

◆

 M + C 0
1 =: C1

where C 0
1 = C 0

1(✓1, ⌘
0
) is some other constant, namely the limit of the series.

A.5 Proof of Lemma 4.2

Proof. See the main proof of Theorem 1 to recall the definition of constants ⌘1, ⌘3 and their
relationship with ✓2 and ✓1. As an abbreviation we let L = L(T ).

Firstly, by the law of total probability, we find that

T
X

t=1

(v2,t � ⌘3, kt � L, ⇡OG
t = 2)

=

T
X

t=1

P
�

v2,t � ⌘3, kt � L, s0t < bkt⌘1c, ⇡OG
t = 2

�

+

T
X

t=1

P
�

v2,t � ⌘3, kt � L, s0t � bkt⌘1c, ⇡OG
t = 2

�


T
X

t=1

P (v2,t � ⌘3, kt � L, s0t < bkt⌘1c) +
T
X

t=1

P
�

⇡OG
t = 2, s0t � bkt⌘1c

�

(29)

Let Vt ⇠ Beta(s0t + 1, kt � s0t + 1) denote the agent’s posterior on the second arm at time t, then

T
X

t=1

(v2,t � ⌘3, kt � L, s0t < bkt⌘1c)

=

T
X

t=1

P
�

E [Vt] + �tE
⇥

(⌘3 � Vt)
+
⇤ � ⌘3, kt � L, s0t < bkt⌘1c

�

=

T
X

t=1

P
✓

E [(⌘3 � Vt)
+
]

E [(Vt � ⌘3)+]
 t, kt � L, s0t < bkt⌘1c

◆

(30)

where the second equality follows from Corollary A.2 in Appendix A.3.3. The following result lets
us bound (30),

Lemma A.3. Let 0 < x < y < 1. For any nonnegative integers s and k with s < bkxc, it holds that

E [(y � V )

+
]

E [(V � y)+]
� (y � x) exp(kd(x, y))

2

where V ⇠ Beta(s+ 1, k � s+ 1).

Proof. See Appendix A.5.1.
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Therefore, from equation (30) and Lemma A.3, we find that whenever T >
⇣

2
⌘3�⌘1

⌘1/✏

=: T ⇤
(✏, ✓),

T
X

t=1

(v2,t � ⌘3, kt � L, s0t < bkt⌘1c)


T
X

t=1

P ((⌘3 � ⌘1) exp{ktd(⌘1, ⌘3)}  2t, kt � L)


T
X

t=1

P ((⌘3 � ⌘1) exp{Ld(⌘1, ⌘3)}  2t)

=

T
X

t=1

P
�

(⌘3 � ⌘1)T
1+✏  2t

�

= 0 (31)

All that is left is to bound the second term in (29), and to do so we apply the following Lemma whose
proof is in Appendix A.5.2

Lemma A.4. There exist positive constants C = C(✓2, ⌘1) and x0 > ✓2 such that

T
X

t=1

P
�

s0t � bkt⌘1c, ⇡OG
t = 2

�  K +

1

1� e�d(x0,✓2)

Combining Lemma A.4, (31), (29) and (30) shows the claim.

A.5.1 Proof of Lemma A.3

Proof. We upper bound the denominator as follows. Given that s < bkxc, we have s  kx� 1. Let
B(a, b) denote the Beta function, then

E
⇥

(V � y)+
⇤

=

1

B(s+ 1, k � s+ 1)

Z 1

y

(t� y)ts(1� t)k�s dt

=

1

B(s+ 1, k � s+ 1)

Z 1

y

ts+1
(1� t)k�sdt� yP (V � y)

=

B(s+ 2, k � s+ 1)

B(s+ 1, j � s+ 1)

✓

1

B(s+ 2, k � s+ 1)

◆

Z 1

y

ts+1
(1� t)k�sdt� yP (V � y)

=

s+ 1

k + 2

FB
k+2,y(s+ 1)� yP (V � y) (32)

 s+ 1

k + 2

FB
k+2,y(s+ 1)  FB

k,y(kx)  exp {�kd(x, y)} (33)

where we use Fact A.1 and the definition of the Beta CDF to establish equation (32). The final bound
in (33) is the result of the Chernoff-Hoeffding theorem and Fact A.3. Let � := y � x, and note that
s < kx =) s  b(k + 1)xc due to s being integer, whence

E
⇥

(y � V )

+
⇤

= E [(y � V ) {V  y} | s, k]
= E [(y � V ) {y � �  V  y} | s, k] + E [(y � V ) {V < y � �} | s, k]
> E [(y � V ) {V < y � �} | s, k]
� �E [ {V < y � �} | s, k] (34)
= �P (V < x | s)
= �

�

1� FB
k+1,x(s)

�

(35)
� �/2 (36)

where equation (35) relies on Fact A.1. The bound (36) is justified from Fact A.2 and s  b(k+1)xc.
Thus using the inequalities for both the numerator and denominator, we obtain the desired bound.
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A.5.2 Proof of Lemma A.4

Proof. The steps in this proof follow a similar one in [3] but we show them for completeness. We
bound the number of times the suboptimal arm’s mean is overestimated. Let ⌧` be the time step in
which the suboptimal arm is sampled for the `th time. Because for any x, limn!1

bnxc
nx = 1, we can

let N be a large enough integer so that if ` � N , then ⌘1
b`⌘1c
`⌘1

> x0
:= (✓2 + ⌘1)/2 > ✓2. In that

case,

T
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t=1

P
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s0t � bkt⌘1c, ⇡OG
t = 2

�  E
"

T
X

`=1

⌧`+1�1
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{s0` � bk`⌘1c}
�

⇡OG
t = 2

 

#

= E
"

T
X

`=1

�

s0⌧` � b(`� 1)⌘1c
 

⌧`+1�1
X

t=⌧`

�

⇡OG
t = 2

 

#

= E
"

T�1
X

`=0

n

s0⌧`+1
� b`⌘1c

o

#

 N +

T�1
X

`=N+1

P
✓

s0⌧`+1
� `⌘1

b`⌘1c
`⌘1

◆

 N +

T�1
X

`=N+1

P
⇣

s0⌧`+1
� `x0

⌘

 N +

1
X

`=1

exp(�`d(x0, ✓2)) (37)

= N +

1

1� e�d(x0,✓2)

The bound (37) follows from the Chernoff-Hoeffding theorem and that s0⌧`+1
⇠ Binomial(k`+1, ✓2) ⇠

Binomial(`, ✓2).

A.6 Additional plots

We include some additional plots that compare Bayes UCB and Thompson Sampling in addition to
IDS.

18



Figure 2: Mean regret in the long horizon Gaussian experiment of section 5.

Figure 3: Mean regret in the corresponding Bernoulli experiment.
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