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A Proofs for Lower Bound

In this section we prove Theorem 2. We follow the two step proof idea presented in the main text.
For simplicity we begin by assuming ⌧̂ = 1. The general case is dealt with in Section A.3.1

A.1 Reduction from switching cost

A.1.1 proof of Lemma 4

By definition we have that:
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By definition of R we can rewrite the terms as:
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Let p⇤ be the maximizer of the non noisy sequence of buyers:
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Note that p⇤, pt and pt+1

2 are independent on whether ¯bt = bt or ¯bt = zt hence
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2Recall that the seller needs to publish one price a head in advance
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Recall that if the value of zt is 1/2 her patience is ⌧ = 0 and we have �(pt, pt+1
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Taken together, and exploiting the fact that pt and pt+1

are both independent of ztwe have that
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Recall that bt has patience 0 hence we can write �(pt, pt+1

; bt ) = �(pt ; bt ).
Finally note that for any fixed price E(�(p, p; zt )) = 1

2

. Since both p⇤ and pt are independent of zt we
have: E(�(p⇤, p⇤; zt )) = E(�(pt, pt ; zt )), and we obtain the desired result,
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A.2 Pricing with switching cost

The aim of this section is to prove Theorem 6. Our proof relies on the following technical Lemma
which we leave her proof to Section A.2.2:
Lemma 7. Let F be the class of pairs of transformations from {0, 1} to revenues in {0, 1
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There exist a distribution D over F ⇥V, that can be efficiently implemented and has the following
properties:
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A.2.1 Proof of Theorem 6

Let A be some seller against non-strategic buyers with bounded Sc-RegretT . we will first construct
an algorithm A0 for the 2-action MAB problem with bounded Sc-RegretT . Namely, we will have that
for every sequence of losses `

1

, . . . , `T we can construct a sequence of non-strategic buyers such that:

Sc-RegretT (A0
; `

1:T )  Sc-RegretT (A; b
1:T ).

In the reduction we are considering, Algorithm A0 receives at each iteration t the price posted by
algorithm A at step t and at each iteration algorithm A0 chooses the feedback algorithm A observes.
The algorithm is depicted in Algorithm 3.

Our algorithm A0 work as follows: At the beginning of the iterations, the algorithm produces an
IID sequence of pairs (f

1

, ⌫
1

), . . . , (fT , ⌫T ) as depicted in Lemma 7. At each iteration, the algorithm
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receives from algorithm A a price 1/2 or 1. If the algorithm A posts price 1

2

then algorithm A0

chooses action 2, observes `t (2) and returns to algorithm A as feedback f (2)t (`t (2)). By property 1 of
Lemma 7 we have that A returns as feedback f (2)t (`t (2)) = �( 1

2

; bt ). Similarly if algorithm A posts
price 1 then algorithm A0 chooses action 1, observes `t (1) and returns to algorithm A as feedback
f (1)t (`t (1)) = �(1; bt ).
Since algorithm A received at each iteration as feedback �(pt ; bt ) we have by assumption that:
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Next note that for every realization b
1

, . . . , bT algorithm A and algorithm A0 have the same number
of switching taken together we obtain that for algorithm A0:
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Finally, since the result holds for every `
1:T we obtain the desired result from Theorem 5.

Algorithm 3: Reduction from MAB with switching cost to pricing with switching cost
Input: T, A % A is an algorithm with bounded regret for pricing with switching cost;
Output: i

1

, . . . , iT ;
Draw IID (f

1

, ⌫
1

), . . . , (fT , ⌫T ) ⇠ D % see Lemma 7;
for t=1,. . . ,T do

Receive from A a posted price pt ;
if pt = 1 then

Set it = 1

else
Set it = 2

Play action it and receive as feedback `t (it );
Return to A as feedback f (it )t (`t (it )); %Note that f (it )t (`t (it )) = �(pt ; bt )

A.2.2 Proof of Lemma 7

We begin by constructing f: We choose f as follow:
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The random variable ⌫ is then defined as a function of f and for which 1 holds. To define ⌫ note that for
any feasible realization of f and any two bits a
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A.3 Proof of Theorem 2 for ⌧̂ = 1

Let A be some seller for buyers with patience at most ⌧̂ = 1. Let A0 be the algorithm whose existence
follows from Lemma 4. A0 is an algorithm against non strategic sellers, and by Theorem 6

S
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12

-RegretT (A0) = ⌦(T2/3).

By Lemma 4 RegretT (A) � S
1

12

-RegretT (A0).

A.3.1 Generalization to arbitrary ⌧̂

In this section we prove Theorem 2, in which the lower bound has dependence on ⌧̂, namely
⌦(⌧̂1/3T2/3). For simplicity we will assume ⌧̂ is odd (we can always construct an adversary with
⌧̂ � 1).

We will restrict ourselves to adversaries with the following properties:

1. The adversary divides the interval T to ⌧̂+1

2

blocks and at each block the adversary chooses
a constant value for all buyers.

2. The adversary only chooses buyers with ⌧ = 0 or with patience up to the end of the next
block (since the size of the blocks is ⌧̂+1

2

he can always do that).
3. If the patience of the buyer is not 0 then the buyer has maximal value v = 1.

To further simplify things, we will strengthen our seller and allow him to choose all the prices in the
next block at the beginning of the block before (this only strengthen him since he can now delay the
posting of some of the prices). Note that since the patience of all buyers is only one block ahead their
revenue is well defined even for this type of buyer.

Next note, the given such buyers and sellers the seller can choose a fixed price throughout the block.
Indeed, if the optimal seller chooses price pt, pt+1

, . . . pt+ ⌧̂+1

2

for some block: the expected revenue
for those prices and for picking one of them randomly is the same (as the buyers are fixed within a
block). Further, since the buyer has ⌧t , 0 only if his value is maximal, by choosing an expected
price he only gains in terms of revenue from buyers and previous blocks.

Taken together, we reduced the problem to a setting of ⌧̂ = 1– both adversary and seller choose at
each block a fixed buyer and price. However, the revenue per round is now multiplied by a factor of
⌧̂+1

2

.

The only tackle is that we restrict ourselves to adversarial sequences where buyer has patience
different then zero iff his value is maximal. Luckily one can see in our construction that this is indeed
the case for our adversarial buyers.

Taken together with number of blocks we obtain:

RegretT � ⌧̂ + 1

2

✓
2T
⌧̂ + 1

◆
2/3
= ⌦(⌧̂1/3T2/3).
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