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Abstract

We consider a variant of the multiarmed bandit problem where jobs queue for ser-
vice, and service rates of different servers may be unknown. We study algorithms
that minimize queue-regret: the (expected) difference between the queue-lengths
obtained by the algorithm, and those obtained by a “genie”-aided matching algo-
rithm that knows exact service rates. A naive view of this problem would suggest
that queue-regret should grow logarithmically: since queue-regret cannot be larger
than classical regret, results for the standard MAB problem give algorithms that en-
sure queue-regret increases no more than logarithmically in time. Our paper shows
surprisingly more complex behavior. In particular, the naive intuition is correct
as long as the bandit algorithm’s queues have relatively long regenerative cycles:
in this case queue-regret is similar to cumulative regret, and scales (essentially)
logarithmically. However, we show that this “early stage” of the queueing bandit
eventually gives way to a “late stage”, where the optimal queue-regret scaling is
O(1/t). We demonstrate an algorithm that (order-wise) achieves this asymptotic
queue-regret, and also exhibits close to optimal switching time from the early stage
to the late stage.

1 Introduction

Stochastic multi-armed bandits (MAB) have a rich history in sequential decision making [1, 2, 3].
In its simplest form, a collection of K arms are present, each having a binary reward (Bernoulli
random variable over {0, 1}) with an unknown success probability! (and different across arms). At
each (discrete) time, a single arm is chosen by the bandit algorithm, and a (binary-valued) reward is
accrued. The MAB problem is to determine which arm to choose at each time in order to minimize
the cumulative expected regret, namely, the cumulative loss of reward when compared to a genie that
has knowledge of the arm success probabilities.

In this paper, we consider the variant of this problem motivated by queueing applications. Formally,
suppose that arms are pulled upon arrivals of jobs; each arm is now a server that can serve the arriving
job. In this model, the stochastic reward described above is equivalent to service. In other words,
if the arm (server) that is chosen results in positive reward, the job is successfully completed and
departs the system. However, this basic model fails to capture an essential feature of service in many
settings: in a queueing system, jobs wait until they complete service. Such systems are stateful: when
the chosen arm results in zero reward, the job being served remains in the queue, and over time the
model must track the remaining jobs waiting to be served. The difference between the cumulative
number of arrivals and departures, or the queue length, is the most common measure of the quality of
the service strategy being employed.

"Here, the success probability of an arm is the probability that the reward equals *1°.
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Queueing is employed in modeling a vast range of service systems, including supply and demand
in online platforms (e.g., Uber, Lyft, Airbnb, Upwork, etc.); order flow in financial markets (e.g.,
limit order books); packet flow in communication networks; and supply chains. In all of these
systems, queueing is an essential part of the model: e.g., in online platforms, the available supply
(e.g. available drivers in Uber or Lyft, or available rentals in Airbnb) queues until it is “served” by
arriving demand (ride requests in Uber or Lyft, booking requests in Airbnb). Since MAB models are
a natural way to capture learning in this entire range of systems, incorporating queueing behavior
into the MAB model is an essential challenge.

This problem clearly has the explore-exploit tradeoff inherent in the standard MAB problem: since
the success probabilities across different servers are unknown, there is a tradeoff between learning
(exploring) the different servers and (exploiting) the most promising server from past observations.
We refer to this problem as the queueing bandit. Since the queue length is simply the difference
between the cumulative number arrivals and departures (cumulative actual reward; here reward is
1 if job is served), the natural notion of regret here is to compare the expected queue length under
a bandit algorithm with the corresponding one under a genie policy (with identical arrivals) that
however always chooses the arm with the highest expected reward.

Queueing System: To capture this trade-off, we consider a discrete-time queueing system with a
single queue and K servers. Arrivals to the queue and service offered by the links are according to
product Bernoulli distribution and i.i.d. across time slots. Statistical parameters corresponding to the
service distributions are considered unknown. In any time slot, the queue can be served by at most
one server and the problem is to schedule a server in every time slot. The service is pre-emptive and a
job returns to the queue if not served. There is at least one server that has a service rate higher than
the arrival rate, which ensures that the "genie" policy is stable.

Let Q(t) be the queue length at time ¢ under a given bandit algorithm, and let Q*(t) be the corre-
sponding queue length under the “genie” policy that always schedules the optimal server (i.e. always
plays the arm with the highest mean). We define the queue-regret as the difference in expected queue
lengths for the two policies. That is, the regret is given by:

V(1) =E[Q() - Q" (1)]. ey
Here U(t) has the interpretation of the traditional MAB regret with caveat that rewards are accumu-

lated only if there is a job that can benefit from this reward. We refer to W(t) as the queue-regret;
formally, our goal is to develop bandit algorithms that minimize the queue-regret at a finite time ¢.

To develop some intuition, we compare this to the standard stochastic MAB problem. For the
standard problem, well-known algorithms such as UCB, KL-UCB, and Thompson sampling achieve
a cumulative regret of O((K — 1) logt) at time ¢ [4, 5, 6], and this result is essentially tight [7]. In
the queueing bandit, we can obtain a simple bound on the queue-regret by noting that it cannot be
any higher than the traditional regret (where a reward is accrued at each time whether a job is present
or not). This leads to an upper bound of O((K — 1)logt) for the queue regret.

However, this upper bound does not tell the whole story for the queueing bandit: we show that
there are two “stages” to the queueing bandit. In the early stage, the bandit algorithm is unable to
even stabilize the queue — i.e. on average, the queue length increases over time and is continuously
backlogged; therefore the queue-regret grows with time, similar to the cumulative regret. Once the
algorithm is able to stabilize the queue—the late stage—then a dramatic shift occurs in the behavior
of the queue regret. A stochastically stable queue goes through regenerative cycles — a random
cyclical behavior where queues build-up over time, then empty, and the cycle repeats. The associated
recurring‘‘zero-queue-length” epochs means that sample-path queue-regret essentially “resets” at
(stochastically) regular intervals; i.e., the sample-path queue-regret becomes non-positive at these
time instants. Thus the queue-regret should fall over time, as the algorithm learns.

Our main results provide lower bounds on queue-regret for both the early and late stages, as well
as algorithms that essentially match these lower bounds. We first describe the late stage, and then
describe the early stage for a heavily loaded system.

1. The late stage. We first consider what happens to the queue regret as ¢ — co. As noted above, a
reasonable intuition for this regime comes from considering a standard bandit algorithm, but where
the sample-path queue-regret “resets” at time points of regeneration.? In this case, the queue-regret is

*This is inexact since the optimal queueing system and bandit queueing system may not regenerate at the
same time point; but the intuition holds.



approximately a (discrete) derivative of the cumulative regret. Since the optimal cumulative regret
scales like log ¢, asymptotically the optimal queue-regret should scale like 1/¢. Indeed, we show
that the queue-regret for a-consistent policies is at least C'/t infinitely often, where C' is a constant
independent of ¢. Further, we introduce an algorithm called Q-ThS for the queueing bandit (a variant
of Thompson sampling with explicit structured exploration), and show an asymptotic regret upper
bound of O (poly(logt)/t) for Q-ThS, thus matching the lower bound up to poly-logarithmic factors
in t. Q-ThS exploits structured exploration: we exploit the fact that the queue regenerates regularly
to explore more systematically and aggressively.

2. The early stage. The preceding discussion might suggest that an algorithm that explores ag-
gressively would dominate any algorithm that balances exploration and exploitation. However, an
overly aggressive exploration policy will preclude the queueing system from ever stabilizing, which
is necessary to induce the regenerative cycles that lead the system to the late stage. To even enter the
late stage, therefore, we need an algorithm that exploits enough to actually stabilize the queue (i.e.
choose good arms sufficiently often so that the mean service rate exceeds the expected arrival rate).

We refer to the early stage of the system, as noted above, as the period before the algorithm has
learned to stabilize the queues. For a heavily loaded system, where the arrival rate approaches the
service rate of the optimal server, we show a lower bound of Q(log ¢/ loglog t) on the queue-regret in
the early stage. Thus up to a log log ¢ factor, the early stage regret behaves similarly to the cumulative
regret (which scales like log t). The heavily loaded regime is a natural asymptotic regime in which to
study queueing systems, and has been extensively employed in the literature; see, e.g., [9, 10] for
surveys.

Perhaps more importantly, our analysis shows that the time to switch from the early stage to the late
stage scales at least as t = (K /¢), where ¢ is the gap between the arrival rate and the service rate
of the optimal server; thus e — 0 in the heavy-load setting. In particular, we show that the early
stage lower bound of Q(logt/loglogt) is valid up to ¢ = O(K/¢); on the other hand, we also show
that, in the heavy-load limit, depending on the relative scaling between K and e, the regret of Q-ThS
scales like O (poly(logt)/€?t) for times that are arbitrarily close to Q(K /€). In other words, Q-ThS
is nearly optimal in the time it takes to “switch” from the early stage to the late stage.

Our results constitute the first insight into the behavior of regret in this queueing setting; as em-
phasized, it is quite different than that seen for minimization of cumulative regret in the standard
MAB problem. The preceding discussion highlights why minimization of queue-regret presents a
subtle learning problem. On one hand, if the queue has been stabilized, the presence of regenerative
cycles allows us to establish that queue regret must eventually decay to zero at rate 1/¢ under an
optimal algorithm (the late stage). On the other hand, to actually have regenerative cycles in the first
place, a learning algorithm needs to exploit enough to actually stabilize the queue (the early stage).
Our analysis not only characterizes regret in both regimes, but also essentially exactly characterizes
the transition point between the two regimes. In this way the queueing bandit is a remarkable new
example of the tradeoff between exploration and exploitation.

2 Related work

MAB algorithms. Stochastic MAB models have been widely used in the past as a paradigm for
various sequential decision making problems in industrial manufacturing, communication networks,
clinical trials, online advertising and webpage optimization, and other domains requiring resource
allocation and scheduling; see, e.g., [1, 2, 3]. The MAB problem has been studied in two variants,
based on different notions of optimality. One considers mean accumulated loss of rewards, often
called regret, as compared to a genie policy that always chooses the best arm. Most effort in this
direction is focused on getting the best regret bounds possible at any finite time in addition to designing
computationally feasible algorithms [3]. The other line of research models the bandit problem as a
Markov decision process (MDP), with the goal of optimizing infinite horizon discounted or average
reward. The aim is to characterize the structure of the optimal policy [2]. Since these policies deal
with optimality with respect to infinite horizon costs, unlike the former body of research, they give
steady-state and not finite-time guarantees. Our work uses the regret minimization framework to
study the queueing bandit problem.

Bandits for queues. There is body of literature on the application of bandit models to queueing and
scheduling systems [2, 11, 12, 13, 14, 15, 16, 17]. These queueing studies focus on infinite-horizon



costs (i.e., statistically steady-state behavior, where the focus typically is on conditions for optimality
of index policies); further, the models do not typically consider user-dependent server statistics. Our
focus here is different: algorithms and analysis to optimize finite time regret.

3 Problem Setting

We consider a discrete-time queueing system with a single queue and K servers. The servers are
indexed by £k = 1,..., K. Arrivals to the queue and service offered by the links are according to
product Bernoulli distribution and i.i.d. across time slots. The mean arrival rate is given by A and
the mean service rates by the vector pu = [ux]re[x], With A < maxye(x) px. In any time slot, the
queue can be served by at most one server and the problem is to schedule a server in every time slot.
The scheduling decision at any time ¢ is based on past observations corresponding to the services
obtained from the scheduled servers until time ¢ — 1. Statistical parameters corresponding to the
service distributions are considered unknown. The queueing system evolution can be described
as follows. Let x(t) denote the server that is scheduled at time ¢. Also, let R (t) € {0,1} be
the service offered by server k and S(t) denote the service offered by server x(t) at time ¢, i.e.,
S(t) = Ry)(t). If A(t) is the number of arrivals at time ¢, then the queue-length at time ¢ is given

by: Q(t) = (Q(t — 1) + A(t) = S(t))".

Our goal in this paper is to focus attention on how queueing behavior impacts regret minimization
in bandit algorithms. We evaluate the performance of scheduling policies against the policy that
schedules the (unique) optimal server in every time slot, i.e., the server k* := arg maxj.¢[x) px With
the maximum mean rate p* := maxex] pr- Let Q(t) be the queue-length vector at time ¢ under
our specified algorithm, and let Q*(¢) be the corresponding vector under the optimal policy. We
define regret as the difference in mean queue-lengths for the two policies. That is, the regret is given
by: ¥(t) := E[Q(t) — Q*(t)] . We use the terms queue-regret or simply regret to refer to W(t).
Throughout, when we evaluate queue-regret, we do so under the assumption that the queueing system
starts in the steady state distribution of the system induced by the optimal policy, as follows.

Assumption 1 (Initial State). Both Q(0) and Q*(0) have the same initial state distribution, and this
is chosen to be the stationary distribution of Q* (t); this distribution is denoted my ,,~).

4 The Late Stage

We analyze the performance of a scheduling algorithm with respect to queue-regret as a function of
time and system parameters like: (a) the load on the system € := (u* — \), and (b) the minimum
difference between the rates of the best and the next best servers A := p* — maxyzp- [k

As a preview of the theoretical results, Fig-
ure 1 shows the evolution of queue-regret

with time in a system with 5 servers under 40 1 ‘ —
a scheduling policy inspired by Thompson agp I fote Stoge
Sampling. Exact details of the scheduling 3010 (log 1)
algorithm can be found in Section 4.2. It st S/
is observed that the regret goes through a S0 A
phase transition. In the initial stage, when s S o)
the algorithm has not estimated the service 1o} : N
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regret grows poly-logarithmically similar 0 \ y \ \ \ \ \
0 500 1000 1500 2000 2500 3000 3500 4000

to the classical MAB setting. After a crit- ¢

ical point when the algorithm has learned Figure 1: Queue-regret ¥ (¢) under Q-ThS in a system
thq system parameters well enough to sta- with K =5.¢=0.1and A = 0.17

bilize the queue, the queue-length goes

through regenerative cycles as the queue

become empty. In other-words, instead of the queue length being continuously backlogged, the
queuing system has a stochastic cyclical behavior where the queue builds up, becomes empty, and
this cycle recurs. Thus at the beginning of every regenerative cycle, there is no accumulation of past
errors and the sample-path queue-regret is at most zero. As the algorithm estimates the parameters
better with time, the length of the regenerative cycles decreases and the queue-regret decays to zero.



Notation: For the results in Section 4, the notation f(t) = O (g(K,¢,t)) forall t € h(K, ¢) (here,
h(K,¢) is an interval that depends on K, €) implies that there exist constants C' and ¢, independent
of K and € such that f(t) < Cg(K,e,t) forall ¢t € (tg,00) Nh(K,€).

4.1 An Asymptotic Lower Bound

We establish an asymptotic lower bound on regret for the class of a-consistent policies; this class
for the queueing bandit is a generalization of the a-consistent class used in the literature for the
traditional stochastic MAB problem [7, 18, 19]. The precise definition is given below (1{-} below is
the indicator function).

Definition 1. A scheduling policy is said to be a-consistent (for some o € (0,1)) if given any
problem instance, specified by (A, p), E [Zt 1{k(s) = k}| = O(t*) for all k # k*.

s=1
Theorem 1 below gives an asymptotic lower bound on the average queue-regret and per-queue regret
for an arbitrary a-consistent policy.
Theorem 1. For any problem instance (A, p) and any a-consistent policy, the regret V(t) satisfies

¥(0)> ($000 )k - 1) §

for infinitely many t, where
A

Outline for theorem 1. The proof of the lower bound consists of three main steps. First, in lemma 21,
we show that the regret at any time-slot is lower bounded by the probability of a sub-optimal schedule
in that time-slot (up to a constant factor that is dependent on the problem instance). The key idea in
this lemma is to show the equivalence of any two systems with the same marginal service distributions
under bandit feedback. This is achieved through a carefully constructed coupling argument that maps
the original system with independent service across links to another system with service process that
is dependent across links but with the same marginal distribution.

As a second step, the lower bound on the regret in terms of the probability of a sub-optimal schedule
enables us to obtain a lower bound on the cumulative queue-regret in terms of the number of
sub-optimal schedules. We then use a lower bound on the number of sub-optimal schedules for
a-consistent policies (lemma 19 and corollary 20) to obtain a lower bound on the cumulative regret.
In the final step, we use the lower bound on the cumulative queue-regret to obtain an infinitely often
lower bound on the queue-regret. O

4.2 Achieving the Asymptotic Bound

We next focus on algorithms that can (up to a poly log factor) achieve a scaling of O (1/t) . A key
challenge in showing this is that we will need high probability bounds on the number of times the
correct arm is scheduled, and these bounds to hold over the late-stage regenerative cycles of the
queue. Recall that these regenerative cycles are random time intervals with ©(1) expected length
for the optimal policy, and whose lengths are correlated with the bandit algorithm decisions (the
queue length evolution is dependent on the past history of bandit arm schedules). To address this, we
propose a slightly modified version of the Thompson Sampling algorithm. The algorithm, which we
call Q-ThS, has an explicit structured exploration component similar to e-greedy algorithms. This
structured exploration provides sufficiently good estimates for all arms (including sub-optimal ones)
in the late stage.

We describe the algorithm we employ in detail. Let T (¢) be the number of times server k is
assigned in the first ¢ time-slots and fi(¢) be the empirical mean of service rates at time-slot ¢
from past observations (until ¢ — 1). At time-slot ¢, Q-ThS decides to explore with probability
min{1, 3K log?t/t}, otherwise it exploits. When exploring, it chooses a server uniformly at random.
The chosen exploration rate ensures that we are able to obtain concentration results for the number



of times any link is sampled.> When exploiting, for each k € [K], we pick a sample 0 (t) of
distribution Beta (fix (t)Tk(t — 1) + 1, (1 — fx(¢)) Tk(t — 1) + 1), and schedule the arm with the
largest sample (the standard Thompson sampling for Bernoulli arms [20]). Details of the algorithm
are given in Algorithm 1 in the Appendix.

We now show that, for a given problem instance (A, ) (and therefore fixed ¢€), the regret under
Q-ThS scales as O (poly(logt)/t). We state the most general form of the asymptotic upper bound in
theorem 2. A slightly weaker version of the result is given in corollary 3. This corollary is useful to
understand the dependence of the upper bound on the load € and the number of servers K.

Notation : For the following results, the notation f(t) = O (g(K,¢,t)) forall t € h(K ¢) (here,
h(K,¢) is an interval that depends on K, €) implies that there exist constants C' and ¢, independent
of K and € such that f(t) < Cg(K,e,t) forall ¢t € (tg,00) Nh(K,€).

\2/3
Theorem 2. Consider any problem instance (A, ). Let w(t) = exp ((21th> ) , () =

SEw(t) and v(t) = 24 logt + %Mﬂflog%. Then, under Q-ThS the regret U (t), satisfies
Kov(t)log*t
U(t) =0 (”Ut‘)g)

for all t such that 1;;(;) > 2 ¢t >exp (6/A%) and v(t) +v'(t) < t/2.

¢
t) be as defined in Theorem 2. Then,

Corollary 3. Let w(
log® t
U(t)=0 (K = )
€“t

for all t such that fffg? > 2, oy = max {2 15K logt}, t > exp (6/A%) and oty > 15

Outline for Theorem 2. As mentioned earlier, the central idea in the proof is that the sample-path
queue-regret is at most zero at the beginning of regenerative cycles, i.e., instants at which the queue
becomes empty. The proof consists of two main parts — one which gives a high probability result on
the number of sub-optimal schedules in the exploit phase in the late stage, and the other which shows
that at any time, the beginning of the current regenerative cycle is not very far in time.

The former part is proved in lemma 9, where we make use of the structured exploration component
of Q-ThS to show that all the links, including the sub-optimal ones, are sampled a sufficiently large
number of times to give a good estimate of the link rates. This in turn ensures that the algorithm
schedules the correct link in the exploit phase in the late stages with high probability.

For the latter part, we prove a high probability bound on the last time instant when the queue
was zero (which is the beginning of the current regenerative cycle) in lemma 15. Here, we make
use of a recursive argument to obtain a tight bound. More specifically, we first use a coarse high
probability upper bound on the queue-length (lemma 11) to get a first cut bound on the beginning of
the regenerative cycle (lemma 12). This bound on the regenerative cycle-length is then recursively
used to obtain tighter bounds on the queue-length, and in turn, the start of the current regenerative
cycle (lemmas 14 and 15 respectively).

The proof of the theorem proceeds by combining the two parts above to show that the main contribu-
tion to the queue-regret comes from the structured exploration component in the current regenerative
cycle, which gives the stated result. O

S The Early Stage in the Heavily Loaded Regime

In order to study the performance of a-consistent policies in the early stage, we consider the heavily
loaded system, where the arrival rate A is close to the optimal service rate p*, i.e., e = p* — A — 0.
This is a well studied asymptotic in which to study queueing systems, as this regime leads to

3The exploration rate could scale like log ¢/t if we knew A in advance; however, without this knowledge,
additional exploration is needed.



fundamental insight into the structure of queueing systems. See, e.g., [9, 10] for extensive surveys.
Analyzing queue-regret in the early stage in the heavily loaded regime has the effect that the the
optimal server is the only one that stabilizes the queue. As a result, in the heavily loaded regime,
effective learning and scheduling of the optimal server play a crucial role in determining the transition
point from the early stage to the late stage. For this reason the heavily loaded regime reveals the
behavior of regret in the early stage.

Notation: For all the results in this section, the notation f(t) = O (g(K,¢,t)) forall t € h(K¢€)
(h(K, €) is an interval that depends on K, €) implies that there exist numbers C and ¢, that depend
on A such that for all € > €, f(t) < Cg(K,e,t) forall t € h(K,e).

Theorem 4 gives a lower bound on the regret in the heavily loaded regime, roughly in the time interval
(K'/(=2) O (K/e)) for any a-consistent policy.
Theorem 4. Given any problem instance (A, p), and for any a-consistent policy and v > ﬁ the
regret U(t) satisfies

logt
loglogt

w(p) > P 1)

fort € [maX{ClKV, ThH (K — 1)%} where D() is given by equation 2, and T and C are
constants that depend on o, v and the policy.

Outline for Theorem 4. The crucial idea in the proof is to show a lower bound on the queue-regret in
terms of the number of sub-optimal schedules (Lemma 22). As in Theorem 1, we then use a lower
bound on the number of sub-optimal schedules for a-consistent policies (given by Corollary 20) to
obtain a lower bound on the queue-regret.

Theorem 4 shows that, for any «-consistent policy, it takes at least {2 (K /¢) time for the queue-regret
to transition from the early stage to the late stage. In this region, the scaling O(logt/loglogt)
reflects the fact that queue-regret is dominated by the cumulative regret growing like O(logt). A
reasonable question then arises: after time €2 (/K/¢), should we expect the regret to transition into the
late stage regime analyzed in the preceding section?

We answer this question by studying when Q-ThS achieves its late-stage regret scaling of
0] (poly(log t)/ ezt) scaling; as we will see, in an appropriate sense, Q-ThS is close to optimal
in its transition from early stage to late stage, when compared to the bound discovered in Theorem 4.
Formally, we have Corollary 5, which is an analog to Corollary 3 under the heavily loaded regime.

Corollary 5. For any problem instance (A, p), any v € (0,1) and § € (0, min(y, 1 — 7)), the regret
under Q-ThS satisfies

K log3 t
€2t

\If(t)zO(

1 o 1
Vvt > Cy max { (47, (5) = (K?) =5 A(H) } where Cy is a constant independent of ¢

€ €

(but depends on A, vy and §).

By combining the result in Corollary 5 with Theorem 4, we can infer that in the heavily loaded
regime, the time taken by Q-ThS to achieve O (poly(log t)/ th) scaling is, in some sense, order-wise
close to the optimal in the a-consistent class. Specifically, for any 5 € (0, 1), there exists a scaling of
K with e such that the queue-regret under Q-ThS scales as O (poly(logt)/¢%t) forall t > (K /¢)”
while the regret under any a-consistent policy scales as Q (K logt/loglogt) for t < K/e.

We conclude by noting that while the transition point from the early stage to the late stage for Q-ThS
is near optimal in the heavily loaded regime, it does not yield optimal regret performance in the early
stage in general. In particular, recall that at any time ¢, the structured exploration component in Q-ThS
is invoked with probability 3K log? t /t. As aresult, we see that, in the early stage, queue-regret under
Q-ThS could be a log? t-factor worse than the Q (logt/loglogt) lower bound shown in Theorem 4
for the a-consistent class. This intuition can be formalized: it is straightforward to show an upper
bound of 2K log®t for any ¢ > max{C3,U}, where Cs is a constant that depends on A but is
independent of K and €; we omit the details.
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Figure 2: Variation of Queue-regret ¥(¢) with K and e under Q-Ths. The phase-transition point
shifts towards the right as e decreases. The efficiency of learning decreases with increase in the size
of the system.

6 Simulation Results

In this section we present simulation results of various queueing bandit systems with K servers.
These results corroborate our theoretical analysis in Sections 4 and 5. In particular a phase transition
from unstable to stable behavior can be observed in all our simulations, as predicted by our analysis.
In the remainder of the section we demonstrate the performance of Algorithm 1 under variations of
system parameters like the traffic (¢), the gap between the optimal and the suboptimal servers (A),
and the size of the system (K'). We also compare the performance of our algorithm with versions of
UCB-1 [4] and Thompson Sampling [20] without structured exploration (Figure 3 in the appendix).

Variation with € and K. In Figure 2 we see the evolution of ¥(¢) in systems of size 5 and 7 . It can
be observed that the regret decays faster in the smaller system, which is predicted by Theorem 2 in
the late stage and Corollary 5 in the early stage. The performance of the system under different traffic
settings can be observed in Figure 2. It is evident that the regret of the queueing system grows with
decreasing €. This is in agreement with our analytical results (Corollaries 3 and 5). In Figure 2 we
can observe that the time at which the phase transition occurs shifts towards the right with decreasing
€ which is predicted by Corollaries 3 and 5.

7 Discussion and Conclusion

This paper provides the first regret analysis of the queueing bandit problem, including a charac-
terization of regret in both early and late stages, together with analysis of the switching time; and
an algorithm (Q-ThS) that is asymptotically optimal (to within poly-logarithmic factors) and also
essentially exhibits the correct switching behavior between early and late stages. There remain
substantial open directions for future work.

First, is there a single algorithm that gives optimal performance in both early and late stages, as well
as the optimal switching time between early and late stages? The price paid for structured exploration
by Q-ThS is an inflation of regret in the early stage. An important open question is to find a single,
adaptive algorithm that gives good performance over all time. As we note in the appendix, classic
(unstructured) Thompson sampling is an intriguing candidate from this perspective.

Second the most significant technical hurdle in finding a single optimal algorithm is the difficulty
of establishing concentration results for the number of suboptimal arm pulls within a regenerative
cycle whose length is dependent on the bandit strategy. Such concentration results would be needed
in two different limits: first, as the start time of the regenerative cycle approaches infinity (for the
asymptotic analysis of late stage regret); and second, as the load of the system increases (for the
analysis of early stage regret in the heavily loaded regime). Any progress on the open directions
described above would likely require substantial progress on these technical questions as well.
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