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S.1 Some Results From Convex Analysis

In this section we collect some results from infinite-dimensional convex analysis that will play an
important role in our analysis of the Dual Averaging algorithm.
Lemma S.1 (Asplund, 1968). Let f : X → (−∞,+∞] be proper lower semicontinuous. For a pair
(x0, ξ0) ∈ X ×X∗ the following are equivalent:

(i) f∗ is finite and Fréchet differentiable at ξ0 with Fréchet derivative Df∗(ξ0) = x0.

(ii) For some γ∗ ∈ ΓL,

f∗(ξ) ≤ f∗(ξ0) + 〈x0, ξ − ξ0〉+ γ∗(‖ξ − ξ0‖), ∀ ξ ∈ X∗ (1)

and f∗(ξ0) ∈ R.

(iii) For some γ ∈ ΓU ,

f(x) ≥ f(x0) + 〈x− x0, ξ0〉+ γ(‖x− x0‖), ∀x ∈ X (2)

and f(x0) ∈ R.

(iv) f∗ is finite at ξ0, dom f∗ is radial at ξ0, and xj → x0 in norm whenever

lim
j→∞
〈xj , ξ0〉 − f(xj) = f∗(ξ0) (3)

Any of the above conditions implies that 〈x0, ξ0〉 = f(x0) + f∗(ξ0) (in other words: the Fenchel-
Young inequality holds with equality) and that f(x0) = f∗∗(x0). The functions γ and γ∗ in (ii)
and (iii) form a pair of mutually dual functions.

Note that the function f in Lemma S.1 need not be convex. The following result will be essential to
our analysis:
Theorem S.1 (Strömberg, 2011). Let f : X → (−∞,+∞] be lower semicontinuous. Then f∗
is proper and essentially Fréchet differentiable if and only if f is a convex proper function that is
essentially strongly convex.

S.2 Dual Averaging in Continuous Time

In this section we use ideas from Kwon and Mertikopoulos (2014) and introduce a continuous-time
regret minimization problem related to the one in discrete-time discussed in Section 2.2. In fact, this
analysis will be crucial in proving the discrete-time regret bound (7) in Theorem 2.

S.2.1 Regret Minimization in Continuous Time on Reflexive Banach Spaces

Consider a reflexive Banach space X with dual X∗ and regularizer h on X . Furthermore, suppose
that uc : [0,∞)→ X∗ is a continuous-time reward process satisfying the following assumptions:
Assumption S.1. The reward process uc is locally integrable for any x ∈ X . That is, for all x ∈ X ,
rx : t 7→ 〈uct , x〉 is Lebesgue-integrable on any compact set K ⊂ [0,∞).
Assumption S.2. There exists M <∞ such that supx∈X |〈uct , x〉| ≤M for all t.

Let ηc : [0,∞) → (0,∞) be a non-increasing and piece-wise continuous learning rate process.
Furthermore, let U ct =

∫ t
0
ucτ dτ be the cumulative reward function. We consider the continuous-time

process xc : [0,∞)→ X given by

xct := Dh∗(ηct U
c
t ) (4)

Theorem S.2 (Continuous-Time Regret Bound). Let h be a regularizer function on X , let ηc be
non-decreasing and locally piecewise continuous. Suppose that the reward process uc satisfies
Assumptions S.1 and S.2. Then under (4) we have, for any x ∈ X , that

Rct(x) :=

∫ t

0

〈ucτ , x〉 dτ −
∫ t

0

〈ucτ , xcτ 〉 dτ ≤
h(x)− h

ηct
(5)

where h := infx∈X h(x).
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Theorem S.2. Let yct = ηct
∫ t
0
ucτ dτ . By linearity,

ηct

∫ t

0

〈ucτ , x〉 dτ = ηct
〈∫ t

0
ucτ dτ, x

〉
= 〈yct , x〉

Assume for now that ηc ∈ C1. If h is proper, then∫ t

0

〈ucτ , x〉 dτ =
〈yct , x〉
ηct

≤ h∗(yct ) + h(x)

ηct
=
h∗(yct )

ηct
+
h(x)

ηct
(6)

by the Fenchel-Young inequality. By Theorem 1, h∗ is essentially Fréchet differentiable with Fréchet
gradient Dh∗(y). Furthermore, yct is differentiable. Thus, applying the chain rule and using that
xct = Dh∗(yct ) = arg maxx∈X

(
〈x, yct 〉 − h(x)

)
= arg maxx∈X

(
〈x, yct 〉 − h(x)

)
we obtain

d

dt

h∗(yct )

ηct
=
ηct 〈Dh∗(yct ), ddty

c
t 〉 − h∗(yct ) η̇c(t)

(ηct )
2

=

〈
xct ,
(
ηctu

c
t + η̇ct

∫ t
0
uc(s, τ) dτ

)〉
ηct

− η̇ct
(ηct )

2
h∗(yct )

= 〈xct , uct〉+
η̇ct

(ηct )
2

(
〈xct , yct 〉 − h∗(yct )

)
= 〈xct , uct〉+

η̇ct
(ηct )

2
h(xct)

Now η̇ct ≤ 0 by assumption, and hence

d

dt

h∗(yct )

ηct
≤ 〈xct , uct〉+

η̇ct
(ηct )

2
h

Integrating from t = 0 to t = t yields

h∗(yct )

ηct
− h∗(yc0)

ηc(0)
≤
∫ t

0

〈xcτ , ucτ 〉 dτ + h

∫ t

0

η̇cτ
(ηcτ )2

dτ

=

∫ t

0

〈xcτ , ucτ 〉 dτ − h
(

1

ηct
− 1

ηc0

)
Now yc0 = 0, and hence h∗(yc0) = supx∈X −h(x) = −h, and so

h∗(yct )

ηct
≤
∫ t

0

〈xcτ , ucτ 〉 dτ −
h

ηct

Plugging this into (6), collecting terms and rearranging yields (5).

Now suppose that ηc is only piecewise continuous. Then there exists a sequence (ηc,i)∞i=1 of positive
nonincreasing C1 functions such that ηc,i → ηc pointwise a.e.. Let xc,it := Dh∗(ηc,it U ct ). Note
that Dh∗ is continuous by Theorem 1 and thus xc,it → xct pointwise. By Assumption S.2 we
have that |〈ucτ , xc,iτ 〉| < M for all τ, i and thus

∫ t
0
〈ucτ , xc,iτ 〉 dτ →

∫ t
0
〈ucτ , xcτ 〉 dτ by Dominated

Convergence.

S.2.2 Online Optimization in Continuous Time on Compact Metric Spaces

One can also obtain bounds on the regret in continuous time by using similar arguments as in
Section 3. While we do not make use of them in the main part of this article, these bounds may be of
independent interest.

We consider the setting of Section 3. Specifically, let (S, d) be a compact metric space, and let µ ∈ P ,
the set of Borel measures on S. Denote by B(s, r) = {s′ ∈ S : d(s, s′) < r} the open ball of radius
r centered at s. For p > 1 consider X = Lp(S, µ) and X = {x ∈ X : x ≥ 0 a.e., ‖x‖1 = 1},
the set of probability measures on S that are absolutely continuous w.r.t. µ and whose Radon-
Nikodym densities are p-integrable. Denote by DS := sups,s′∈S d(s, s′) the diameter of S and by
B(s, ϑct) ⊂ X the set of elements of X with support contained in B(s, ϑct). We need the following
continuous-time variant of Assumption 1:
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Assumption S.3. The reward process uc has modulus of continuity χ on S, uniformly in t. That is,
there exists χ ∈ Z such that |uct(s)− uct(s′)| ≤ χ(d(s, s′)) for all s, s′ ∈ S for all t.
Theorem S.3 (Continuous-Time Regret Bound on Metric Spaces). Let (S, d) be compact, and
suppose that Assumption S.3 holds. Let h be a regularizer function on X , and let ηc be non-
decreasing and locally piecewise continuous. Suppose further that ϑc : [0,∞) → (0,∞) is a
non-negative function and that the reward process uc satisfies Assumptions S.1 and S.2. Then, under
the process (4),

Rct ≤
sups∈S infx∈B(s,ϑct) h(x)

ηct
+ t χ(ϑct)−

h

ηct
(7)

Theorem S.3. Similar to the proof of Theorem 3.

Proposition S.1. Suppose that Assumption 2 holds with constants c0 > 0 and C0 <∞. Under the
Assumptions of Theorem S.3, with essentially strongly convex regularizer hφ the f -divergence of an
ω-potential φ, we have the following regret bound:

Rct
t
≤ min(C0 (ϑct)

Q, µ(S))

t ηct
fφ
(
c−10 (ϑct)

−Q)+ χ(ϑct) (8)

Proposition S.1. Similar to the proof of Proposition 1.

S.2.3 Consistency of Dual Averaging

It is quite intuitive to see that Dual Averaging would recover the greedy algorithm as the regularizer h
“approaches a constant”. In this section, we make this intuition precise.
Definition S.1 (Consistency of a Sequence of Regularizers). A sequence (h1, h2, . . . ) of regularizers
on X is consistent if there exists C ∈ R such that hi(x)→ C as i→∞ for all x ∈ X .

For s ∈ S, A ⊂ S, let d(s,A) = infs′∈A d(s, s′). For δ > 0, let B∗δ := {s ∈ S : d(s, S∗) < δ}.
Moreover, let ν|A denote the restriction of ν ∈ P(S) to A.
Proposition S.2. Suppose Assumption 2 holds and that (hi)i≥1 is a sequence of regularizers that
is consistent. Fix t and let U∗ := maxs∈S Ut(s) and S∗ := {s ∈ S : Ut(s) = U∗}. For i ≥ 1
let x∗t,i := Dh∗i (Ut) Then, for any δ > 0, we have that x∗t,i|(B∗δ )c → 0|(B∗δ )c (strongly) as i → ∞.
Equivalently,

∫
S∗
x∗i (s) ds→ 1 as i→∞.

Proposition S.2 shows that if the sequence of regularizers is consistent, the optimizers, in the limit,
collapse to distributions supported on the set of maximizers of Ut (as illustrated numerically in
Example S.2 in section S.5 of the supplementary material). If the maximizer of Ut is unique, we can
say the following:
Corollary S.1. In the setting of Proposition S.2, suppose that Ut admits a unique maximizer s∗t ∈ S.
Then x∗i weakly converges to the Dirac measure on s∗t as i→∞. We write x∗t,i ⇀ δs∗t .

S.3 Computing the Dual Averaging Optimizer

In this section we discuss some aspects concerning the computation of the optimizer in the Dual
Averaging update in the setting of online optimization on compact metric spaces with uniformly
continuous rewards. The results of this section are used for generating the Hannan-consistent
strategies in the repeated game in the Example in the paper as well as the examples in Section S.4,
and for performing the numerical benchmarks of the algorithms in Appendix S.5.

As pointed out in Section 3.2, it can be shown that for f -Divergences of ω-potentials, the Fréchet
differential Dh∗ in this case has a simple expression in terms of the dual problem, and the problem of
computing xt+1 = Dh∗(ηt

∑t
τ=1 uτ ) reduces to computing a scalar dual variable ν∗t . In particular,

one can show the following:
Proposition S.3 (Krichene, 2015). Let φ be an ω-potential with associated f -Divergence hφ on X .
Then

Dh∗φ(ξ) = φ(ξ + ν?)+ (9)

where ( · )+ denotes the positive part of ( · ), and ν? satisfies
∫
S
φ(ξ + ν?)+ dµ(s) = 1.

4



By Proposition S.3, the Fréchet derivative Dh∗φ at ξ = ηtUt is entirely determined by the dual
variable ν?, the unique ν such that f(ν) = 1, where f(ν) =

∫
S
φ(ηt(Ut(s) + ν?))+ dµ(s). Since f

is increasing by assumption on φ, ν? can be determined using a simple bisection method. To guide
the search for ν?t for t > 0 we can make use of the following result:

Proposition S.4. Suppose φ is convex and let ν?t the optimal dual variable determining Dh∗φ(ηtUt).
Then

ηt
ηt+1

ν?t −M ≤ ν?t+1 ≤
ηt
ηt+1

ν?t +
ηt − ηt+1

ηt+1
tM (10)

where ν?0 = η−10 φ−1(1). Moreover, for ηt = η t−β this interval has length ≈ (1 + β)M .

Proposition S.4. Since Ut ≡ 0, we have ν?0 = η−10 φ−1(1). Moreover, by definition we have∫
S

φ
(
ηt
(
Ut(s) + ν?t

))
+
dµ(s) =

∫
S

φ
(
ηt+1

(
Ut+1(s) + ν?t+1

))
+
dµ(s) = 1

If φ is convex, then so is φ( · )+ as z 7→ z+ is convex and nondecreasing. Therefore

1 =

∫
S

φ
(
ηt
(
Ut(s) + ν?t

)
+ (ηt+1 − ηt)Ut(s)− ηtν?t + ηt+1ν

?
t+1 + ηt+1ut+1(s)

)
+
dµ(s)

≤
∫
S

φ
(
ηt
(
Ut(s) + ν?t

))
+

+ φ
(
ηt
(
Ut(s) + ν?t

))′
+

(
(ηt+1 − ηt)Ut(s)

− ηtν?t + ηt+1ν
?
t+1 + ηt+1ut+1(s)

)
dµ(s)

≤ 1 +

∫
S

φ
(
ηt
(
Ut(s) + ν?t

))′
+

(
ηt+1ν

?
t+1 − ηtν?t + ηt+1M

)
dµ(s)

and hence, since φ′ ≥ 0, we must have that ηt+1ν
?
t+1 − ηtν?t + ηt+1M ≥ 0. Rearranging yields the

lower bound on ν?t+1. The other inequality is proven in a similar fashion by reversing the roles of
t and t + 1. Finally, to show that the interval has length ≈ (1 + β)M independent of t, note that
ηt
ηt+1

= (1 + 1
t )
β ≈ 1 + β

t , and so ηt−ηt+1

ηt+1
tM ≈ βM .

Having determined ν?t , we then have an explicit form of the distribution over S from which to sample
st+1. For this, a variety of established methods can be used, from simple rejection sampling in
low dimensions (employed in our simulations) to MCMC methods (e.g. slice sampling) in higher
dimensions. In cetain special cases, sampling from xt may be done very efficiently. For example, if
the losses are affine, the domain S is a hyperrectangle, and the potential is a generalized Exponential
Potential, then st+1 can be obtained by sampling from n independent truncated exponential random
variables. The main computational challenge is then to compute the integral in f . Off-the-shelf
numerical integration schemes work well if n is small, but are typically not applicable in higher
dimensions. Instead, one has to resort to other methods, such as Monte Carlo methods or sparse grids.

S.4 Additional Examples of Learning Nash Equilibria in Continuous Games

S.4.1 A Game With Unique Mixed Strategy Equilibrium

Consider the zero-sum game G2 between two players playing on the unit interval Si = [0, 1] with
payoff function given by

u(s1, s2) =
(1 + s1)(1 + s2)(1− s1s2)

(1 + s1s2)2
(11)

Since |Dsiu| ≤ 8 for any s−i ∈ [0, 1] the payoff function is Lipschitz. It can be shown that V = 4/π
and that this game has no pure and a unique mixed Nash equilibrium, with equilibrium density
xi(s) = 2

π
√
s(1+s)

the same for both players (Glicksberg and Gross, 1953). Note that xi is unbounded
and that xi ∈ Lp(Si, λ) for any 1 ≤ p < 2. This unboundedness is the reason for the slow
convergence of the empirical distributions to xi near zero that we can observe in Figure 1.
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Figure 1: Normalized histograms of the empirical distributions of play for G2 (200 bins)

S.4.2 A Game on a Non-Convex Domain

One of the most interesting features of the Dual Averaging algorithms discussed in Section 3 is that
they are applicable also in case of non-convex domains. We may therefore utilize them as a tool to
compute approximate Nash equilibria in continuous zero-sum games on non-convex domains. In
particular, consider a game G3 in which each Si = [0, 2]2 \ [0.4, 1]2 is an L-shaped subset of R2. It
is easy to see that the Lebesgue measure on this set is Q-regular with Q = 2, c0 = π

4 and C0 = π.

We define the metric d̃ on S1 between any two points a, b ∈ Si as the length (in the Euclidean
distance) of the shortest path between a and b that is entirely contained in Si. The payoff function u
is given as u(s1, s2) = d̃(s1, s2)− 1

10 d̃(s1, 0), which can be interpreted as a “hide and seek” game
in which player 1 would like to get as far away from player 2 as possible, while at the same time
having a preference for being near the origin. Player 2 instead wants to be as close to player 1 as
possible. Intuitively, this game will not admit a pure Nash equilibrium. Given the geometry of
the problem, computing a mixed Nash equilibrium (whose existence follows from a Theorem by
Glicksberg (1950)) poses a challenge.

Instead, having both players play Entropy Dual Averaging on Lp(Si, λ), we observe in Figure 2 that
they indeed incur sublinear regret, and that the empirical distributions of play do converge. Figure 3
shows Kernel Density Estimates (KDE) of x̂1t and x̂2t after t = 7500 iterations.

100 101 102 103 104

t

10-2

10-1

100

R
t/
t

Rt/t  player 1

Rt/t  player 2

Figure 2: Time-Average Regrets (log-log scale) for Generalized Hedge in G3

S.5 Numerical Results and Comparison With Other Methods

In this section, we review some algorithms for online convex optimization over subsets of Rn that
have been proposed in the literature, and compare them with our Dual Averaging method for online
optimization on compact metric spaces with uniformly continuous rewards from Section 3. Such
algorithms are often formulated in terms of loss functions `τ , but clearly these algorithms apply just
as well by setting `τ = −uτ , as long as the set S is convex and the rewards are concave and satisfy
the additional assumptions made by the algorithms. Table 1 summarizes the regret bounds of each
method, with the corresponding assumptions on the feasible set and the loss functions.

The bound on Dual Averaging in Table 1 is obtained by assuming the regularizer to be the f -
divergence associated to an ω-potential and making an assumption on the asymptotic growth rate of
the function fφ as follows:
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Figure 3: Kernel Density Estimates of x̂1t (left) and x̂2t (right) in G3 for t = 7500

Corollary S.2. Suppose that fφ(x) ≤ Cφ x1+κ for some κ > 0 andCφ <∞. Suppose further the re-
wards are α-Hölder continuous, i.e. χ(r) = Cα r

α, and that hφ is uniformly essentially strongly con-

vex with modulus γ(r) = K
2 r

2. Then the learning rate ηt = η t−β with η = 1
M

( 1+ κ
αQ

2+ κ
αQ

C0Cφ
c1+κ0 ϑκQ

)1/2
and β = 1

2+ κ
αQ

yields the following bound:

R
t
≤
(
2MC̃ϑ−

κQ
2 + Cαϑ

α
)
t
− 1

2+ κ
α
Q (12)

for any ϑ < r0, where C̃ =

√
2+ κ

αQ

1+ κ
αQ

C0Cφ

c1+κ0

.

Algorithm Assumptions Parameters Bound onRt/t

GP / OGD
`t convex
‖∇`t‖2 ≤ G ηt = 1√

t

(
D2

2 +G2
)
t−1/2 − G2

2 t
−1

`t H-strongly convex
‖∇`t‖2 ≤ G ηt = 1

Ht
G2

2H
1+log t

t

FTAL / ONS `t α-exp-concave
‖∇`t‖2 ≤ G β = min( 1

8GD ,
α
2 ) 64n(α−1 +GD) 1+log t

t

EWOO `t α-exp-concave ηt = α n
α

1+log(1+t)
t

DA with hφ

S Q-regular with c0, C0

ut α-Hölder-continuous
‖ut‖∗ ≤M

fφ(x) ≤ Cx1+ε ∀x ≥ 1

ηt = η t
− 1

2+ κ
α
Q

(
2MC̃ϑ−

κQ
2 + Cαϑ

α
)
t−

1
2+nκ

Table 1: Regret bounds of different online optimization algorithms

S.5.1 Optimizing Sequences of Convex Functions over Convex Sets

Zinkevich (2003) formalized the online convex optimization problem, in which the feasible set
S and the loss functions are assumed to be convex. He proposed a Greedy Projection method
(GP), summarized in Algorithm 1, which we will also refer to as Online Gradient Descent (OGD).
Theorem 1 in (Zinkevich, 2003) shows that when ‖∇`t‖ is uniformly bounded, the regret of GP
with learning rates ηt = 1/

√
t grows as O(

√
t). Hazan et al. (2007) show that it is possible to

obtain logarithmic regret under additional assumptions on the loss functions. In particular, if the
losses are H-strongly convex then GP with learning rates ηt = 1

Ht has regretRt ≤ M2

2H (1 + log t).
They also propose methods for uniformly exp-concave losses, that is, when there exists α > 0 such
that exp(−α`t) is concave for all t. These methods, Exponentially Weighted Online Optimization
(EWOO) and Follow The Approximate Leader (FTAL), are summarized in Algorithm 2 and 3 (their
Online Newton Step (ONS) algorithm is very similar to FTAL and and therefore omitted). The
respective regret bounds are given in Theorems 4 and 7 in (Hazan et al., 2007) and are summarized
in Table 1.
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Algorithm 1 Greedy Projection method (GP) a.k.a.
Online Gradient Descent (OGD), with input sequence
(`t) and learning rates (ηt)

1: for t ∈ N do
2: Let s̃t+1 = st − ηt+1∇`t(st)
3: Update: xt+1 = δst+1

, where

st+1 = arg min
s∈S

‖s− s̃t+1‖

Algorithm 2 Exponentially Weighted Online Opti-
mization method (EWOO), with input sequence (`t)
and learning rate α.

1: for t ∈ N do
2: Let Lt =

∑t
τ=1 `τ

3: Let x̃t+1(s) = e−αLt(s)∫
S
e−αLt(s)λ(ds)

4: Update: xt+1 = δst+1 , where

st+1 = Es∼x̃t+1
[s]

Algorithm 3 Follow The Approximate Leader
(FTAL) with input sequence (`t) and parameter β.

1: for t ∈ N do
2: Let gτ = ∇`τ (sτ )

3: Let At =
∑t
τ=1 gτ (gτ )T and

s̃t+1 = (At)
†(∑t

τ=1 gτ (gτ )T sτ − 1
β gτ

)
,

and define ‖s‖At = 〈s,Ats〉.
4: Update: xt+1 = δst+1

, where

st+1 = arg min
s∈S

‖s− s̃t+1‖At

Algorithm 4 Dual Averaging (DA) with input se-
quence (ut), learning rates (ηt), and regularizer h.

1: for t ∈ N do
2: Let Ut =

∑t
τ=1 uτ

3: Update

x(t+1) = Dh∗(ηtUt)

= arg max
x∈X

〈
ηtUt, x

〉
− h(x)

Example S.1 (Convex Quadratics on a Hypercube). As a first example, we consider quadratic reward
functions of the form ut(s) = − 1

2 (s − µt)
TQt(s − µt) − ct, where Qt is p.d. symmetric, and

ct ≥ 0. The domain is S = {‖s‖∞ ≤ 0.5} with DS =
√
n, and the rewards are generated randomly,

L-Lipschitz with L = 5 and uniformly bounded by ‖ut‖∞ ≤ 3.75 and ‖ut‖4 ≤ 1.6. Figure 4 shows
the time-average regrets Rt/t in dimensions n = 2 and n = 3 for time horizons of T = 104 and
T = 4 · 103, respectively. Displayed are the empirical means over N = 2500 runs of the algorithm
(solid), the associated theoretical bounds1 (dashed), and the regions between the associated 10% and
90% quantiles (shaded).

Not surprisingly, those algorithms that exploit the strong convexity of the problem (OGD, FTAL,
EWOO) achieve better asymptotic rates than GP (which requires only convexity) or DA (which makes
no convexity assumptions at all). Still, the regret of DA is not significantly higher than that of GP and
OGD, and is competitive with FTAL over the simulation horizon. We note that the theoretical regret
bounds for both DA instances are much closer to the actual regret of the algorithm.

Figure 4: Time-average regret of different online learning algorithms

Table 2 shows the decay rates (which correspond to the slopes in the log-log plots) of empirical
means and theoretical bounds in Figure 4 at the end of the simulation horizon. There is a relatively
good match between bounds and simulations. Except for FTAL and EWOO, all algorithms exhibit a

1For easier readability we omitted the bound on FTAL, which in this example is much higher than the others.
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decay that is faster than that of the associated bound2. When making this comparison, one must
keep in mind that all these bounds are worst-case in nature, and that it is not entirely clear what
characterizes a worst-case sequence of reward functions (see Example S.2 for a partial remedy).

n = 2 n = 3
Algorithm simulation theory simulation theory
GP -0.564 -0.497 -0.515 -0.495
OGD -0.920 -0.900 -0.892 -0.888
FTAL -0.780 -0.900 -0.705 -0.888
EWOO -0.809 -0.900 -0.676 -0.888
DA, Exp -0.519 -0.446 -0.481 -0.439
DA, 1.5-Norm -0.452 -0.333 -0.396 -0.286

Table 2: Rates in Figure 4

Potential simulation theory
ExpPot -0.557 -0.446
1.01-Norm -0.546 -0.495
1.05-Norm -0.477 -0.476
1.5-Norm -0.307 -0.333
1.75-Norm -0.279 -0.286

Table 3: Rates in Figure 5

Example S.2 (Alternating Affine Losses on a Hypercube). In this example we consider a situation
in which the greedy algorithm mentioned in Section 3 fails3, and offer a simulation that illustrates the
result of Proposition S.2. We consider a sequence of affine reward functions on S = {‖s‖∞ ≤ 0.5} in
R2, alternating in such a way that any maximizer s?t of Ut is in fact a minimizer of Ut+1. Specifically,
we choose ut(s) = −〈at, s〉 − ct, where

a0 = [L/2, 0], c0 = L/4, at = [(−1)tL, 0], ct = L/2

for t ≥ 1. It is easy to see that in this case the greedy algorithm incurs time-average regret
Rt/t = L + o(1).

Figure 5 shows regrets for the greedy algorithm and DA with Exponential and different ρ-Norm
potentials. Besides the obvious failure of the greedy algorithm, we observe that for p-Norm potentials
performance decreases as ρ ↘ 1, which can be explained by Proposition S.2. Nevertheless, DA
guarantees sublinear regret for any ρ > 1 (with theoretical asymptotic rate approaching t−1/2 as
ρ → 1), though at the cost of much higher constants in the bound as ρ ≈ 1. Table 3 shows that
empirical and theoretical rates in this instance (which is intuitively hard) are very close, providing
further support for the theoretical analysis of DA. Finally, Figure 6 for each potential shows the
negative entropy DKL(xt||λ) of xt. From this we observe that the minimizers x?[ρ] are indeed more
and more concentrated around their mode as ρ↘ 1.

Figure 5: Failure of the Greedy Policy Figure 6: Negative entropy of xt

2For EWOO this discrepancy is likely due to numerical inaccuracies at the very small regrets for large t,
while for FTAL the simulation may not have reached the asymptotic regime yet.

3In fact, any deterministic policy will incur linear regret in a nontrivial adversarial setting.
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S.6 Proofs

Proof of Theorem 1

Theorem 1. Essential Fréchet differentiability, the characterization (5) of the Fréchet gradient in (i)
and (ii) follow from Theorem S.1, Lemma S.1, and the definition of uniform essential strong convexity.
To prove (6), let ξ1, ξ2 ∈ X∗ and let xi = Df∗(ξi) = arg maxx∈X〈ξi, x〉 − f(x). Then, by first-
order optimality, 〈z − ξi, x− xi〉 ≥ 0, ∀ z ∈ ∂f(xi),∀x ∈ X . In particular,

〈z1 − ξ1, x2 − x1〉 ≥ 0

〈z2 − ξ2, x1 − x2〉 ≥ 0

for all zi ∈ ∂f(xi), i = 1, 2. Summing these inequalities we find that
〈ξ1 − ξ2, x1 − x2〉 ≥ 〈z1 − z2, x1 − x2〉

By uniform strong convexity, we further have that f(x) ≥ f(xi) + 〈x− xi, zi〉+ γ(‖x− xi‖) for
all x ∈ X . In particular,

f(x1) ≥ f(x2) + 〈x1 − x2, z2〉+ γ(‖x1 − x2‖)
f(x2) ≥ f(x1) + 〈x2 − x1, z1〉+ γ(‖x2 − x1‖)

and summing these inequalities yields
〈z1 − z2, x1 − x2〉 ≥ 2γ(‖x1 − x2‖)

On the other hand, 〈ξ1 − ξ2, x1 − x2〉 ≤ ‖ξ1 − ξ2‖∗‖x1 − x2‖ by definition of the dual norm, so

γ̃(‖x1 − x2‖) ≤
1

2
‖ξ1 − ξ2‖∗

using the definition of γ̃. If γ̃ is strictly increasing it admits a (strictly increasing) inverse γ̃−1.
Applying γ̃−1 to both sides then yields (6).

Proof of Theorem 2

Theorem 2. We consider the continuous-time reward and learning rate processes uc and ηc given by
uct := udte and ηc(t) := ηbtc∨1, respectively, where dre := inf{n ∈ Z : n ≥ r} and brc = sup{n ∈
Z : n ≤ r} for all r ∈ R and a ∨ b = min(a, b). In doing so we follow the ideas of the analysis
of Kwon and Mertikopoulos (2014) (our problem is, however, different as our reward vectors are
infinite-dimensional). With this

xk = Dh∗
(
ηk−1

k−1∑
j=1

uj

)
= Dh∗

(
ηc(k − 1)

∫ k−1

0

ucτ dτ

)
= xck−1

and thus, for j ≥ 1 and t ∈ (j − 1, j), we have
|〈uct , xct〉 − 〈uj , xj〉| = |〈uj , xct − xcj−1〉| ≤ ‖uj‖∗‖xct − xcj−1‖ (13)

by definition of the dual norm. Therefore
|〈uct , xct〉 − 〈uj , xj〉| ≤ ‖uj‖∗‖Dh∗(yct )−Dh∗(ycj−1)‖ ≤ ‖uj‖∗ γ̃−1

(
‖yct − ycj−1‖∗/2

)
(14)

where the second inequality follows from Theorem 1. From the definition of yct , we have

‖yct − ycj−1‖∗ =

∥∥∥∥ηc(j − 1)

∫ t

j−1
ucτ dτ

∥∥∥∥
∗

= ηj−1‖uj‖∗(t− j + 1)

and therefore∣∣∣∣∫ k

0

〈ucτ , xcτ 〉dτ −
k∑
j=1

〈uj , xj〉
∣∣∣∣ ≤ k∑

j=1

∫ j

j−1
|〈ucτ , xcτ 〉 − 〈uj , xj〉| dτ

≤
k∑
j=1

‖uj‖∗
∫ j

j−1
γ̃−1

(
ηj−1(t− j + 1)

2
‖uj‖∗

)
dτ

≤
k∑
j=1

‖uj‖∗γ̃−1
(ηj−1

2
‖uj‖∗

)
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where the last equality follows since γ̃−1 is non-decreasing (a consequence of γ being sublinear).
Finally, we note that

k∑
j=1

〈uj , x〉 −
k∑
j=1

〈uj , xj〉 =

∫ k

0

〈ucτ , x〉 dτ −
k∑
j=1

〈uj , xj〉

≤
∣∣∣∣∫ k

0

〈ucτ , x〉 dτ −
∫ k

0

〈ucτ , xcτ 〉dτ
∣∣∣∣+

∣∣∣∣∫ k

0

〈ucτ , xcτ 〉dτ −
k∑
j=1

〈uj , xj〉
∣∣∣∣

The bound (8) then follows from Theorem S.2 and the above.

Proof of Corollary 2

Corollary 2. It is easy to show that γ̃−1
(ηj−1

2 ‖uj‖∗
)
≤ (2C)−1/κ η

1/κ
j−1 ‖uj‖

1/κ
∗ . If ‖uj‖∗ ≤M for

all j, then Rt(x) ≤ h(x)−h
ηct

+ (2C)−1/κM1+1/κ
∑t
τ=1 η

1/κ
τ−1. In particular, if ηt = η t−β , then (10)

follows from the bound
∑t
τ=1 (j − 1)

−β/κ ≤
∫ t
0
v−β/κdv = κ

κ−β t
1− βκ

Proof of Theorem 3

Theorem 3. The spaceX = Lp(S) is uniformly convex (Clarkson, 1936), and thus reflexive (Milman,
1938). Its dual is X∗ = Lq(S, µ) for q = p

p−1 and 〈x, ξ〉 =
∫
S
x(s)ξ(s)µ(ds) for x ∈ X and

ξ ∈ X∗. Fix t <∞. Then for any s ∈ S and all x ∈ B(s, ϑt)

〈Ut, x〉 =

∫
B(s,ϑt)

Ut(s
′)x(s′) dµ(s′) =

∫
B(s,ϑt)

t∑
τ=1

uτ (s′)x(s′) dµ(s′)

≥
t∑

τ=1

∫
B(s,ϑt)

(
uτ (s)− χ(ϑt)

)
x(s′) dµ(s′) = Ut(s)− t χ(ϑt)

and therefore

Rt = sup
s∈S

Ut(s)−
t∑

τ=1

〈uτ , xτ 〉

≤ sup
s∈S

inf
x∈B(s,ϑt)

〈Ut, x〉+ t χ(ϑt)−
t∑

τ=1

〈uτ , xτ 〉

= sup
s∈S

inf
x∈B(s,ϑt)

Rt(x) + t χ(ϑt)

and thus (7) follows from (5) in Theorem S.2.

Proof of Proposition 1

Proposition 1. By convexity of f , we have that h(x) = hφ(x) ≥ fφ
(∫
S
dx
dµdµ(s)

)
= fφ(1) = 0 for

all x ∈ X , and thus h = 0. Furthermore, choosing x as the uniform Radon-Nikodym density w.r.t. µ
on B(s, ϑt), i.e.,

x(s′) =
1B(s,ϑt)(s

′)

µ(B(s, ϑt))
we have that

h(x) =

∫
Si

fφ(x(s′))µ(ds′) =

∫
B(s,ϑt)

fφ

(
1

µ(B(s, ϑt))

)
µ(ds′)

≤ min
(
C0(ϑt)

Q, µ(S)
)
fφ

(
1

µ(B(s, ϑt))

)
where we used the assumption of r0-local Q-regularity and the fact that ϑt ≤ r0. It is easy to see that
fφ is increasing on [1,∞). Indeed, f ′φ(x) = φ−1(x), and φ−1(x) is increasing by assumption with
φ−1(1) ≥ 0. Moreover, since µ(S) = 1 by assumption, we have that µ(B(s, ϑt)) ≤ 1 for any s, so

h(x) ≤ min
(
C0(ϑt)

Q, µ(S)
)
fφ
(
c−10 (ϑt)

−Q)
Plugging this into the general bound (11) of Theorem 3 yields (13).
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Proof of Corollary 3

Corollary 3. Plugging γ̃(r) = 2r, fφ(x) = x log x and χ(r) = Cαr
α into (13) we find that

Rt
t
≤ C0

c0 t ηt
log
(
c−10 ϑ−Qt

)
+ Cαϑ

α
t +

M2

t

t∑
τ=1

ητ−1

Letting ηt = η
√

log t t−β we have that

t∑
τ=1

ητ−1 ≤ η
√

log t

t∑
τ=1

t−β ≤ η
√

log t

t∑
τ=1

∫ τ

τ−1
z−βdz = η

√
log t

∫ t

0

z−βdz =
η
√

log t

1− β
t1−β

and therefore

Rt
t
≤ C0

c0η

tβ−1√
log t

log
(
c−10 ϑ−Qt

)
+ Cαϑ

α
t +

ηM2

1− β
√

log t t−β

Choosing β = 1/2 and ϑt = ϑ
1
α (log t)

1
2α t−

β
α this becomes, after dropping a 1/ log t term,

Rt
t
≤
(
C0

c0 η

(
log(c−10 ϑ−Q/α) +

Q

2α

)
+ Cαϑ+ 2ηM2

)√
log t

t

as ϑt < r0 since
√

log t/t < ϑ−1rα0 . Then choosing η = 1
M

√
C0Q
2c0

log(c−10 ϑ−Q/α) + Q
2α gives

Rt
t
≤
(

2M

√
2C0

c0

(
log(c−10 ϑ−Q/α) +

Q

2α

)
+ Cαϑ

)√
log t

t

Proof of Theorem 4

For the proof of Theorem 4 we will make use of a few intermediate results.

Proposition S.5. Suppose Assumption 2 holds. Then

Rt = sup
x∈X

Rt(x) = sup
x∈P

Rt(x) = sup
s∈S

Ut(s)−
∑t
τ=1〈uτ , xτ 〉 (15)

Denote by 1A the indicator function of the set A, i.e. 1A(s) = 1 if s ∈ A and 1A(s) = 0 if s 6∈ A.
We will also make use of the following Lemma:

Lemma S.2. Let (S, d) be a compact metric space and let µ be an r0-locally Q-regular measure on
S. For p ≥ 1 let X p := {x ∈ Lp(S, µ) : x ≥ 0 a.s., ‖x‖1 = 1}. Suppose further that f : S → R is
continuous. Then

sup
s∈S

f(s) = sup
x∈P

∫
S

f(s) dx(s) = sup
x∈Xp

∫
S

f(s) dx(s), ∀ p ∈ [0,∞] (16)

Lemma S.2. The first equality follows directly by observing that Borel measures measures include
measures with finite support. Clearly supx∈P

∫
S
f(s) dx(s) ≥ supx∈Xp

∫
S
f(s) dx(s) since X p ⊂

P for all p ∈ [1,∞]. Since Lp ⊂ Lq for all q ≥ p it suffices to show the reverse inequality holds for
p =∞. Since S is compact and f is continuous, there exists a maximizer s? of f on S. Let ε > 0.
By continuity, there exists δ > 0 such that |f(s) − f(s′)| ≤ ε whenever d(s, s′) < δ. Moreover,
by local Q-regularity of µ we have that µ(B(s?, δ)) > 0. Now let x(s) = 1

µ(B(s?,δ)) 1B(s?,δ)(s).
Clearly x ∈ X∞, and∫
Si

f(s) dx(s) =
1

µ(B(s?, δ))

∫
B(s?,δ)

f(s) dλ(s) ≥ 1

µ(B(s?, δ))

∫
B(s?,δ)

(f(s?)− ε) dλ(s) = f(s∗)− ε

Now let ε↘ 0.
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Proposition S.5. Recall that

Rt(x) =

t∑
τ=1

〈uτ , x〉 −
t∑

τ=1

〈uτ , xτ 〉 =

∫
S

Ut(s) dx(s)−
t∑

τ=1

〈uτ , xτ 〉

Clearly Ut is continuous (in fact, with modulus of continuity t χ(r)) on S for any t < ∞. The
equivalence of the suprema then follows from a direct application of Lemma S.2.

Theorem 4. Since S is compact there exist sa, sb ∈ S such that d(sa, sb) = DS . Let xa = δsa and
xb = δsb , where δs denotes the Dirac measure on S at s. Let w : R → R be any function with
modulus of continuity χ such that ‖w(d( · , sb))‖q ≤M . Define v : S → R by v(s) = w(d(s, sb)).
Using the triangle inequality it is easy to see that v also has modulus of continuity χ. Now observe
that

〈v, xa − xb〉 = v(sa)− v(sb) = w(d(sa, sb)) = w(DS)

Let V1, . . . , V2 a sequence of i.i.d. Rademacher random variables, i.e. P(Vi = +1) = P(Vi = −1) =
1
2 , and consider the (random) sequence of reward vectors (uτ )tτ=1 with ut = Vtv. By Proposition S.5
we have thatRt = supx∈P Rt(x), and thus

E[Rt] = E
[

sup
x∈P

t∑
τ=1

〈uτ , x〉 −
t∑

τ=1

〈uτ , xτ 〉
]
≥ E

[
max

x∈{xa,xb}

t∑
τ=1

〈uτ , x〉
]
− E

[ t∑
τ=1

〈uτ , xτ 〉
]

= E
[

max
x∈{xa,xb}

t∑
τ=1

Vτ 〈v, x〉
]
− E

[ t∑
τ=1

Vτ 〈v, xτ 〉
]

Observe that the second expectation is zero for any sequence of (xτ )tτ=1 with xτ measurable with
respect to σ(V1, . . . , Vτ−1), i.e. any online algorithm. Noting that max(a, b) = 1

2 (a+ b) + 1
2 |a− b|

we thus have that

E[Rt] ≥
1

2
E
[ t∑
τ=1

Vτ 〈v, xa + xb〉
]

+
1

2
E
[ ∣∣∣∣ t∑

τ=1

Vτ 〈v, xa − xb〉
∣∣∣∣]

=
w(DS)

2
E
[ ∣∣∣∣ t∑

τ=1

Vτ

∣∣∣∣] ≥ w(DS)

2
√

2

√
t

where the last step follows from an application of Khintchine’s inequality (Haagerup, 1981).

Proof of Proposition 2

Lemma S.3. Let C ∈ R and 0 < β ≤ 1. The function v : [0,∞) given by v(r) = Crβ is Hölder
continuous with modulus of continuity χ(r) = |C|βrβ .

Lemma S.3. Noting that |x+ y|β ≤ |x|β + |y|β for any x, y ∈ R we find with x = Cr1 − Cr2 and
y = Cr2 for any r1, r2 ≥ 0 that |C|rβ1 − |C|r

β
2 ≤ |C|β |r1 − r2|β . Exchanging the roles of r1 and r2

then yields
∣∣Crβ1 − Crβ2 ∣∣ ≤ |C|β |r1 − r2|β .

Proposition 2. With sa, sb as in the proof of Theorem 4, choose

w(r) = min
(
C1/α
α , M‖d( · , sb)α‖−1q

)
rα

Then clearly ‖w(d( · , sb))‖q ≤M by construction. Moreover, w has modulus of continuity χ̃(r) ≤
Cαr

α by Lemma S.3. The result follows from observing that ‖d( · , sb)α‖q ≤ ‖Dα
S ‖q = Dα

S .
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Proof of Proposition S.2

Proposition S.2. Fix t < ∞ and let δ > 0. Consider x ∈ X with ε :=
∫
(B∗δ )

c x(s)µ(ds) > 0.
and define the function κ : R+ → R+ as κ(u) = sups∈(B∗u)c Ut(s). Clearly, κ is decreasing,
κ(u) < U∗ for u > 0 by definition of S∗, and continuous (by continuity of Ut). We then have that
Ut(s) < U∗ − κ(d(s, S∗)) for all s ∈ S. Let 0 < δ′ < χ−1(κ(δ)2 t ) such that µ(B∗δ′) > 0. Such a δ′
always exists by Q-regularity of µ. Consider

x̃(s) = x(s)1B∗δ (s) +
ε

µ(B∗δ′)
1B∗

δ′
(s)

Clearly, x̃ ∈ X . Furthermore,

(∗) :=

∫
S

ηtUt(v)x̃(v)µ(dv)− hi(x̃)−
∫
S

ηkUk(v)x(v)µ(dv) + hi(x)

=
ε

µ(B∗δ′)

∫
B∗
δ′

ηkUk(v)µ(dv)−
∫
(B∗δ )

c

ηtUk(v)x(v)µ(dv)− (hi(x̃)− hi(x))

≥ ε ηk(U∗ − tχ(δ′))− εηt(U∗ − κ(δ))− (hi(x̃)− hi(x))

≥ ε ηt(κ(δ)− tχ(δ′))− (hi(x̃)− hi(x))

>
ε ηt κ(δ)

2 t
− (hi(x̃)− hi(x))

Now hi(x̃)− hi(x)→ 0 as i→∞ by consistency of (hi)i≥0. Hence there exists j <∞ such that
(∗) > 0 and thus x 6= x∗j for all i ≥ j. Since ε was arbitrary, this shows that

∫
(B∗δ )

c x
∗
i (s)µ(ds)→ 0

as i→∞.

Proof of Corollary S.1

Corollary S.1. Let f : S → R be continuous and bounded, say |f(s)| ≤M for all s ∈ S. Let ε > 0.
Since S is compact, f is uniformly continuous, i.e. ∃ δ > 0 such that |f(s)− f(s∗)| < ε/2 for all
s ∈ B∗δ . By Corollary S.2 there exists j <∞ such that x∗i ((B

∗
δ )c) < ε

4M for all i > j. Hence∫
S

|f(s)− f(s∗)|x∗i (s)λ(ds) < ε/2

∫
B∗δ

x∗i (s)µ(ds) + 2M

∫
(B∗δ )

c

x∗i (s)µ(ds) < ε

for all i > j.

Proof of Proposition 3

Proposition S.6. Suppose G has value V and consider a sequence of plays (s1t )t≥1, (s2t )t≥1 and
suppose that player 1 has sublinear realized regret. Then

lim inf
t→∞

1

t

t∑
τ=1

u(s1τ , s
2
τ ) ≥ V (17)

Proposition S.6. This proof uses similar arguments as Theorem 7.2 in Cesa-Bianchi and Lugosi
(2006), with modifications to accommodate our more general setting of functions on metric spaces.

Since player 1 has sublinear (realized) regret, by (18) it suffices to show that

sup
s1∈S1

1

t

t∑
τ=1

u(s1, s2τ ) ≥ V.

Now clearly sups1∈S1
f(s1) = supx1∈P1

∫
Si
f(s) dx1(s) for any f measurable, thus we may equiv-

alently show that supx1∈P1

1
t

∑t
τ=1

∫
S1
u(s1, s2τ ) dx1(s1) ≥ V . Observe that, for all x1 ∈ P1,

1

t

t∑
τ=1

∫
S1

u(s1, s2τ ) dx1(s1) =

∫
S1

1

t

t∑
τ=1

u(s1, s2τ ) dx1(s1)

=

∫
S1

1

t

t∑
τ=1

(∫
S2

u(s1, s) dδs2τ (s)
)
dx1(s1)

= ū(x1, x̂2t )
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where x̂2t (B) := 1
t

∑t
τ=1 1B(s2τ ) for any Borel set B ⊂ S2. Since x̂2t ∈ P2 we thus have that

sup
x1∈P1

ū(x1, x̂2t ) ≥ inf
x2∈P2

sup
x1∈P1

ū(x1, x2) = V

Proposition 3. Using the fact that the payoff of player 2 is the negative of player 1, we have from
Proposition S.6 and the fact that the game has a value that

lim inf
t→∞

1

t

t∑
τ=1

−u(s1τ , s
2
τ ) ≥ −V

and thus

lim sup
t→∞

1

t

t∑
τ=1

u(s1τ , s
2
τ ) ≤ V

Combining this with (17) yields that limt→∞
1
t

∑t
τ=1 u(s1τ , s

2
τ ) = V .

Proof of Theorem 5

In the proof of the theorem we will use the following Lemma:

Lemma S.4. The functions g1(x2) := supx1∈P1
ū(x1, x2) and g2(x1) := infx2∈P2

ū(x1, x2) are
continuous with respect to the weak topology.

Lemma S.4. It suffices to show that g−11 ((−∞, a)) and g−1((b,∞)) are open, since the sets of the
form (−∞, a) and (b,∞) form a subbase for the topology of R. Observe first that u is continuous.
Indeed, by Assumption 3, we have for any s, t ∈ S1 × S2 that

|u(s1, s2)− u(t1, t2)| ≤ |u(s1, s2)− u(s1, t2)|+ |u(s1, t2)− u(t1, t2)|
≤ χ2(d2(s2, t2)) + χ1(d1(s1, t1))

and so for any ε > 0 there exists δ > 0 such that |u(s1, s2) − u(t1, t2)| < ε whenever (d1 ×
d2)(s, t) < δ. Since u is continuous on the compact set S1 × S2 it is bounded, i.e. there exists
M <∞ such that |u(s1, s2)| ≤M for all s ∈ S. This implies that ū(x1, x2) is 2M -Lipschitz w.r.t
the Lévy-Prokhorov metric on P1 × P2, hence in particular (jointly) continuous w.r.t. the weak
(product) topology. Let π2 : P1 × P2 → P2 denote the canonical projection onto P2, which by
definition of the product topology is continuous. Together with the continuity of ū this implies
that g−11 ((b,∞)) = π2 ◦ ū−1((b,∞)) is open. Furthermore, note that ū(x1, x2) < a, ∀x1 ∈ P1

whenever g1(x) < a, and hence for any x2 ∈ P2, the set (x1, x2) ∈ g−11 ((−∞, a)) is open. That is,
there exists an open cover of P1 × {x2}. Now P1 is compact in the weak topology, which means
we can find a finite subcover {U jx2}

nx2
j=1 such that

⋂nx2
j=1 U

j
x2 ⊃ P1 × {x2}. Taking the union over all

x2 ∈ g−1((−∞, a)) we have that g−1((−∞, a)) =
⋃
x2∈g−1((−∞,a))

⋂nx2
j=1 U

j
x2 , which is an open

set. This shows that g1 is continuous. The argument for showing continuity of g2 is essentially the
same.

Theorem 5. Note that both Pi are metrizable and compact in the weak topology (as each Si is
compact), and hence P1 × P2 by Tychonoff’s theorem. Therefore it suffices to show that with
probability 1, the weak limit of any weakly converging subsequence of (x̂t)

∞
t=0 is a Nash equilibrium.

Let (x̂1θ, x̂
2
θ)
∞
θ=1 be such weakly convergent subsequence, and (z1, z2) ∈ P1 ×P2 its weak limit. We

will show that whenever a given realization of plays (s1t ), (s2t ) has sublinear regret for both players,
(z1, z2) is a Nash Equilibrium, i.e.,

sup
x1∈P1

ū(x1, z2) = V = inf
x2∈P2

ū(z1, x2). (18)
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Let g1(x2) := supx1∈P1
ū(x1, x2) and g2(x1) := infx2∈P2

ū(x1, x2), which by Lemma S.4 are
continuous w.r.t. the weak topology. Hence, using that x̂iθ ⇀ zi for i = 1, 2, (18) is equivalent to

lim
θ→∞

sup
x1∈P1

ū(x1, x̂2θ) = V, (19a)

lim
θ→∞

inf
x2∈P2

ū(x̂1θ, x
2) = V. (19b)

We first show (19a). By assumption, the game has value V , i.e. it holds that
infx2∈P2

supx1∈P1
ū(x1, x2) = V and thus, in particular, that

lim inf
θ→∞

sup
x1∈P1

ū(x1, x̂2θ) ≥ V. (20)

Now, suppose that for a realization (s1τ ), (s2τ ), the regret of the second player is sublinear, i.e.

lim sup
t→∞

1

t

(
sup
x1∈P1

t∑
τ=1

∫
S1

u(s1, s2τ ) dx1(s1)−
n∑
τ=1

u(s1τ , s
2
τ )

)
≤ 0.

Then by Proposition 3, limt→∞
1
t

∑t
τ=1 u(s1τ , s

2
τ ) = V , and we have

V ≥ lim sup
t→∞

sup
x1∈P1

1

t

t∑
τ=1

∫
S1

u(s1, s2τ ) dx1(s1)

= lim sup
t→∞

sup
x1∈P1

∫
S1

1

t

t∑
τ=1

u(s1, s
2
τ ) dx1(s1)

= lim sup
t→∞

sup
x1∈P1

ū(x1, x̂2t )

≥ lim sup
θ→∞

sup
x1∈P1

ū(x1, x̂2θ).

Combining the last inequality with (20) proves (19a). The argument for (19b) is essentially the same,
modulo some sign changes.

This proves that for any realization with sublinear regret for both players, all weak limit points of
the sequence (x̂1t , x̂

2
t ) lie in the set of Nash equilibria. But by definition of Hannan consistency, this

happens with probability 1.

Proof of Theorem 6

Theorem 6. To start, note that for any p > 1 the space X as a closed subset of Lp(S, µ) is a complete
metric space, hence Polish and thus there exists a Borel isomorphism between X and the Lebesgue
measure on the unit interval. Consequently, to randomize its plays according to a sequence of
probability measures in X , it suffices that player i has access to a sequence of i.i.d. random variables
drawn from the uniform distribution on [0, 1]. Denote this sequence by Zi = (Zi1, Z

i
2, . . . ).

The key observation is that if player −i plays a non-oblivious strategy, then the partial rewards will
not be some a priori fixed sequence of reward functions, but will depend on the history of play. Indeed,
since ũit( · ) =

∑t
τ=1 ui( · , s−iτ ) and since s−iτ is itself some function of past plays si1, . . . , s

i
τ−1, the

partial reward functions ũit are measurable w.r.t. the σ field generated by (Zi1, . . . , Z
i
t). Note that this

implicitly assumes that any randomization performed by player −i is independent of that of player i.
Let Eit[X] := E

[
X | Zi1, . . . , Zit−1

]
denote the conditional expectation of X given the past plays of

player i. Then
t∑

τ=1

ui(si, s−iτ )−
t∑

τ=1

Eiτ
[
ui(siτ , s

−i
τ )
]
≤

t∑
τ=1

sup
s−iτ

Eiτ
[
ui(s

i, s−iτ )− ui(siτ , s−iτ )
]

=

t∑
τ=1

sup
ũiτ

Eiτ
[
ũiτ (si)− ũiτ (siτ )

]
= sup
ũi1,...,ũ

i
t

t∑
τ=1

Eiτ
[
ũiτ (si)− ũiτ (siτ )

]
(21)
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where the last step uses the fact that siτ ∼ xiτ := Dh∗i
(
ητ−1

∑t−1
θ=1 ũ

i
θ

)
, which depends on the

sequence {siθ}
τ−1
θ=1 only through the sequence {ũiθ}

τ−1
θ=1 of observed partial loss functions.

From Proposition S.5 we have that

Rt = sup
si∈Si

sup
ũi1,...,ũ

i
t

t∑
τ=1

ũiτ (si)−
t∑

τ=1

〈ũτi , xiτ 〉 = sup
si∈Si

sup
ũi1,...,ũ

i
t

t∑
τ=1

Eiτ
[
ũiτ (si)− ũiτ (siτ )

]
(22)

Now let W i
τ = ũiτ (siτ )− 〈ũiτ , xiτ 〉 and observe that W i

τ is a martingale. Indeed,

E[W i
τ |W i

τ , . . . ,W
τ−1
i ] = E[W i

τ | Zτi , . . . , Zτ−1i ] = 0 a.s.

Moreover, since by assumption ui is continuous on the compact set S1 × S2, we have that ui is
bounded and therefore |W i

τ −W i
τ−1| ≤M for some M <∞. Noting that W i

τ = 0 it follows from
the Azuma-Hoeffding inequality that, for every ε > 0, P(W i

τ ≤ ε) ≥ 1− exp(− ε2

2τM2 ) and thus

P
(∑t

τ=1W
i
τ ≤M

√
2t log(t/ε)

)
≥ 1− ε ∀ ε > 0

Now
∑t
τ=1W

i
τ =

∑t
τ=1 ũ

i
τ (siτ )−

∑t
τ=1〈ũiτ , xiτ 〉, and hence, using (22) and (21), we have for all

t <∞ that

sup
si∈Si

1

t

( t∑
τ=1

ui(s
i, s−iτ )−

t∑
τ=1

ui(s
i
τ , s
−i
τ )

)
≤ Rt

t
+M

√
2 log(t/ε)

t

NowRt/t→ 0 by assumption, and
√

log(t/ε)
t → 0 for any ε > 0, which proves Hannan consistency.
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