
CNNpack: Packing Convolutional Neural Networks
in the Frequency Domain (Supplementary Materials)

Yunhe Wang1,3, Chang Xu2, Shan You1,3, Dacheng Tao2, Chao Xu1,3

1Key Laboratory of Machine Perception (MOE), School of EECS, Peking University
2Centre for Quantum Computation and Intelligent Systems,

School of Software, University of Technology Sydney
3Cooperative Medianet Innovation Center, Peking University

wangyunhe@pku.edu.cn, Chang.Xu@uts.edu.au, youshan@pku.edu.cn,
Dacheng.Tao@uts.edu.au, xuchao@cis.pu.edu.cn

In this document we give the proof of the Proposition 1 in main body, the algorithm of the proposed
compression algorithm in Section 2.3. We also report some detailed experimental results e.g., the
compression statistics for VGG-16 Net [4].

1 Proofs of Proposition 1 in main body

Proposition 1. Given a convolutional layers withN filters, denote M = d×d as the number of DCT
base, and C ∈ Rd2×N as the compressed coefficients of filters in this layer. Suppose δ is the ratio of
non-zero elements in C, while η is the ratio of non-zero elements in K ′ active cluster centers of this
layer. The computational complexity of our proposed scheme isO((d2 log d+ηMK ′+δMN)H ′W ′).

Proof. The computational complexity for the feature maps Y can be computed as O(d2NH ′W ′).
When implementing the compressed CNN with our proposed algorithm, a naive approach would be
to invert all frequency-filters into the spatial domain and then calculate spatial convolutions. Since the
computational complexity of a d× d DCT is O(d2 log d) [1], the overall complexity of the method
will beO(d2 log dN+d2NH ′W ′) or, equally,O(d2NH ′W ′) considering d2 log dN � d2NH ′W ′.
However, this simple method tends to be inefficient since it involves a lot of redundant computation.
Hence, we propose to first use the DCT bases as a set of filter bases to obtain a set of feature maps;
the feature map of a convolutional filter can then be quickly calculated by summarizing them based
on their DCT coefficients C.

Since we decompose the convolutions by combinations of feature maps of DCT bases in Fcn. 10, the
complexity should be rewritten as O((2dM +MN)H ′W ′). Moreover, the complexity of a d× d
DCT is only O(d2 log d) [1], thus feature maps of those DCT bases can be quickly calculated by
using Fcn. 11, thus the complexity of Fcn. 10 is reduced toO((d2 log d+MN)H ′W ′). Furthermore,
if R is sufficiently sparse, the complexity can be rewritten as

O((d2 log d+

N∑
i=1

||R||0)H ′W ′). (1)

It is important to note that the complexity of Fcn. 1 would be significantly smaller than the original
complexity given

∑N
i=1 ||R||0 � MN . We can simplify it as

∑N
i=1 ||R||0 = δMN , where δ is a

small value (e.g., δ = 0.05) denoting the sparse degree of the compressed CNN. A stronger sparseness
penalty would encourage δ to be smaller.

As well as the residual data R, we must also calculate the filter maps of cluster centers U . Since U
has been obtained over all convolutional filters in different layers in a network, if the convolutional
filters in a layer correspond to only K ′ centers (where K ′ ≤ K), additional computational cost will

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

be saved in this layer. The complexity can be further decreased if we also apply Fcn. 6 to shrink all
cluster centers U before the calculation of residual data R,

O((d2 log d+

K′∑
k=1

||U ′k||0)H ′W ′) = O((d2 log d+ ηMK ′)H ′W ′), (2)

where η is similar to δ and denotes the sparse degree of cluster centers U ′ for this layer. Since we
only need to calculate the feature maps of DCT bases once, the complexity of our proposition is

O((d2 log d+ ηMK ′ + δMN)H ′W ′). (3)

2 Algorithm for the Proposed Compression Scheme

In Section 2.3, we had proposed an algorithm for compressing CNNs, which pack all the convolutional
layers together and forms a compact representation in the DCT frequency domain. Alg. 1 summarizes
the procedures of the proposed algorithm.

Algorithm 1 CNNpack for compressing deep convolutional neural networks.
Input: A pre-trained convolutional neural network with p convolutional layers L1, ...,Lp. The

dimension and parameters of CNNpack: d× d, λ, K, b and Ω.
1: Module 1: Filter extraction and transformation.
2: for each convolutional layers Li in the network do
3: for each convolutional filter F (i)

j in Li do
4: Vectorize F (i)

j : Xi ← [vec(F
(i)
j), ..., vec(F

(i)
Ni

];
5: Transfer Xi into the DCT frequency domain: C ← D(Xi) (Fcn. 1));
6: Resize each Cj in C to a d× d matrix: Cj ← Γ(Cj , d) (Fcn. 8);
7: end for
8: end for
9: Module 2: Clustering and residual coding.

10: Employ k-means (Fcn. 4) to generate K cluster centers U = [µ1, ..., µK];
11: for each convolutional layers Li in the network do
12: for each column Cj in C do
13: Subtract the closest center ujk (ujk ∈ U, s.t. min ||Cj − µjk ||2) of Cj : Rj ← Cj − µjk ;
14: Calculate the optimal sparse representation R̂j (Fcn. 6);

15: Quantize: Rj ← Q
(
R̂j ,Ω, b

)
;(Fcn. 7);

16: end for
17: end for
18: Module 3: Fine-tuning and compressing.
19: repeat
20: Fine-tune the compressed network by keeping the discarded components;
21: for each convolutional layers Li in the network do
22: Quantize: Rj ← Q

(
R̂j ,Ω, b

)
;

23: Compress {R1, ...,RNi
} by exploiting CSR and Huffman encoder to form Ei;

24: end for
25: until convergence
Output: The compressed data {Ei}, Huffman dictionary, cluster centers U and indexes.

3 More Experimental Results

Here we give the performance of the proposed CNNpack on the VGG-16 Net [4], which is much larger
than the AlexNet with over 138M parameters and has a top-5 accuracy of 90.1%. The experiment
was conducted on the ILSVRC-2012 dataset [3], detailed compression and speed-up ratios is shown
in Table 1 with λ = 0.04 and K = 16.

2

Table 1: Compression statistics for VGG-16 Net.

Layer Num of Weights Memory rc Multiplication rs

conv1_1 3× 3× 3× 64 0.006MB 275× 0.11×109 25×
conv1_2 3× 3× 64× 64 0.14MB 26× 2.41×109 7×
conv2_1 3× 3× 64× 128 0.28MB 14× 1.20×109 6×
conv2_2 3× 3× 128× 128 0.56MB 14× 2.41×109 6×
conv3_1 3× 3× 128× 256 1.12MB 16× 1.20×109 8×
conv3_2 3× 3× 256× 256 2.25MB 15× 2.41×109 8×
conv3_3 3× 3× 256× 256 2.25MB 28× 2.41×109 13×
conv4_1 3× 3× 256× 512 4.5MB 12× 1.20×109 8×
conv4_2 3× 3× 512× 512 9MB 40× 2.41×109 21×
conv4_3 3× 3× 512× 512 9MB 45× 2.41×109 23×
conv5_1 3× 3× 512× 512 9MB 8× 0.60×109 5×
conv5_2 3× 3× 512× 512 9MB 12× 0.60×109 8×
conv5_3 3× 3× 512× 512 9MB 21× 0.60×109 12×

fc6 7× 7× 512× 4096 392MB 208× 0.41×109 158×
fc7 1× 1× 4096× 4096 64MB 14× 0.16×108 8×
fc8 1× 1× 4096× 1000 15.62MB 215× 0.41×107 120×

Total 138344128 572.74MB 46× 2.04× 1010 9.4×

Furthermore, we give the enlarged figures (Fig. 1) of the results of the ResNet-50 [2] in order to have
a better illustration.

References
[1] Nasir Ahmed, T Natarajan, and Kamisetty R Rao. Discrete cosine transform. Computers, IEEE Transactions

on, 100(1):90–93, 1974.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385, 2015.

[3] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. IJCV,
115(3):211–252, 2015.

[4] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. ICLR, 2015.

3

(a) Compression ratios of all convolutional layers. (b) Speed-up ratios of all convolutional layers.

Figure 1: Compression statistics for ResNet-50.

4

	Proofs of Proposition 1 in main body
	Algorithm for the Proposed Compression Scheme
	More Experimental Results

