
Appendixes

A Proof of Theorem 2

The parallel MSC channels representing workers with random skill levels may be viewed as a channel
with random state [7]. The proof relies on the optimality of separate source and channel coding [7]
(according to Shannon) in large dataset size and worker pool regime, which holds with a discrete
memoryless source and discrete memoryless channel with random state. Here, we need a lossy source

coder to bring the rate to R(D(B̂(X), B(X)) = ε̂). If the source is memoryless, then we have

R(D(B̂(X), B(X)) = ε̂) = min I(B(X), B̂(X)) = H(P (B(X)))−H(D = ε̂), (15)

where H denotes the entropy and the minimization is with respect to the choice of a mapping

(source coding scheme) P (B̂(X)|B(X)) (disregarding the channel or worker possible errors). With
Hamming distance, the second term amounts to HN (ε̂), when ε̂ ≤ min{1 − pmax, 1 − 1

N }. If
ε̂ ≥ 1− pmax, then we can achieve the desired average distortion with rate zero and by a decoder
that simply outputs argmaxP (B(X)). Again, if ε̂ ≥ 1− 1

N then we can achieve the desired average
distortion with rate zero and by a decoder that uniformly outputs a B(X) at random. We need the
channel to be able to provide reliable communication for such a rate. In case the skill levels are
unknown to both the taskmaster and the crowdsourcer, we have

nR(D = ε̂) ≤
W∑
i

miCSL−UK . (16)

and

CSL−UK = max
P (u)

I(U ;V ) = log2 M −HM (E(ε)) (17)

where the maximum occurs when P (u) = 1/M and E(.) denotes the expectation operator. Note
that since the taskmaster does not know about the skill levels, it can only communicate the queries
to workers with an identical rate. Combining (15), (16) and (17), the proof is complete. Note that
the optimality of the separate source and channel coding scheme invoked here relies on proving an
achievable scheme and a converse, which is the basis for the latter part of the Theorem statement.
This can be done in line with what is presented in sections 3.9 and 7.4 of [7] and is omitted for brevity.

B Proof of Theorem 3

The proof follows the same steps as in that of Theorem 2. However, the capacity when the skill levels
are known at the crowdsourcer is given by

CSL−CS = max
P (u)

I(U ;V |ε) = log2 M − E(HM (ε)) (18)

where the maximum occurs when P (u) = 1/M . Note again that since the taskmaster does not know
about the skill levels, it can only communicate the queries to workers with an identical rate.

C Proof of Lemma 1

The probability of error, when the query is posed to a spammer in a SHC, can be quantified as follows,

P (E|C = S) = P (E : B̂(X) �= B(X)|C = S)
=

∑
u∈U

∑
v∈V P (u, v|C = S)P (E|U = u, V = v, C = S)

=
∑

u∈U
∑

v∈V P (u)P (v|u,C = S)P (E|U = u, V = v, C = S)
=

∑
u∈U

∑
v∈V

1
M2P (E|U = u, V = v)

(19)

The last equality follows in part because of the uniform distribution of the dataset (P (B(X)) ∼
uniform) and that |U| = |V| = M .
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Each kIC symbol can be represented by a vector of length k, whose elements are in the set
{0, 1, . . . , N − 1} (here N = 2). As such, for kIC with arbitrary k ≥ 2 and N = 2, the num-
ber of valid responses to a query can be counted as

k′ =

⎧⎪⎪⎨
⎪⎪⎩

∑�(k−1)/2�
i=0

(
k
i

)
k odd

∑�(k−1)/2�
i=0

(
k
i

)
+ 0.5

(
k
k/2

)
k even

(20)

or alternatively k′ = 2k−1. This is obtained noting that for k ≥ 2, kIC does not recover specific
labellings (e.g., in clustering it does put items in their associated bins but does not label the bins).
In the same direction, each query of kIC that is posed to a worker, is equivalent to transmission
of a symbol over a k′-ary discrete channel (M = k′), or alternatively a codeword of k bits over
an equivalent binary discrete channel. As such, any linear combination of two codewords over the
corresponding field would create another codeword (up to labeling). As a result,

∑
u∈U

∑
v∈V

P (E|U = u, V = v) =
k′

k

∑
u′∈U

wH(u′)

where wH is the Hamming weight. Noting (20) and setting M = k′ in (19) the proof is complete.

D Proof of Theorem 4

Under the SHC model, we consider an oracle decoder who only makes a mistake on task i if it is only
assigned to spammers. Formally, the average error probability at the decoder, if in all R′ queries per
task (codeword) only spammers are selected, is given by

P (E : B̂(X) �= B(X)) =
∑
C

P (E : B̂(X) �= B(X)|C1, . . . , CR′)P (C1, . . . , CR′) =

P (E|C = S)× (1− q)R
′
= P (E|C = S)× (1− q)R

′

The last equality follows, since when the decoder observes R′ instances of spammers, it does not
have any more information as observing a single spammer. In kIC, the number of queries per item X ,
R, is given by R = 1

kR
′. As such, we have the following result for an arbitrary decoder

ε̂ = P (E : B̂(X) �= B(X)|C = S)× (1− q)kR (21)

Using Lemma 1, the desired result is obtained. Note that as evident in the lemma ε̄S = P (E|C = S)
is also a function of k.

E Pricing Strategy

Using Equation (21) (in proof of) Theorem KICBound, one can draw some insights into the design of
a CS system based on kIC. Below we consider this in the context of pricing queries. Specifically,
in crowdsourcing with kIC query scheme with a spammer-hammer worker distribution of hammer
probability q, we consider two scenarios: (i) the case where the price of the query per item is fixed at
π and does not change with k and (ii) the case where the query price is a function of k, π(k). In the
former case, one can readily examine that since P (E|C = S) in Lemma 1 grows very slowly with
k, any increase in k directly translates to a smaller rate R and hence crowdsourcing cost πnR for a
given crowdsourcing fidelity ε̂. In the latter case, however, the analysis sheds light on the appropriate
pricing range. Specifically, for a given crowdsourcing budget and two query schemes k1IC and
k2IC with rates R1 and R2, we have π(k1)R1 = π(k2)R2; and for a given ε̂ from (21), we have

k1R1 ≈ k2R2. This indicates that the pricing in the two scenarios compare as
π(k1)
π(k2)

≈ k1

k2
. This

sets a threshold (range) for crowdsourcing pricing strategy: If we are to use a k2IC as opposed to

k1IC (k2 > k1), then we would have to pay at most π(k2) � π(k1)k2

k1
. Note that due to said nature

of P (E|C = S), this approximation is more accurate for larger values of k1 and k2 and when their
difference is small.
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