A Proof of Theorem 3

For convenience, we state Theorem 3 again here, and present its proof.

Theorem 4. For any given instance of SSC problem, and any values M €, such that 2k*In1/e < M,
where k* is the optimal solution size, ESC-Streaming algorithm returns a (1 —1/(In1/¢),21In1/e¢)-
approximation solution.

Proof. Choose j such that 21 T / <k*< 2?:11/ We first show that the number of elements in S

is at most 2k* In1/e and f(S;) > (1 — lnl/e)Q We know that |S;] < 27, and hence
|S;| <27 < 2k*Inl/e

If |S;| = 27 then we get f(S;) > Q. Now assume that |S;| < 27 and let S* be the optimum
solution, so |S*| = k* and f(S*) > Q. By monotonicity, we get that f(S* U S;) > Q. Let

S*\S; = {wn, ...wq}. We know that the marginal gain that w; gives to a subset of S; is less than %

for all 1 <4 < d. By submodularity, we get that A(w;|S;) < % forall 1 < ¢ < d. Therefore,

QSdQ<Q

(57U 55) k*Inl/e — Inl/e’

Aw;)S;)

||'M:L

which gives

f(S*USJ)—f(S)—l?/ = f(85) 2 Q(ﬁ)

Hence the set .S; is indeed a good candidate solution. Therefore, the algorithm does not return any
solution, only 1f the assumption is not satisfied, i.e., k*In1/e > M. Otherwise, if the algorithm

returns a solution S, , such that j; < j, then S;, must satisfy f(S;,) > (1— lnl/e)Q and it contains

fewer elements than 27, then it also satisfies size and utility guarantees. O

B Lower Bound

In this section, we prove an unconditional lower bound on any p-pass streaming algorithm that
approximates the streaming submodular cover problem, as stated in Theorem 2. A common way to
prove lower bounds for streaming algorithms is through communication complexity. For our purposes,
the suitable communication problem to start with is the Multi-Player Pointer Jumping Problem.

In what follows, we start by defining the Multi-Player Pointer Jumping Problem and stating its
known communication complexity hardness results in Section B.1. We then present in Section B.2
a reduction from the streaming submodular cover problem to the aformentioned communication
problem. The proof of Theorem 2 then follows in Section B.3.

B.1 Multi-Player Pointer Jumping Problem

In the Multi-Player Pointer Jumping Problem, we are given a rooted tree 7" of depth £ > 1, where the
nodes in the tree are divided into & = ¢ 4 1 layers according to their distance from the root, with
the convention that the root is at layer k, and the leaves are at layer 1. For 1 < i < k, we refer to
the set of nodes in layer ¢ as V;. In this problem, denoted MPJr ; for a given tree T', we have k
players P, ..., P, where each player 7 is in charge of the vertices in layer ¢. An input 7 for MPJ 7,
is divided as follows:

e For each 2 < i < k, and for each v € V;, player P; gets a pointer indicating one outgoing
edge from v to one of its children, say u, in layer ¢ — 1, and we write in this context that
m(v) = u.
e For each v € V), player P; gets a bit b(v) := b, (v) € {0,1}.
Note that given 7, the tree T restricted to the edges indicated in 7 contains a unique root-to-leaf

path, leading to a unique leaf v, € V;, and hence the output of this problem given an input 7 is
MPJ 7 (m)= b(vs) € {0,1}.

10

This problem is interesting from a communication protocol perspective, where the & players get the
input 7 as defined earlier, and broadcast messages in 7 rounds. In each round, players Py, Ps, ..., Py
each send a message, in that order. In this setting, the message in the last round is a single bit,
corresponding to their guess about MPJr (7). The goal in this problem then is to figure out this bit
using the minimum amount of communication per round. At each round, we think of the players as
writing their messages in the order from P; to Pj on a shared blackboard. Formally speaking, an
[r, C, €]-protocol for MPJ 7 ;, is defined as

e The game is played in r rounds.
o The total number of bits communicated per round is at most C'.

e The protocol’s output is equal to MPJ7 1 () with probability at least 1 — e.

We quantify the complexity of such communication problems by studying their r-round randomised
communication complexity R"(MPJr ;) of MPJ 7, as follows:

R"(MPJ7) = min{C : there exists a [r, C, 1/3]-protocol for MPJ1 ;. }

A result in communication complexity shows that if the number of players is k, then the problem
requires a large number of communicated bits if we restrct ourselves to r-rounds protocol for r < k.
Formally, the authors of [6] prove the following:

Theorem 5. Let T be complete t-ary tree of depth { > 1 (and consequently k = { + 1 > 2 layers).
Then
k-1 t
R* " (MPJpy) =Q =l

The MPJ7 ;, problem will serve as the starting hard communication problem that we use to prove
our streaming lower bounds for the submodular cover problem. In what follows, we will prove a
lower bound on the required memory of any p-pass streaming algorithm with good approximation
guarantee for the submodular cover problem. To do that, let m be the number of sets that arrive in

the stream, and p be the number of passes that the streaming algorithm is allowed to perform. We
will show that if a p-pass streaming algorithm can provide an approximation guarantee smaller than
mr /p for the the set cover problem using a memory less than Q(m% /p?), then we can solve the
Multi-Player Pointer Jumping Problem on any complete ¢-ary tree with p + 1 player in p rounds
while communicating less than (¢/p?) bits per round, which yields a contradiction to Theorem 5.
We formalise this in what follows.

B.2 Reduction to Submodular Cover

Let T := T(t, k) be a complete t-ary tree with k layers over the vertex set V, where each layer
contains vertices V; C V for 1 < i < k. Note that

Vil =t Vie{l,2,....k}
k

k e o1
|V|:;|Vi|:zt =71

i=1

Without loss of generality, assume the children of every node v € Uf:g V; are ordered, i.e., for every
2 < i<k, forevery v € V;, and for every 1 < j < t, ¢;(v) € V;_1 denotes the 5t child of v in
layer ¢ — 1.

Given a complete t-ary tree 1" with k layers, we construct a structure ’7;7 ke for £ > ¢, such that T has
the same tree structure as 7’, but we additionally have sets associated with each v € V. To do that, let
X be a universe of elements such that |X'| = t*~1¢. We partition X into t*~! equal sized (i.e., each
of size ¢) disjoint sets, and assign each such set S to one of the t*~1 leafs of T (i.e., the vertices in
V1). For every vertex v € V;, we denote its corresponding set by S,. This process defines the sets

assigned to leaf vertices. We now recursively define the sets associated with the remaining vertices as
follows:

11

e Foreveryi=2,...,k, and for every v € V;, the set 5’7, associated with the vertex v is the
union of the sets corresponding to its children, i.e.,

t
Sv = U S(:j(v)
j=1

Note that with this construction, if we denote by r the root of the tree (i.e., the unique vertex in

Vi), then S, = X In fact, one can easily verify that forany ¢ € {1,2,...,k}, and any v € V;, our
construction satisfies that

|S,| = e~ 3)
Before we proceed, we record the following easy observation.

Observation 1. For any 2 vertices v,u € V such that v is neither the ancestor nor the descendent of
v, we have that S, N S, = (.

Now given an input 7 for MPJp , over T' := T'(t, k), we construct an instance Z(7) of SMCy j, ¢

using 7% as follows, where each player out of the k players Py, Ps, ..., P} gets a collection of
sets. Namely,

e Player Py, gets the following sets; let r be the root of the tree, and let u = 7(r) be the chosen
child of v according to 7, then P}, gets the set S, = S, \\S,, and a singleton set for each
element e € S,,. It follows from (3) that P, gets £t*~2 4 1 sets.

e Foreach 2 < i < k — 1, player P; gets the following sets: For each v € V;, let u = 7(v)
be the chosen child of v according to m. Then Player P; gets for each such vertex v the set
Sy = S, \Su. Hence, for 2 < ¢ < k — 1, player P; gets in total th—1 gets.

e Player P; gets the following sets: For each v € V), player P; gets the set S, = S, if
b(v) = 1, and nothing from this vertex if b(v) = 0. Hence P; gets at most t*~* sets.

Let S; be the family of sets that player P; gets, and S be the family of all the sets in our instance,
then m := |S] is at most

k-1 k k—2
- By - th— 14 b2 (8 — 1)
k—1 k—i k—2 _
m<t + E t + 0t +1= 1 sets.
Py =2 Py
Ps,...,Pyp 1

The submodular function f that we consider for SMC, j, is the cover function defined as follows:

f(9) =15 VS eS
&) =1U s v§cs
sSes

Then the goal in this submodular cover problem is to find the minimum cardinality family of sets
S* C S such that

f(S8) >t .=qQ

Note that in our construction, we can always achieve the desired value (), no matter whether
MPJ 7 (7) is O or 1, as the sets assigned to player Py, are enough to cover X. In other words, one
can easily check that f(Sy) = #t* =1 = Q.

In order to see the intuition behind this construction, recall that in the communication problem
MPJ 7, we were interested in the value of MPJp () = b(v,) given an input 7. We will show
in the following claim how to relate the value of b(v,) to the size of the submodular cover in the
instance Z(m) of SMC; 1, , that we have constructed.

Claim 1. Let MPJr ;, be an instance of the Multi-Player Pointer Jumping Problem, and let Z(m) be
the resulting submodular cover instance of SMCy i, o. Then the following holds:

12

1. If b(vy) = 1, then there exists a family of sets S such that |S| = k, and f(S) = Q.
2. If b(vy) = 0, then any family of sets S of size less than £ will have f(S) < Q.

Proof. Let vg,vi_1,...,v; be the unique root-to-leaf path resulting from 7.

We start with the first case, i.e., b(v,) = 1. In this case, consider the sets Sy, , Sp,_1s- -5 S0, - It
follows from the definition of the sets according to 7 that

Sy, = S’Uk\sv&—l = X\g’ka1
SU)c—l = 1%71\511)@72
sz = gvz\gvl

where S,, = S, since b(v1) = b(vz) = 1 in . It then follows that

k
U S, =2
=1

and hence for § = {Svk,Sv,_17 ey Sy }, we get f(S) = Q.

Now for the second case, also consider vy, vg—1, .. ., v1 the unique root-to-leaf path resulting from 7.
In this case, since b(v;) = b(v1) = 0, S,, = 0. Note however that S,,, contained £ elements. We
claim that for any non-singleton set S € S, S N 5’1,1 = (). To see this, observe that for any vertex v,
S, C 5‘1,, and hence we never add to S, an element that was not already in S’U, Thus, Observation 1
yields that for any S,, € S such that v is not an ancestor of vy, S,, N S, = . It remains to show that
Sy, N 5’,,) , =0 forall 2 <i < k,i.e., for the set associated with the vertices on the unique root-to-leaf

path. But this easily follows from the child-exclusion nature of our construction , that yields that S‘vl
does is disjoint from any set on the path leading from the root to v;.

This says that in order to cover the elements of gvl, we need to include all the required singletons

(recall that these singletons must be in Sg), and hence since |5'v1 | = ¢, we need to include at least ¢
singleton sets, which yields the second part of the claim. O

In our argument for the second case, we assumed that we can cover X'\\S,, for free. One can refine
the analysis to show that in this case, any family of sets S that achieves f (S‘) > @ must have a size
of at least £ + k& — 1. For our purposes, we think of £ >> k, and hence a gap between k and ¢ is
enough for the main result of this section.

B.3 Lower bound for the Submodular Cover Problem

We are now ready to prove the main theorem of this section.

Theorem 6. For any number of passes p and any stream size m, a p-pass streaming algorithm that,

with probability at least 2/3, approximates the submodular cover problem to a factor smaller than
1 1

m?P _mP __
o7 must use at least € (p<p+1)2 >

Proof. Let MPI7 ;.1 be an instance of the Multi-Player Pointer Jumping Problem over a complete
t-ary tree 1" with p + 1 levels, and let 7 be the input to the problem spread amongst the p + 1 players
Py, Ps,..., P, asdiscussed in Section B.1. We now construct the instance Z(m) of SMCy ;11,¢
for some integer ¢ > t over m sets as described in Section B.2. Recall that

E_ k=204
o)
- t—1

m

and k = p + 1 in our case.

13

It follows from Claim 1 that distinguishing between the case when b(v;) = 1 and b(b;) = 0 is
equivalent to distinguishing whether the minimal set cover S* of SMCy 11 ¢ is of size at most p + 1,
or at least /.

Consider a p-pass streaming algorithm ALG that approximates SMCy j, 11 ¢ using memory M, to a
factor smaller than +1’ where the stream consist of the sets of P; followed by those of P> and so

on. We will use ALG to design the following an [p, (p + 1)M, 1/3]-protocol PRTCL for MPJr ;, as
follows:

e Ineachround i = 1,...,p, we emulate the i*" pass of ALG on the stream; When ALG
processes the last set corresponding to P; in the stream, the content of the memory is
broadcasted to all the players. Then we do the same after ALG finishes P»’s chunk on the
stream, and so on up to P, 1, in that order.

Since ALG approximates the size of S* for Z(r) to a factor smaller than — - with probability at least
2/3, then PRTCL outputs MPJr ;(7) with probability at least 2/3. Recall that the game MPJ7 ;11

is played among p + 1 players, and we know from Theorem 5 that R?(MPJr 1) = Q (ﬁ),

_ t
hence M must be at least M =) (717(1)“)2).

It remains to relate the approximation ratio and the required memory size, to the size of the stream m.
Recall that:

th— 14 052(t - 1)
- t—1

m

For ¢ = t, we get that m < w < 2th=1 = 2P and equivalently £ = t ~ m!/?. Thus we get
that any p-pass streaming algorlthm that, w1th probability at least 2/3, approximates the submodular

+1 (W) memory. O

14

