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Abstract

In the recent years, a number of parameter-free algorithms have been developed
for online linear optimization over Hilbert spaces and for learning with expert ad-
vice. These algorithms achieve optimal regret bounds that depend on the unknown
competitors, without having to tune the learning rates with oracle choices.
We present a new intuitive framework to design parameter-free algorithms for both
online linear optimization over Hilbert spaces and for learning with expert advice,
based on reductions to betting on outcomes of adversarial coins. We instantiate
it using a betting algorithm based on the Krichevsky-Trofimov estimator. The
resulting algorithms are simple, with no parameters to be tuned, and they improve
or match previous results in terms of regret guarantee and per-round complexity.

1 Introduction
We consider the Online Linear Optimization (OLO) [4, 25] setting. In each round t, an algorithm
chooses a point wt from a convex decision set K and then receives a reward vector gt. The algo-
rithm’s goal is to keep its regret small, defined as the difference between its cumulative reward and
the cumulative reward of a fixed strategy u ∈ K, that is

RegretT (u) =

T∑
t=1

〈gt, u〉 −
T∑
t=1

〈gt, wt〉 .

We focus on two particular decision sets, the N -dimensional probability simplex ∆N = {x ∈
RN : x ≥ 0, ‖x‖1 = 1} and a Hilbert space H. OLO over ∆N is referred to as the problem of
Learning with Expert Advice (LEA). We assume bounds on the norms of the reward vectors: For
OLO overH, we assume that ‖gt‖ ≤ 1, and for LEA we assume that gt ∈ [0, 1]N .
OLO is a basic building block of many machine learning problems. For example, Online Convex
Optimization (OCO), the problem analogous to OLO where 〈gt, u〉 is generalized to an arbitrary
convex function `t(u), is solved through a reduction to OLO [25]. LEA [17, 27, 5] provides a
way of combining classifiers and it is at the heart of boosting [12]. Batch and stochastic convex
optimization can also be solved through a reduction to OLO [25].
To achieve optimal regret, most of the existing online algorithms require the user to set the learning
rate (step size) η to an unknown/oracle value. For example, to obtain the optimal bound for Online
Gradient Descent (OGD), the learning rate has to be set with the knowledge of the norm of the
competitor u, ‖u‖; second entry in Table 1. Likewise, the optimal learning rate for Hedge depends on
the KL divergence between the prior weighting π and the unknown competitor u, D (u‖π); seventh
entry in Table 1. Recently, new parameter-free algorithms have been proposed, both for LEA [6, 8,
18, 19, 15, 11] and for OLO/OCO over Hilbert spaces [26, 23, 21, 22, 24]. These algorithms adapt
to the number of experts and to the norm of the optimal predictor, respectively, without the need
to tune parameters. However, their design and underlying intuition is still a challenge. Foster et al.
[11] proposed a unified framework, but it is not constructive. Furthermore, all existing algorithms for
LEA either have sub-optimal regret bound (e.g. extra O(log log T ) factor) or sub-optimal running
time (e.g. requiring solving a numerical problem in every round, or with extra factors); see Table 1.
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Algorithm Worst-case regret guarantee Per-round time
complexity Adaptive Unified

analysis

OGD, η = 1√
T

[25] O((1 + ‖u‖2)
√
T ), ∀u ∈ H O(1)

OGD, η = U√
T

[25] U
√
T for any u ∈ H s.t. ‖u‖ ≤ U O(1)

[23] O(‖u‖ ln(1 + ‖u‖T )
√
T ), ∀u ∈ H O(1) X

[22, 24] O(‖u‖
√
T ln(1 + ‖u‖T )), ∀u ∈ H O(1) X

This paper, Sec. 7.1 O(‖u‖
√
T ln(1 + ‖u‖T )), ∀u ∈ H O(1) X X

Hedge, η =
√

lnN
T , πi = 1

N [12] O(
√
T lnN), ∀u ∈ ∆N O(N)

Hedge, η = U√
T

[12] O(U
√
T ) for any u ∈ ∆N s.t.

√
D (u‖π) ≤ U O(N)

[6] O(
√
T (1 + D (u‖π)) + ln2N), ∀u ∈ ∆N O(N K)1 X

[8] O(
√
T (1 + D (u‖π))), ∀u ∈ ∆N O(N K)1 X

[8, 19, 15]2 O(
√
T (ln lnT + D (u‖π))), ∀u ∈ ∆N O(N) X

[11] O(
√
T (1 + D (u‖π))), ∀u ∈ ∆N O(N ln maxu∈∆N

D (u‖π))3 X X
This paper, Sec. 7.2 O(

√
T (1 + D (u‖π))), ∀u ∈ ∆N O(N) X X

Table 1: Algorithms for OLO over Hilbert space and LEA.

Contributions. We show that a more fundamental notion subsumes both OLO and LEA parameter-
free algorithms. We prove that the ability to maximize the wealth in bets on the outcomes of coin
flips implies OLO and LEA parameter-free algorithms. We develop a novel potential-based frame-
work for betting algorithms. It gives intuition to previous constructions and, instantiated with the
Krichevsky-Trofimov estimator, provides new and elegant algorithms for OLO and LEA. The new
algorithms also have optimal worst-case guarantees on regret and time complexity; see Table 1.

2 Preliminaries

We begin by providing some definitions. The Kullback-Leibler (KL) divergence between two dis-
crete distributions p and q is D (p‖q) =

∑
i pi ln (pi/qi). If p, q are real numbers in [0, 1], we denote

by D (p‖q) = p ln (p/q)+(1−p) ln ((1− p)/(1− q)) the KL divergence between two Bernoulli dis-
tributions with parameters p and q. We denote byH a Hilbert space, by 〈·, ·〉 its inner product, and by
‖·‖ the induced norm. We denote by ‖·‖1 the 1-norm in RN . A function F : I → R+ is called loga-
rithmically convex iff f(x) = ln(F (x)) is convex. Let f : V → R ∪ {±∞}, the Fenchel conjugate
of f is f∗ : V ∗ → R∪{±∞} defined on the dual vector space V ∗ by f∗(θ) = supx∈V 〈θ, x〉−f(x).
A function f : V → R ∪ {+∞} is said to be proper if there exists x ∈ V such that f(x) is finite. If
f is a proper lower semi-continuous convex function then f∗ is also proper lower semi-continuous
convex and f∗∗ = f .

Coin Betting. We consider a gambler making repeated bets on the outcomes of adversarial coin
flips. The gambler starts with an initial endowment ε > 0. In each round t, he bets on the outcome
of a coin flip gt ∈ {−1, 1}, where +1 denotes heads and −1 denotes tails. We do not make any
assumption on how gt is generated, that is, it can be chosen by an adversary.

The gambler can bet any amount on either heads or tails. However, he is not allowed to borrow any
additional money. If he loses, he loses the betted amount; if he wins, he gets the betted amount back
and, in addition to that, he gets the same amount as a reward. We encode the gambler’s bet in round t
by a single number wt. The sign of wt encodes whether he is betting on heads or tails. The absolute
value encodes the betted amount. We define Wealtht as the gambler’s wealth at the end of round t
and Rewardt as the gambler’s net reward (the difference of wealth and initial endowment), that is

Wealtht = ε+

t∑
i=1

wigi and Rewardt = Wealtht− ε . (1)

In the following, we will also refer to a bet with βt, where βt is such that
wt = βt Wealtht−1 . (2)

The absolute value of βt is the fraction of the current wealth to bet, and sign of βt encodes whether
he is betting on heads or tails. The constraint that the gambler cannot borrow money implies that
βt ∈ [−1, 1]. We also generalize the problem slightly by allowing the outcome of the coin flip gt to
be any real number in the interval [−1, 1]; wealth and reward in (1) remain exactly the same.

1These algorithms require to solve a numerical problem at each step. The number K is the number of steps
needed to reach the required precision. Neither the precision nor K are calculated in these papers.

2The proof in [15] can be modified to prove a KL bound, see http://blog.wouterkoolen.info.
3A variant of the algorithm in [11] can be implemented with the stated time complexity [10].
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3 Warm-Up: From Betting to One-Dimensional Online Linear Optimization

In this section, we sketch how to reduce one-dimensional OLO to betting on a coin. The reasoning
for generic Hilbert spaces (Section 5) and for LEA (Section 6) will be similar. We will show that
the betting view provides a natural way for the analysis and design of online learning algorithms,
where the only design choice is the potential function of the betting algorithm (Section 4). A specific
example of coin betting potential and the resulting algorithms are in Section 7.

As a warm-up, let us consider an algorithm for OLO over one-dimensional Hilbert space R. Let
{wt}∞t=1 be its sequence of predictions on a sequence of rewards {gt}∞t=1, gt ∈ [−1, 1]. The total
reward of the algorithm after t rounds is Rewardt =

∑t
i=1 giwi. Also, even if in OLO there is no

concept of “wealth”, define the wealth of the OLO algorithm as Wealtht = ε+ Rewardt, as in (1).

We now restrict our attention to algorithms whose predictions wt are of the form of a bet, that is
wt = βt Wealtht−1, where βt ∈ [−1, 1]. We will see that the restriction on βt does not prevent us
from obtaining parameter-free algorithms with optimal bounds.

Given the above, it is immediate to see that any coin betting algorithm that, on a sequence of
coin flips {gt}∞t=1, gt ∈ [−1, 1], bets the amounts wt can be used as an OLO algorithm in a one-
dimensional Hilbert space R. But, what would be the regret of such OLO algorithms?

Assume that the betting algorithm at hand guarantees that its wealth is at least F (
∑T
t=1 gt) starting

from an endowment ε, for a given potential function F , then

RewardT =

T∑
t=1

gtwt = WealthT − ε ≥ F

(
T∑
t=1

gt

)
− ε . (3)

Intuitively, if the reward is big we can expect the regret to be small. Indeed, the following lemma
converts the lower bound on the reward to an upper bound on the regret.
Lemma 1 (Reward-Regret relationship [22]). Let V, V ∗ be a pair of dual vector spaces. Let F :
V → R∪{+∞} be a proper convex lower semi-continuous function and let F ∗ : V ∗ → R∪{+∞}
be its Fenchel conjugate. Let w1, w2, . . . , wT ∈ V and g1, g2, . . . , gT ∈ V ∗. Let ε ∈ R. Then,
T∑
t=1

〈gt, wt〉︸ ︷︷ ︸
RewardT

≥ F

(
T∑
t=1

gt

)
− ε if and only if ∀u ∈ V ∗,

T∑
t=1

〈gt, u− wt〉︸ ︷︷ ︸
RegretT (u)

≤ F ∗(u) + ε .

Applying the lemma, we get a regret upper bound: RegretT (u) ≤ F ∗(u) + ε for all u ∈ H.

To summarize, if we have a betting algorithm that guarantees a minimum wealth of F (
∑T
t=1 gt),

it can be used to design and analyze a one-dimensional OLO algorithm. The faster the growth of
the wealth, the smaller the regret will be. Moreover, the lemma also shows that trying to design an
algorithm that is adaptive to u is equivalent to designing an algorithm that is adaptive to

∑T
t=1 gt.

Also, most importantly, methods that guarantee optimal wealth for the betting scenario are already
known, see, e.g., [4, Chapter 9]. We can just re-use them to get optimal online algorithms!

4 Designing a Betting Algorithm: Coin Betting Potentials

For sequential betting on i.i.d. coin flips, an optimal strategy has been proposed by Kelly [14].
The strategy assumes that the coin flips {gt}∞t=1, gt ∈ {+1,−1}, are generated i.i.d. with known
probability of heads. If p ∈ [0, 1] is the probability of heads, the Kelly bet is to bet βt = 2p − 1 at
each round. He showed that, in the long run, this strategy will provide more wealth than betting any
other fixed fraction of the current wealth [14].

For adversarial coins, Kelly betting does not make sense. With perfect knowledge of the future, the
gambler could always bet everything on the right outcome. Hence, after T rounds from an initial
endowment ε, the maximum wealth he would get is ε2T . Instead, assume he bets the same fraction β
of its wealth at each round. Let Wealtht(β) the wealth of such strategy after t rounds. As observed
in [21], the optimal fixed fraction to bet is β∗ = (

∑T
t=1 gt)/T and it gives the wealth

WealthT (β∗) = ε exp
(
T ·D

(
1
2 +

∑T
t=1 gt
2T

∥∥∥ 1
2

))
≥ ε exp

(
(
∑T
t=1 gt)

2

2T

)
, (4)

3



where the inequality follows from Pinsker’s inequality [9, Lemma 11.6.1].

However, even without knowledge of the future, it is possible to go very close to the wealth in (4).
This problem was studied by Krichevsky and Trofimov [16], who proposed that after seeing the coin

flips g1, g2, . . . , gt−1 the empirical estimate kt =
1/2+

∑t−1
i=1 1[gi=+1]

t should be used instead of p.
Their estimate is commonly called KT estimator.1 The KT estimator results in the betting

βt = 2kt − 1 =
∑t−1
i=1 gi
t (5)

which we call adaptive Kelly betting based on the KT estimator. It looks like an online and slightly
biased version of the oracle choice of β∗. This strategy guarantees2

WealthT ≥ WealthT (β∗)

2
√
T

= ε
2
√
T

exp
(
T ·D

(
1
2 +

∑T
t=1 gt
2T

∥∥∥ 1
2

))
.

This guarantee is optimal up to constant factors [4] and mirrors the guarantee of the Kelly bet.

Here, we propose a new set of definitions that allows to generalize the strategy of adaptive Kelly
betting based on the KT estimator. For these strategies it will be possible to prove that, for any
g1, g2, . . . , gt ∈ [−1, 1],

Wealtht ≥ Ft

(
t∑
i=1

gi

)
, (6)

where Ft(x) is a certain function. We call such functions potentials. The betting strategy will be
determined uniquely by the potential (see (c) in the Definition 2), and we restrict our attention to
potentials for which (6) holds. These constraints are specified in the definition below.

Definition 2 (Coin Betting Potential). Let ε > 0. Let {Ft}∞t=0 be a sequence of functions
Ft : (−at, at) → R+ where at > t. The sequence {Ft}∞t=0 is called a sequence of coin betting
potentials for initial endowment ε, if it satisfies the following three conditions:

(a) F0(0) = ε.

(b) For every t ≥ 0, Ft(x) is even, logarithmically convex, strictly increasing on [0, at), and
limx→at Ft(x) = +∞.

(c) For every t ≥ 1, every x ∈ [−(t − 1), (t − 1)] and every g ∈ [−1, 1], (1 + gβt)Ft−1(x) ≥
Ft(x+ g), where

βt = Ft(x+1)−Ft(x−1)
Ft(x+1)+Ft(x−1) . (7)

The sequence {Ft}∞t=0 is called a sequence of excellent coin betting potentials for initial endow-
ment ε if it satisfies conditions (a)–(c) and the condition (d) below.

(d) For every t ≥ 0, Ft is twice-differentiable and satisfies x ·F ′′t (x) ≥ F ′t (x) for every x ∈ [0, at).

Let’s give some intuition on this definition. First, let’s show by induction on t that (b) and (c) of the
definition together with (2) give a betting strategy that satisfies (6). The base case t = 0 is trivial.
At time t ≥ 1, bet wt = βt Wealtht−1 where βt is defined in (7), then

Wealtht = Wealtht−1 +wtgt = (1 + gtβt) Wealtht−1

≥ (1 + gtβt)Ft−1

(
t−1∑
i=1

gi

)
≥ Ft

(
t−1∑
i=1

gi + gt

)
= Ft

(
t∑
i=1

gi

)
.

The formula for the potential-based strategy (7) might seem strange. However, it is derived—see
Theorem 8 in Appendix B—by minimizing the worst-case value of the right-hand side of the in-
equality used w.r.t. to gt in the induction proof above: Ft−1(x) ≥ Ft(x+gt)

1+gtβt
.

The last point, (d), is a technical condition that allows us to seamlessly reduce OLO over a Hilbert
space to the one-dimensional problem, characterizing the worst case direction for the reward vectors.

1Compared to the maximum likelihood estimate
∑t−1
i=1 1[gi=+1]

t−1
, KT estimator shrinks slightly towards 1/2.

2See Appendix A for a proof. For lack of space, all the appendices are in the supplementary material.
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Regarding the design of coin betting potentials, we expect any potential that approximates the best
possible wealth in (4) to be a good candidate. In fact, Ft(x) = ε exp

(
x2/(2t)

)
/
√
t, essentially

the potential used in the parameter-free algorithms in [22, 24] for OLO and in [6, 18, 19] for LEA,
approximates (4) and it is an excellent coin betting potential—see Theorem 9 in Appendix B. Hence,
our framework provides intuition to previous constructions and in Section 7 we show new examples
of coin betting potentials.

In the next two sections, we presents the reductions to effortlessly solve both the generic OLO case
and LEA with a betting potential.

5 From Coin Betting to OLO over Hilbert Space

In this section, generalizing the one-dimensional construction in Section 3, we show how to use
a sequence of excellent coin betting potentials {Ft}∞t=0 to construct an algorithm for OLO over a
Hilbert space and how to prove a regret bound for it.

We define reward and wealth analogously to the one-dimensional case: Rewardt =
∑t
i=1〈gi, wi〉

and Wealtht = ε + Rewardt. Given a sequence of coin betting potentials {Ft}∞t=0, using (7) we
define the fraction

βt =
Ft(‖∑t−1

i=1 gi‖+1)−Ft(‖∑t−1
i=1 gi‖−1)

Ft(‖∑t−1
i=1 gi‖+1)+Ft(‖∑t−1

i=1 gi‖−1)
. (8)

The prediction of the OLO algorithm is defined similarly to the one-dimensional case, but now we
also need a direction in the Hilbert space:

wt = βt Wealtht−1

∑t−1
i=1 gi∥∥∥∑t−1
i=1 gi

∥∥∥ = βt

∑t−1
i=1 gi∥∥∥∑t−1
i=1 gi

∥∥∥
(
ε+

t−1∑
i=1

〈gi, wi〉

)
. (9)

If
∑t−1
i=1 gi is the zero vector, we define wt to be the zero vector as well. For this prediction strategy

we can prove the following regret guarantee, proved in Appendix C. The proof reduces the general
Hilbert case to the 1-d case, thanks to (d) in Definition 2, then it follows the reasoning of Section 3.
Theorem 3 (Regret Bound for OLO in Hilbert Spaces). Let {Ft}∞t=0 be a sequence of excellent coin
betting potentials. Let {gt}∞t=1 be any sequence of reward vectors in a Hilbert space H such that
‖gt‖ ≤ 1 for all t. Then, the algorithm that makes prediction wt defined by (9) and (8) satisfies

∀T ≥ 0 ∀u ∈ H RegretT (u) ≤ F ∗T (‖u‖) + ε .

6 From Coin Betting to Learning with Expert Advice

In this section, we show how to use the algorithm for OLO over one-dimensional Hilbert space R
from Section 3—which is itself based on a coin betting strategy—to construct an algorithm for LEA.
Let N ≥ 2 be the number of experts and ∆N be the N -dimensional probability simplex. Let
π = (π1, π2, . . . , πN ) ∈ ∆N be any prior distribution. Let A be an algorithm for OLO over the
one-dimensional Hilbert space R, based on a sequence of the coin betting potentials {Ft}∞t=0 with
initial endowment3 1. We instantiate N copies of A.
Consider any round t. Let wt,i ∈ R be the prediction of the i-th copy of A. The LEA algorithm
computes p̂t = (p̂t,1, p̂t,2, . . . , p̂t,N ) ∈ RN0,+ as

p̂t,i = πi · [wt,i]+, (10)

where [x]+ = max{0, x} is the positive part of x. Then, the LEA algorithm predicts pt =
(pt,1, pt,2, . . . , pt,N ) ∈ ∆N as

pt = p̂t
‖p̂t‖1

. (11)

If ‖p̂t‖1 = 0, the algorithm predicts the prior π. Then, the algorithm receives the reward vector
gt = (gt,1, gt,2, . . . , gt,N ) ∈ [0, 1]N . Finally, it feeds the reward to each copy of A. The reward for

3Any initial endowment ε > 0 can be rescaled to 1. Instead of Ft(x) we would use Ft(x)/ε. The wt would
become wt/ε, but pt is invariant to scaling of wt. Hence, the LEA algorithm is the same regardless of ε.
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the i-th copy of A is g̃t,i ∈ [−1, 1] defined as

g̃t,i =

{
gt,i − 〈gt, pt〉 if wt,i > 0 ,

[gt,i − 〈gt, pt〉]+ if wt,i ≤ 0 .
(12)

The construction above defines a LEA algorithm defined by the predictions pt, based on the algo-
rithm A. We can prove the following regret bound for it.
Theorem 4 (Regret Bound for Experts). Let A be an algorithm for OLO over the one-dimensional
Hilbert space R, based on the coin betting potentials {Ft}∞t=0 for an initial endowment of 1. Let
f−1
t be the inverse of ft(x) = ln(Ft(x)) restricted to [0,∞). Then, the regret of the LEA algorithm

with prior π ∈ ∆N that predicts at each round with pt in (11) satisfies

∀T ≥ 0 ∀u ∈ ∆N RegretT (u) ≤ f−1
T (D (u‖π)) .

The proof, in Appendix D, is based on the fact that (10)–(12) guarantee that
∑N
i=1 πig̃t,iwt,i ≤ 0

and on a variation of the change of measure lemma used in the PAC-Bayes literature, e.g. [20].

7 Applications of the Krichevsky-Trofimov Estimator to OLO and LEA

In the previous sections, we have shown that a coin betting potential with a guaranteed rapid growth
of the wealth will give good regret guarantees for OLO and LEA. Here, we show that the KT
estimator has associated an excellent coin betting potential, which we call KT potential. Then, the
optimal wealth guarantee of the KT potentials will translate to optimal parameter-free regret bounds.

The sequence of excellent coin betting potentials for an initial endowment ε corresponding to the
adaptive Kelly betting strategy βt defined by (5) based on the KT estimator are

Ft(x) = ε
2t·Γ

(
t+1

2 + x
2

)
·Γ
(
t+1

2 −
x
2

)
π·t! t ≥ 0, x ∈ (−t− 1, t+ 1), (13)

where Γ(x) =
∫∞

0
tx−1e−tdt is Euler’s gamma function—see Theorem 13 in Appendix E. This

potential was used to prove regret bounds for online prediction with the logarithmic loss [16][4,
Chapter 9.7]. Theorem 13 also shows that the KT betting strategy βt as defined by (5) satisfies (7).

This potential has the nice property that is satisfies the inequality in (c) of Definition 2 with equality
when gt ∈ {−1, 1}, i.e. Ft(x+ gt) = (1 + gtβt)Ft−1(x).

We also generalize the KT potentials to δ-shifted KT potentials, where δ ≥ 0, defined as

Ft(x) =
2t·Γ(δ+1)·Γ

(
t+δ+1

2 + x
2

)
·Γ
(
t+δ+1

2 − x2

)
Γ

(
δ+1

2

)2

·Γ(t+δ+1)

.

The reason for its name is that, up to a multiplicative constant, Ft is equal to the KT potential
shifted in time by δ. Theorem 13 also proves that the δ-shifted KT potentials are excellent coin

betting potentials with initial endowment 1, and the corresponding betting fraction is βt =
∑t−1
j=1 gj

δ+t .

7.1 OLO in Hilbert Space

We apply the KT potential for the construction of an OLO algorithm over a Hilbert space H. We
will use (9), and we just need to calculate βt. According to Theorem 13 in Appendix E, the formula

for βt simplifies to βt =
‖∑t−1

i=1 gi‖
t so that wt = 1

t

(
ε+

∑t−1
i=1〈gi, wi〉

)∑t−1
i=1 gi.

The resulting algorithm is stated as Algorithm 1. We derive a regret bound for it as a very simple
corollary of Theorem 3 to the KT potential (13). The only technical part of the proof, in Appendix F,
is an upper bound on F ∗t since it cannot be expressed as an elementary function.
Corollary 5 (Regret Bound for Algorithm 1). Let ε > 0. Let {gt}∞t=1 be any sequence of reward
vectors in a Hilbert spaceH such that ‖gt‖ ≤ 1. Then Algorithm 1 satisfies

∀T ≥ 0 ∀u ∈ H RegretT (u) ≤ ‖u‖
√
T ln

(
1 + 24T 2‖u‖2

ε2

)
+ ε
(

1− 1
e
√
πT

)
.

6



Algorithm 1 Algorithm for OLO over Hilbert spaceH based on KT potential
Require: Initial endowment ε > 0

1: for t = 1, 2, . . . do
2: Predict with wt ← 1

t

(
ε+

∑t−1
i=1〈gi, wi〉

)∑t−1
i=1 gi

3: Receive reward vector gt ∈ H such that ‖gt‖ ≤ 1
4: end for

Algorithm 2 Algorithm for Learning with Expert Advice based on δ-shifted KT potential
Require: Number of experts N , prior distribution π ∈ ∆N , number of rounds T

1: for t = 1, 2, . . . , T do
2: For each i ∈ [N ], set wt,i ←

∑t−1
j=1 g̃j,i

t+T/2

(
1 +

∑t−1
j=1 g̃j,iwj,i

)
3: For each i ∈ [N ], set p̂t,i ← πi[wt,i]+

4: Predict with pt ←
{
p̂t/ ‖p̂t‖1 if ‖p̂t‖1 > 0

π if ‖p̂t‖1 = 0

5: Receive reward vector gt ∈ [0, 1]N

6: For each i ∈ [N ], set g̃t,i ←
{
gt,i − 〈gt, pt〉 if wt,i > 0

[gt,i − 〈gt, pt〉]+ if wt,i ≤ 0
7: end for

It is worth noting the elegance and extreme simplicity of Algorithm 1 and contrast it with the algo-
rithms in [26, 22–24]. Also, the regret bound is optimal [26, 23]. The parameter ε can be safely set
to any constant, e.g. 1. Its role is equivalent to the initial guess used in doubling tricks [25].

7.2 Learning with Expert Advice

We will now construct an algorithm for LEA based on the δ-shifted KT potential. We set δ to T/2,
requiring the algorithm to know the number of rounds T in advance; we will fix this later with the
standard doubling trick.

To use the construction in Section 6, we need an OLO algorithm for the 1-d Hilbert space R. Using
the δ-shifted KT potentials, the algorithm predicts for any sequence {g̃t}∞t=1 of reward

wt = βt Wealtht−1 = βt

1 +

t−1∑
j=1

g̃jwj

 =

∑t−1
i=1 g̃i

T/2 + t

1 +

t−1∑
j=1

g̃jwj

 .

Then, following the construction in Section 6, we arrive at the final algorithm, Algorithm 2. We can
derive a regret bound for Algorithm 2 by applying Theorem 4 to the δ-shifted KT potential.
Corollary 6 (Regret Bound for Algorithm 2). Let N ≥ 2 and T ≥ 0 be integers. Let π ∈ ∆N be a
prior. Then Algorithm 2 with inputN, π, T for any rewards vectors g1, g2, . . . , gT ∈ [0, 1]N satisfies

∀u ∈ ∆N RegretT (u) ≤
√

3T (3 + D (u‖π)) .

Hence, the Algorithm 2 has both the best known guarantee on worst-case regret and per-round time
complexity, see Table 1. Also, it has the advantage of being very simple.

The proof of the corollary is in the Appendix F. The only technical part of the proof is an upper
bound on f−1

t (x), which we conveniently do by lower bounding Ft(x).

The reason for using the shifted potential comes from the analysis of f−1
t (x). The unshifted al-

gorithm would have a O(
√
T (log T + D (u‖π)) regret bound; the shifting improves the bound to

O(
√
T (1 + D (u‖π)). By changing T/2 in Algorithm 2 to another constant fraction of T , it is pos-

sible to trade-off between the two constants 3 present in the square root in the regret upper bound.

The requirement of knowing the number of rounds T in advance can be lifted by the standard dou-
bling trick [25, Section 2.3.1], obtaining an anytime guarantee with a bigger leading constant,

∀T ≥ 0 ∀u ∈ ∆N RegretT (u) ≤
√

2√
2−1

√
3T (3 + D (u‖π)) .
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Figure 1: Total loss versus learning rate parameter of OGD (in log scale), compared with parameter-free
algorithms DFEG [23], Adaptive Normal [22], PiSTOL [24] and the KT-based Algorithm 1.
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Figure 2: Regrets to the best expert after T = 32768 rounds, versus learning rate parameter of Hedge (in
log scale). The “good” experts are ε = 0.025 better than the others. The competitor algorithms are Normal-
Hedge [6], AdaNormalHedge [19], Squint [15], and the KT-based Algorithm 2. πi = 1/N for all algorithms.

8 Discussion of the Results

We have presented a new interpretation of parameter-free algorithms as coin betting algorithms. This
interpretation, far from being just a mathematical gimmick, reveals the common hidden structure
of previous parameter-free algorithms for both OLO and LEA and also allows the design of new
algorithms. For example, we show that the characteristic of parameter-freeness is just a consequence
of having an algorithm that guarantees the maximum reward possible. The reductions in Sections 5
and 6 are also novel and they are in a certain sense optimal. In fact, the obtained Algorithms 1 and 2
achieve the optimal worst case upper bounds on the regret, see [26, 23] and [4] respectively.

We have also run an empirical evaluation to show that the theoretical difference between classic
online learning algorithms and parameter-free ones is real and not just theoretical. In Figure 1, we
have used three regression datasets4, and solved the OCO problem through OLO. In all the three
cases, we have used the absolute loss and normalized the input vectors to have L2 norm equal to 1.
From the empirical results, it is clear that the optimal learning rate is completely data-dependent, yet
parameter-free algorithms have performance very close to the unknown optimal tuning of the learn-
ing rate. Moreover, the KT-based Algorithm 1 seems to dominate all the other similar algorithms.

For LEA, we have used the synthetic setting in [6]. The dataset is composed of Hadamard matrices
of size 64, where the row with constant values is removed, the rows are duplicated to 126 inverting
their signs, 0.025 is subtracted to k rows, and the matrix is replicated in order to generate T = 32768
samples. For more details, see [6]. Here, the KT-based algorithm is the one in Algorithm 2, where
the term T/2 is removed, so that the final regret bound has an additional lnT term. Again, we
see that the parameter-free algorithms have a performance close or even better than Hedge with an
oracle tuning of the learning rate, with no clear winners among the parameter-free algorithms.

Notice that since the adaptive Kelly strategy based on KT estimator is very close to optimal, the only
possible improvement is to have a data-dependent bound, for example like the ones in [24, 15, 19].
In future work, we will extend our definitions and reductions to the data-dependent case.

4Datasets available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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A From Log Loss to Wealth

Guarantees for betting or sequential investement algorithm are often expressed as upper bounds on
the regret with respect to the log loss. Here, for the sake of completeness, we show how to convert
such a guarantee to a lower bound on the wealth of the corresponding betting algorithm.

We consider the problem of predicting a binary outcome. The algorithm predicts at each round
probability pt ∈ [0, 1]. The adversary generates a sequences of outcomes xt ∈ {0, 1} and the
algorithm’s loss is

`(pt, xt) = −xt ln pt − (1− xt) ln(1− pt) .
We define the regret with respect to a fixed probability vector β as

Regretlogloss
T =

T∑
t=1

`(pt, xt)− min
β∈[0,1]

T∑
t=1

`(β, xt) .

Lemma 7. Assume that an algorithm that predicts pt guarantees Regretlogloss
T ≤ RT . Then, the

coin betting strategy with endowement ε and βt = 2pt − 1 guarantees

WealthT ≥ ε exp

(
T ·D

(
1

2
+

∑T
t=1 gt
2T

∥∥∥∥∥1

2

)
−RT

)
against any sequence of outcomes gt ∈ [−1,+1].

Proof. Define xt = 1+gt
2 . We have

ln WealthT = ln(Wealtht−1 +wtgt)

= ln(Wealtht−1(1 + gtβt))

= ln ε

T∏
t=1

(1 + gtβt)

= ln ε+

T∑
t=1

ln(1 + gtβt)

≥ ln ε+

T∑
t=1

(
1 + gt

2

)
ln (1 + βt) +

(
1− gt

2

)
ln (1− βt)

= ln ε+

T∑
t=1

(
1 + gt

2

)
ln (2pt) +

(
1− gt

2

)
ln (2(1− pt))

= ln ε+ T ln(2) +

T∑
t=1

(
1 + gt

2

)
ln(pt) +

(
1− gt

2

)
ln(1− pt)

= ln ε+ T ln(2)−
T∑
t=1

`(pt, xt)

= ln ε+ T ln(2)− Regretlogloss
T − min

β∈[0,1]

T∑
t=1

`(β, xt)

≥ ln ε+ T ln(2)−RT − min
β∈[0,1]

T∑
t=1

`(β, xt) ,

where the first inequality is due to the concavity of ln and the second one is due to the assumption
of the regret.

It is easy to see that the β∗ = arg minβ∈[0,1]

∑T
t=1 `(β, xt) =

∑T
t=1 xt
T . Hence, we have

min
β∈[0,1]

T∑
t=1

`(β, xt) = T (−β∗ lnβ∗ − (1− β∗) ln(1− β∗)) .
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Also, we have that for any β ∈ [0, 1]

−β lnβ − (1− β) ln(1− β) = −D

(
β

∥∥∥∥1

2

)
+ ln 2 .

Putting all together, we have the stated lemma.

The lower bound on the wealth of the adaptive Kelly betting based on the KT estimator is obtained
simply by the stated Lemma and reminding that the log loss regret of the KT estimator is upper
bounded by 1

2 lnT + ln 2.

B Optimal Betting Fraction

Theorem 8 (Optimal Betting Fraction). Let x ∈ R. Let F : [x−1, x+ 1]→ R be a logarithmically
convex function. Then,

arg min
β∈(−1,1)

max
g∈[−1,1]

F (x+ g)

1 + βg
=
F (x+ 1)− F (x− 1)

F (x+ 1) + F (x− 1)
.

Moreover, β∗ = F (x+1)−F (x−1)
F (x+1)+F (x−1) satisfies

ln(F (x+ 1))− ln(1 + β∗) = ln(F (x− 1))− ln(1− β∗) .

Proof. We define the functions h, f : [−1, 1]× (−1, 1)→ R as

h(g, β) =
F (x+ g)

1 + βg
and f(g, β) = ln(h(g, β)) = ln(F (x+ g))− ln(1 + βg) .

Clearly, arg minβ∈(−1,1) maxg∈[−1,1] h(g, β) = arg minβ∈(−1,1) maxg∈[−1,1] f(g, β) and we can
work with f instead of h. The function h is logarithmically convex in g and thus f is convex in g.
Therefore,

∀β ∈ (−1, 1) max
g∈[−1,1]

f(g, β) = max {f(+1, β), f(−1, β)} .

Let φ(β) = max {f(+1, β), f(−1, β)}. We seek to find the arg minβ∈(−1,1) φ(β). Since f(+1, β)

is decreasing in β and f(−1, β) is increasing in β, the minimum of φ(β) is at a point β∗ such that
f(+1, β∗) = f(−1, β∗). In other words, β∗ satisfies

ln(F (x+ 1))− ln(1 + β∗) = ln(F (x− 1))− ln(1− β∗) .

The only solution of this equation is

β∗ =
F (x+ 1)− F (x− 1)

F (x+ 1) + F (x− 1)
.

Theorem 9. The functions Ft(x) = ε exp(x
2

2t −
1
2

∑t
i=1

1
i ) are excellent coin betting potentials.

Proof. The first and second properties of Definition 2 are trivially true. For the third property, we
first use Theorem 8 to have

ln(1 + βtg)− lnFt(x+ g) ≥ ln(1 + βt)− lnFt(x+ 1) = ln
2

Ft(x+ 1) + Ft(x− 1)
,
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where the definition of βt is from (7). Hence, we have

ln(1 + βtg)− lnFt(x+ g) + lnFt−1(x) ≥ ln
2

Ft(x+ 1) + Ft(x− 1)
+ lnFt−1(x)

= −x
2 + 1

2t
+

1

2

t∑
i=1

1

i
− ln cosh

x

t
+

x2

2(t− 1)
− 1

2

t−1∑
i=1

1

i

= −x
2

2t
− ln cosh

x

t
+

x2

2(t− 1)

≥ −x
2

2t
− x2

2t2
+

x2

2(t− 1)

≥ −x
2

2t
− x2

2t(t− 1)
+

x2

2(t− 1)
= 0,

where in the second inequality we have used the elementary inequality ln coshx ≤ x2

2 .

The fourth property of Definition 2 is also true because Ft(x) is of the form h(x2) with h(·) con-
vex [22].

C Proof of Lemma 11

First we state the following Lemma from [22] and reported here with our notation for completeness.
Lemma 10 (Extremes). Let h : (−a, a)→ R be an even twice-differentiable function that satisfies
x · h′′(x) ≥ h′(x) for all x ∈ [0, a). Let c : [0,∞)× [0,∞)→ R be an arbitrary function. Then, if
vectors u, v ∈ H satisfy ‖u‖+ ‖v‖ < a, then

c(‖u‖ , ‖v‖) · 〈u, v〉 − h(‖u+ v‖) ≥ min {c(‖u‖ , ‖v‖) · ‖u‖ · ‖v‖ − h(‖v‖+ ‖v‖),
−c(‖u‖ , ‖v‖) · ‖u‖ · ‖v‖ − h(‖u‖ − ‖v‖)} . (14)

Proof. If u or v is zero, the inequality (14) clearly holds. From now on we assume that u, v are
non-zero. Let α be the cosine of the angle of between u and v. More formally,

α =
〈u, v〉
‖u‖ · ‖v‖

.

With this notation, the left-hand side of (14) is

f(α) = c(‖u‖ , ‖v‖) · α ‖u‖ · ‖v‖ − h(

√
‖u‖2 + ‖v‖2 + 2α ‖u‖ · ‖v‖) .

Since h is even, the inequality (14) is equivalent to

∀α ∈ [−1, 1] f(α) ≥ min {f(+1), f(−1)} .
The last inequality is clearly true if f : [−1, 1] → R is concave. We now check that f is indeed
concave, which we prove by showing that the second derivative is non-positive. The first derivative
of f is

f ′(α) = c(‖u‖ , ‖v‖) · ‖u‖ · ‖v‖ −
h′(
√
‖u‖2 + ‖v‖2 + 2α‖u‖ · ‖v‖) · ‖u‖ · ‖v‖√
‖u‖2 + ‖v‖2 + 2α‖u‖ · ‖v‖

.

The second derivative of f is

f ′′(α) = − ‖u‖2 · ‖v‖2

‖u‖2 + ‖v‖2 + 2α‖u‖ · ‖v‖

·

(
h′′(
√
‖u‖2 + ‖v‖2 + 2α‖u‖ · ‖v‖)−

h′(
√
‖u‖2 + ‖v‖2 + 2α‖u‖ · ‖v‖)√
‖u‖2 + ‖v‖2 + 2α‖u‖ · ‖v‖

)
.

If we consider x =
√
‖u‖2 + ‖v‖2 + 2α‖u‖ · ‖v‖, the assumption x · h′′(x) ≥ h′(x) implies that

f ′′(α) is non-positive. This finishes the proof of the inequality (14).
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We also need the following technical Lemma whose proof relies mainly on property (d) of Defini-
tion 2.

Lemma 11. Let {Ft}∞t=0 be a sequence of excellent coin betting potentials. Let g1, g2, . . . , gt be
vectors in a Hilbert space H such that ‖g1‖ , ‖g2‖ , . . . , ‖gt‖ ≤ 1. Let βt be defined by (8) and let
x =

∑t−1
i=1 gi. Then, (

1 + βt
〈gt, x〉
‖x‖

)
Ft−1(‖x‖) ≥ Ft(‖x+ gt‖) .

Proof. Since Ft(x) is an excellent coin betting potential, it satisfies xF ′′t (x) ≥ F ′t (x). Hence,(
1 + βt

〈gt, x〉
‖x‖

)
Ft−1(‖x‖)− Ft(‖x+ gt‖)

= Ft−1(‖x‖) + βt
〈gt, x〉
‖x‖

Ft−1(‖x‖)− Ft(‖x+ gt‖)

≥ Ft−1(‖x‖) + min
r∈{−1,1}

βtr ‖gt‖Ft−1(‖x‖)− Ft(‖x‖+ r ‖gt‖)

= min
r∈{−1,1}

(1 + βtr ‖gt‖)Ft−1(‖x‖)− Ft(‖x‖+ r ‖gt‖)

≥ 0 .

If x 6= 0, the first inequality comes from Lemma 10 with c(z, ·) = Ft−1(z+1)−Ft−1(z−1)
Ft−1(z+1)+Ft−1(z−1)Ft−1(z)/z

and h(z) = Ft(z), u = gt, v = x. If x = 0 then, according to (8), βt = 0 and the first inequality
trivially holds. The second inequality follows from the property (c) of a coin betting potential.

Proof of Theorem 3. First, by induction on t we show that

Wealtht ≥ Ft

(∥∥∥∥∥
T∑
t=1

gt

∥∥∥∥∥
)
. (15)

The base case t = 0 is trivial, since both sides of the inequality are equal to ε. For t ≥ 1, if we let
x =

∑t−1
i=1 gi, we have

Wealtht = 〈gt, wt〉+ Wealtht−1 =

(
1 + βt

〈gt, x〉
‖x‖

)
Wealtht−1

≥
(

1 + βt
〈gt, x〉
‖x‖

)
Ft−1(‖x‖)

(*)
≥ Ft(‖x+ gt‖) = Ft

(∥∥∥∥∥
t∑
i=1

gi

∥∥∥∥∥
)
.

The inequality marked with (∗) follows from Lemma 11.

This establishes (15), from which we immediately have a reward lower bound

RewardT =

T∑
t=1

〈gt, wt〉 = WealthT − ε ≥ FT

(∥∥∥∥∥
T∑
t=1

gt

∥∥∥∥∥
)
− ε . (16)

We apply Lemma 1 to the function F (x) = FT (‖x‖) − ε and we are almost done. The only
remaining property we need is that if F is an even function then the Fenchel conjugate of F (‖·‖) is
F ∗(‖·‖); see Bauschke and Combettes [3, Example 13.7].
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D Proof of Theorem 4

Proof. We first prove that
∑N
i=1 πig̃t,iwt,i ≤ 0. Indeed,

N∑
i=1

πig̃t,iwt,i =
∑

i :πiwt,i>0

πi[wt,i]+(gt,i − 〈gt, pt〉) +
∑

i :πiwt,i≤0

πiwt,i[gt,i − 〈gt, pt〉]+

= ‖p̂t‖1
N∑
i=1

pt,i(gt,i − 〈gt, pt〉) +
∑

i :πiwt,i≤0

πiwt,i[gt,i − 〈gt, pt〉]+

= 0 +
∑

i :πiwt,i≤0

πiwt,i[gt,i − 〈gt, pt〉]+ ≤ 0 .

The first equality follows from definition of gt,i. To see the second equality, consider two cases:
If πiwt,i ≤ 0 for all i then ‖p̂t‖1 = 0 and therefore both ‖p̂t‖1

∑N
i=1 pt,i(gt,i − 〈gt, pt〉) and∑

i :πiwt,i>0 πi[wt,i]+(gt,i − 〈gt, pt〉) are trivially zero. If ‖p̂t‖1 > 0 then πi[wt,i]+ = p̂t,i =

‖p̂t‖1 pt,i for all i.

From the assumption on A, we have, for any sequence {g̃t}∞t=1 such that g̃t ∈ [−1, 1], satisfies

Wealtht = 1 +

t∑
i=1

g̃iwi ≥ Ft

(
t∑
i=1

g̃i

)
. (17)

Inequality
∑N
i=1 πig̃t,iwt,i ≤ 0 and (17) imply

N∑
i=1

πiFT

(
T∑
t=1

g̃t,i

)
≤ 1 +

N∑
i=1

πi

T∑
t=1

g̃t,iwt,i ≤ 1 . (18)

Now, let G̃T,i =
∑T
t=1 g̃t,i. For any competitor u ∈ ∆N ,

RegretT (u) =

T∑
t=1

〈gt, u− pt〉 =

T∑
t=1

N∑
i=1

ui (gt,i − 〈gt, pt〉)

≤
T∑
t=1

N∑
i=1

uig̃t,i (by definition of g̃t,i)

≤
N∑
i=1

ui

∣∣∣G̃T,i∣∣∣ (since ui ≥ 0, i = 1, . . . , N )

=

N∑
i=1

uif
−1
T

(
ln[FT (G̃T,i)]

)
(since FT (x) = exp(fT (x)) is even)

≤ f−1
T

(
N∑
i=1

ui ln
[
FT (G̃T,i)

])
(by concavity of f−1

T )

= f−1
T

(
N∑
i=1

ui

{
ln

[
ui
πi

]
+ ln

[
πi
ui
FT (G̃T,i)

]})
= f−1

T

(
D (u‖π) +

N∑
i=1

ui ln

[
πi
ui
FT (G̃T,i)

])

≤ f−1
T

(
D (u‖π) + ln

(
N∑
i=1

πiFT (G̃T,i)

))
(by concavity of ln(·))

≤ f−1
T (D (u‖π)) (by (18)).

E Properties of Krichevsky-Trofimov Potential

Lemma 12 (Analytic Properties of KT potential). Let a > 0. The function F : (−a, a)→ R+,

F (x) = Γ(a+ x)Γ(a− x)
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is even, logarithmically convex, strictly increasing on [0, a), satisfies

lim
x↗a

F (x) = lim
x↘−a

F (x) = +∞

and
∀x ∈ [0, a) x · F ′′(x) ≥ F ′(x) . (19)

Proof. F (x) is obviously even. Γ(z) =
∫∞

0
tz−1e−tdt is defined for any real number z > 0.

Hence, F is defined on the interval (−a, a). According to Bohr-Mollerup theorem [1, Theorem
2.1], Γ(x) is logarithmically convex on (0,∞). Hence, F (x) is also logarithmically convex, since
ln(F (x)) = ln(Γ(a+ x)) + ln(Γ(a− x)) is a sum of convex functions.

It is well known that limz↘0 Γ(z) = +∞. Thus,

lim
x↗a

F (x) = lim
x↗a

Γ(a+ x)Γ(a− x) = Γ(2a) lim
x↗a

Γ(a− x) = Γ(2a) lim
z↘0

Γ(z) = +∞ ,

since Γ is continuous and not zero at 2a. Because F (x) is even, we also have limx↘−a F (x) = +∞.

To show that F (x) is increasing and that it satisfies (19), we write f(x) = ln(F (x)) as a Mclaurin
series. The derivatives of ln(Γ(z)) are the so called polygamma functions

ψ(n)(z) =
dn+1

dzn+1
ln(Γ(z)) for z > 0 and n = 0, 1, 2, . . . .

Polygamma functions have the well-known integral representation

ψ(n)(z) = (−1)n+1

∫ ∞
0

tne−zt

1− e−t
dt for z > 0 and n = 1, 2, . . . .

Using polygamma functions, we can write the Mclaurin series for f(x) = ln(F (x)) as

f(x) = ln(F (x)) = ln(Γ(a+ x)) + ln(Γ(a− x)) = 2 ln(Γ(a)) + 2
∑
n≥2
n even

ψ(n−1)(a)xn

n!
.

The series converges for x ∈ (−a, a), since for even n ≥ 2, ψ(n−1)(a) is positive and can be upper
bounded as

ψ(n−1)(a) =

∫ ∞
0

tn−1e−at

1− e−t
dt

=

∫ 1

0

tn−1e−at

1− e−t
dt+

∫ ∞
1

tn−1e−zt

1− e−t
dt

≤
∫ 1

0

tn−1e−at

t(1− 1/e)
dt+

∫ ∞
1

tn−1e−atdt

≤ 1

1− 1/e

∫ ∞
0

tn−2e−atdt+

∫ ∞
0

tn−1e−atdt

=
1

1− 1/e
a1−nΓ(n− 1) + a−nΓ(n)

≤ 1

1− 1/e
a−n(a+ 1)(n− 1)! .

From the Mclaurin expansion we see that f(x) is increasing on [0, a) since all the coefficients are
positive (except for zero order term).

Finally, to prove (19), note that for any x ∈ (−a, a),

f(x) = c0 +

∞∑
n=2

cnx
n

where c2, c3, . . . are non-negative coefficients. Thus

f ′(x) =

∞∑
n=2

ncnx
n−1 and f ′′(x) =

∞∑
n=2

n(n− 1)cnx
n−2 .

15



and hence x · f ′′(x) ≥ f ′(x) for x ∈ [0, a). Since F (x) = exp(f(x)),

F ′(x) = f ′(x) · F (x) and F ′′(x) =
[
f ′′(x) + (f ′(x))2

]
· F (x) .

Therefore, for x ∈ [0, a),

x · F ′′(x) = x
[
f ′′(x) + (f ′(x))2

]
F (x) ≥

[
f ′(x) + x(f ′(x))2

]
F (x) ≥ f ′(x)F (x) = F ′(x) .

This proves (19).

Theorem 13 (KT potential). Let δ ≥ 0 and ε > 0. The sequence of functions {Ft}∞t=0, Ft :
(−t− δ − 1, t+ δ + 1)→ R+ defined by

Ft(x) = ε
2t · Γ(δ + 1)Γ( t+δ+1

2 + x
2 )Γ( t+δ+1

2 − x
2 )

Γ( δ+1
2 )2Γ(t+ δ + 1)

.

is a sequence of excellent coin betting potentials for initial endowment ε. Furthermore, for any
x ∈ (−t− δ − 1, t+ δ + 1),

Ft(x+ 1)− Ft(x− 1)

Ft(x+ 1) + Ft(x− 1)
=

x

t+ δ
. (20)

Proof. Property (b) and (d) of the definition follow from Lemma 12. Property (a) follows by simple
substitution for t = 0 and x = 0.

Before verifying property (c), we prove (20). We use an algebraic property of the gamma function
that states that Γ(1 + z) = zΓ(z) for any positive z. Equation (20) follows from

Ft(x+ 1)− Ft(x− 1)

Ft(x+ 1) + Ft(x− 1)
=

Γ( t+δ+2
2 + x

2 )Γ( t+δ2 −
x
2 )− Γ( t+δ2 + x

2 )Γ( t+δ+2
2 − x

2 )

Γ( t+δ+2
2 + x

2 )Γ( t+δ2 −
x
2 ) + Γ( t+δ2 + x

2 )Γ( t+δ+2
2 − x

2 )

=
( t+δ2 + x

2 )Γ( t+δ2 + x
2 )Γ( t+δ2 −

x
2 )− ( t+δ2 −

x
2 )Γ( t+δ2 + x

2 )Γ( t+δ2 −
x
2 )

( t+δ2 + x
2 )Γ( t+δ2 + x

2 )Γ( t+δ2 −
x
2 ) + ( t+δ2 −

x
2 )Γ( t+δ2 + x

2 )Γ( t+δ2 −
x
2 )

=
( t+δ2 + x

2 )− ( t+δ2 −
x
2 )

( t+δ2 + x
2 ) + ( t+δ2 −

x
2 )

=
x

t+ δ
.

Let φ(g) = Ft(x+g)
Ft−1(x) . To verify property (c) of the definition, we need to show that φ(g) ≤ 1 + g x

t+δ

for any x ∈ [−t+ 1, t− 1] and any g ∈ [−1, 1]. We can write φ(g) as

φ(g) =
Ft(x+ g)

Ft−1(x)

=
2Γ( t+δ+1

2 + x+g
2 )Γ( t+δ+1

2 − x+g
2 )Γ(t+ δ)

Γ( t+δ2 + x
2 )Γ( t+δ2 −

x
2 )Γ(t+ δ + 1)

=
2

t+ δ
·

Γ( t+δ+1
2 + x+g

2 )Γ( t+δ+1
2 − x+g

2 )

Γ( t+δ2 + x
2 )Γ( t+δ2 −

x
2 )

.

For g = +1, using the formula Γ(1 + z) = zΓ(z), we have

φ(+1) =
2

t+ δ
·

Γ( t+δ2 + x
2 + 1)Γ( t+δ2 −

x
2 )

Γ( t+δ2 + x
2 )Γ( t+δ2 −

x
2 )

=
2

t+ δ

(
t+ δ

2
+
x

2

)
= 1 +

x

t+ δ
.

Similarly, for g = −1, using the formula Γ(1 + z) = zΓ(z), we have

φ(−1) =
2

t+ δ
·

Γ( t+δ2 + x
2 )Γ( t+δ2 −

x
2 + 1)

Γ( t+δ2 + x
2 )Γ( t+δ2 −

x
2 )

=
2

t+ δ

(
t+ δ

2
− x

2

)
= 1− x

t+ δ
.
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We can write any g ∈ [−1, 1] as a convex combination of−1 and +1, i.e., g = λ·(−1)+(1−λ)·(+1)
for some λ ∈ [0, 1]. Since φ(g) is (logarithmically) convex,

φ(g) = φ(λ · (−1) + (1− λ) · (+1))

≤ λφ(−1) + (1− λ)φ(+1)

= λ

(
1 +

x

t+ δ

)
+ (1− λ)

(
1− x

t+ δ

)
= 1 + g

x

t+ δ
.

F Proofs of Corollaries 5 and 6

We state some technical lemmas that will be used in the following proofs. We start with a lower
bound on the Krichevsky-Trofimov (KT) potential. It is a generalization of the lower bound proved
for integers in Willems et al. [29] to real numbers.

Lemma 14 (Lower Bound on KT Potential). If c ≥ 1 and a, b are non-negative reals such that
a+ b = c then

ln

(
Γ(a+ 1/2) · Γ(b+ 1/2)

π · Γ(c+ 1)

)
≥ − ln(e

√
π)− 1

2
ln(c) + ln

((a
c

)a(b
c

)b)
.

Proof. From [28][p. 263 Ex. 45], we have

Γ(a+ 1/2)Γ(b+ 1/2)

Γ(a+ b+ 1)
≥
√

2π
(a+ 1/2)a(b+ 1/2)b

(a+ b+ 1)a+b+1/2
.

It remains to show that

√
2π

(a+ 1/2)a(b+ 1/2)b

(a+ b+ 1)a+b+1/2
>

√
π

e

1√
a+ b

(
a

a+ b

)a(
b

a+ b

)b
,

which is equivalent to
(1 + 1

2a )a(1 + 1
2b )

b

(1 + 1
a+b )

a+b+1/2
>

1

e
√

2
.

From the inequality 1 ≤ (1 + 1/x)x < e valid for any x ≥ 0, it follows that 1 ≤ (1 + 1
2a )a <

√
e

and 1 ≤ (1 + 1
2b )

b <
√
e and 1 ≤ (1 + 1/(a+ b))a+b < e. Hence,

(1 + 1
2a )a(1 + 1

2b )
b

(1 + 1
a+b )

a+b+1/2
>

1

e
√

1 + 1
a+b

≥ 1

e
√

2
.

Lemma 15. Let δ ≥ 0. Then
Γ(δ + 1)

2δΓ( δ+1
2 )2

≥
√
δ + 1

π
.

Proof. We will prove the equivalent statement that

ln
Γ(δ + 1)π

2δΓ( δ+1
2 )2
√
δ + 1

≥ 0 .

The inequality holds with equality in δ = 0, so it is enough to prove that the derivative of the
left-hand side is positive for δ > 0. The derivative of the left-hand side is equal to

Ψ(δ + 1)− 1

2(δ + 1)
− ln(2)−Ψ

(
δ + 1

2

)
,

where Ψ(x) is the digamma function.

17



We will use the upper [7] and lower bound [2] to the digamma function, which state that for any
x > 0,

Ψ(x) < ln(x)− 1

2x
− 1

12x2
+

1

120x4

Ψ(x+ 1) > ln

(
x+

1

2

)
.

Using these bounds we have

Ψ(δ + 1)− 1

2(δ + 1)
− ln(2)−Ψ

(
δ + 1

2

)
≥ ln

(
δ +

1

2

)
− 1

2(δ + 1)
− ln(2)− ln

(
δ + 1

2

)
+

1

δ + 1
+

1

3(δ + 1)2
− 2

15(δ + 1)4

= ln

(
1− 1

2(δ + 1)

)
+

1

2(δ + 1)
+

1

3(δ + 1)2
− 2

15(δ + 1)4

≥ − (4 ln(2)− 2)

4(δ + 1)2
+

1

3(δ + 1)2
− 2

15(δ + 1)4

=
[15(1/2− ln(2))) + 5](δ + 1)2 − 2

15(δ + 1)4

≥ [15(1/2− ln(2))) + 5]− 2

15(δ + 1)4
≥ 0

where in the second inequality we used the elementary inequality ln(1−x) ≥ −x− (4 ln(2)−2)x2

valid for x ∈ [0, .5].

Lemma 16 (Lower Bound on Shifted KT Potential). Let T ≥ 1, δ ≥ 0, and x ∈ [−T, T ]. Then

2T · Γ(δ + 1)Γ
(
T+δ+1

2 + x
2

)
· Γ
(
T+δ+1

2 − x
2

)
Γ( δ+1

2 )2Γ(T + δ + 1)
≥ exp

(
x2

2(T + δ)
+

1

2
ln

(
1 + δ

T + δ

)
− ln(e

√
π)

)
.

Proof. Using Lemma 14, we have

ln
2T · Γ(δ + 1)Γ

(
T+δ+1

2 + x
2

)
· Γ
(
T+δ+1

2 − x
2

)
Γ( δ+1

2 )2Γ(T + δ + 1)

≥ ln
2T+δ

√
δ + 1 · Γ

(
T+δ+1

2 + x
2

)
· Γ
(
T+δ+1

2 − x
2

)
πΓ(T + δ + 1)

≥ − ln(e
√
π) +

1

2
ln

(
1 + δ

T + δ

)
+ ln

((
1 +

x

T + δ

)T+δ+x
2

(
1 +

x

T + δ

)T+δ−x
2

)

= − ln(e
√
π) +

1

2
ln

(
1 + δ

T + δ

)
+ (T + δ) D

(
1

2
+

x

2(T + δ)

∥∥∥∥1

2

)
≥ − ln(e

√
π) +

1

2
ln

(
1 + δ

T + δ

)
+

x2

2(T + δ)
,

where in the first inequality we used Lemma 15, in the second one Lemma 14, and in third one the
known lower bound to the divergence D

(
1
2 + x

2

∥∥ 1
2

)
≥ x2

2 . Exponentiating and overapproximating,
we get the stated bound.

F.1 Proof of Corollary 5

The Lambert function W (x) : [0,∞)→ [0,∞) is defined by the equality

x = W (x) exp (W (x)) for x ≥ 0. (21)

The following lemma provides bounds on W (x).
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Lemma 17. The Lambert function satisfies 0.6321 log(x+ 1) ≤W (x) ≤ log(x+ 1) for x ≥ 0.

Proof. The inequalities are satisfied for x = 0, hence we in the following we assume x > 0. We
first prove the lower bound. From (21) we have

W (x) = log

(
x

W (x)

)
. (22)

From the first equality, using the elementary inequality ln(x) ≤ a
ex

1
a for any a > 0, we get

W (x) ≤ 1

a e

(
x

W (x)

)a
∀a > 0,

that is

W (x) ≤
(

1

a e

) 1
1+a

x
a

1+a ∀a > 0. (23)

Using (23) in (22), we have

W (x) ≥ log

 x(
1
a e

) 1
1+a x

a
1+a

 =
1

1 + a
log (a e x) ∀a > 0 .

Consider now the function g(x) = x
x+1 −

b
log(1+b)(b+1) log(x + 1), x ≥ b. This function has a

maximum in x∗ = (1 + 1
b ) log(1 + b)− 1, the derivative is positive in [0, x∗] and negative in [x∗, b].

Hence the minimum is in x = 0 and in x = b, where it is equal to 0. Using the property just proved
on g, setting a = 1

x , we have

W (x) ≥ x

x+ 1
≥ b

log(1 + b)(b+ 1)
log(x+ 1) ∀x ≤ b .

For x > b, setting a = x+1
ex , we have

W (x) ≥ e x

(e+ 1)x+ 1
log(x+ 1) ≥ e b

(e+ 1)b+ 1
log(x+ 1) (24)

Hence, we set b such that
e b

(e+ 1)b+ 1
=

b

log(1 + b)(b+ 1)

Numerically, b = 1.71825..., so

W (x) ≥ 0.6321 log(x+ 1) .

For the upper bound, we use Theorem 2.3 in [13], that says that

W (x) ≤ log
x+ C

1 + log(C)
, ∀x > −1

e
, C >

1

e
.

Setting C = 1, we obtain the stated bound.

Lemma 18. Define f(x) = β exp x2

2α , for α, β > 0, x ≥ 0. Then

f∗(y) = y

√
αW

(
αy2

β2

)
− β exp

W
(
αy2

β2

)
2

 .

Moreover

f∗(y) ≤ y

√
α log

(
αy2

β2
+ 1

)
− β.
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Proof. From the definition of Fenchel dual, we have

f∗(y) = max
x

x y − f(x) = max
x

x y − β exp
x2

2α
≤ x∗ y − β

where x∗ = arg maxx x y − f(x). We now use the fact that x∗ satisfies y = f ′(x∗), to have

x∗ =

√
αW

(
αy2

β2

)
,

where W (·) is the Lambert function. Using Lemma 17, we obtain the stated bound.

Proof of Corollary 5. Notice that the KT potential can be written as

Ft(x) = ε ·
2t · Γ(1)Γ

(
t+1

2 + x
2

)
· Γ
(
t+1

2 −
x
2

)
Γ( 1

2 )2Γ(t+ 1)
.

Using Lemma 16 with δ = 0 we can lower bound Ft(x) with

Ht(x) = ε · exp

(
x2

2t
+

1

2
ln

(
1

t

)
− ln(e

√
π)

)
.

Since Ht(x) ≤ Ft(x), we have F ∗t (x) ≤ H∗t (x). Using Lemma 18, we have

∀u ∈ H F ∗T (‖u‖) ≤ H∗T (‖u‖) ≤

√√√√T log

(
24T 2 ‖u‖2

ε2
+ 1

)
+ ε

(
1− 1

e
√
πT

)
.

An application of Theorem 3 completes the proof.

F.2 Proof of Corollary 6

Proof. Let

Ft(x) =
2t · Γ(δ + 1)Γ( t+δ+1

2 + x
2 )Γ( t+δ+1

2 − x
2 )

Γ( δ+1
2 )2Γ(t+ δ + 1)

,

Ht(x) = exp

(
x2

2(t+ δ)
+

1

2
ln

(
1 + δ

t+ δ

)
− ln(e

√
π)

)
.

Let ft(x) = ln(Ft(x)) and ht(x) = ln(Ht(x)). By Lemma 16, Ht(x) ≤ Ft(x) and therefore
f−1
t (x) ≤ h−1

t (x) for all x ≥ 0. Theorem 4 implies that

∀u ∈ ∆t Regrett(u) ≤ f−1
t (D (u‖π)) ≤ h−1

t (D (u‖π)) .

Setting t = T and δ = T/2, and overapproximating h−1
t (D (u‖π)) we get the stated bound.
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