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A A More General Setting

In the main paper, for the sake of clarity, we discussed only the setting of distributions on the
D-dimensional unit cube [0, 1]D. For sake of generality, we prove our results in the significantly
more general setting of a set equipped with a metric, a base measure, a probability density, and
an appropriate definition of dimension. This setting subsumes Euclidean spaces, in which k-NN
methods are usually analyzed, but also includes, for instance, Riemannian manifolds.
Definition 1. (Metric Measure Space): A quadruple (X, d,Σ, µ) is called a metric measure space
if (X, d) is a complete metric space, (X,Σ, µ) is a σ-finite measure space, and Σ contains the Borel
σ-algebra induced by d.
Definition 2. (Scaling Dimension): A metric measure space (X, d,Σ, µ) has scaling dimension
D ∈ [0,∞) if there exist constants µ∗, µ∗ > 0 such that, ∀r > 0, x ∈ X, µ∗ ≤ µ(B(x,r))

rD
≤ µ∗. 1

Remark 3. The above definition of dimension coincides with D in RD, where, under the Lp metric
and Lebesgue measure,

µ∗ = µ∗ =
(2Γ(1 + 1/p))

D

Γ(1 +D/p)
is the usual volume of the unit ball. However, it is considerably more general than the vector-space
definition of dimension. It includes, for example, the case that X is a smooth Riemannian manifold,
with the standard metric and measure induced by the Riemann metric. In this case, our results scale
with the intrinsic dimension of data, rather than the dimension of a space in which the data are
embedded. Often, µ∗ = µ∗, but leaving these distinct allows, for example, manifolds with boundary.
The scaling dimension is slightly more restrictive than the well-studied doubling dimension of a
measure, [3] which enforces only an upper bound on the rate of growth.

B Proofs of Lemmas

Lemma 2. Consider a metric measure space (X, d,Σ, µ) of scaling dimensionD, and a µ-absolutely
continuous probability measure P , with density function p : X→ [0,∞) supported on

X := {x ∈ X : p(x) > 0}.
If p is continuous on X , then, for any ρ > 0, there exists a function p∗ : X → (0,∞) such that

0 < p∗(x) ≤ inf
r∈(0,ρ]

P (B(x, r))

µ(B(x, r))
, ∀x ∈ X ,

and, if p is bounded above by p∗ := supx∈X p(x) <∞, then

sup
r∈(0,ρ]

P (B(x, r))

µ(B(x, r))
≤ p∗ <∞, ∀r ∈ (0, ρ],

1B(x, r) := {y ∈ X : d(x, y) < r} denotes the open ball of radius r centered at x.
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Proof: Let x ∈ X . Since p is continuous and strictly positive at x, there exists ε ∈ (0, ρ] such that
and, for all y ∈ B(x, ε), p(y) ≥ p(x)/2 > 0. Define

p∗(x) :=
p(x)

2

µ∗
µ∗

(
ε

ρ

)D
.

Then, for any r ∈ (0, ρ], since P is a non-negative measure, and µ has scaling dimension D,

P (B(x, r)) ≥ P (B(x, εr/ρ)) ≥ µ(B(x, εr/ρ)) min
y∈B(x,εr/ρ)

p(y)

≥ µ(B(x, εr/ρ))
p(x)

2

≥ p(x)

2
µ∗

(
εr

ρ

)D
= p∗(x)µ∗rD ≥ p∗(x)µ(B(x, r)).

Also, trivially, ∀r ∈ (0, ρ],

P (B(x, r)) ≤ µ(B(x, r)) max
y∈B(x,rρ/ε)

p(y) ≤ p∗(x)µ(B(x, r)).

Lemma 3. Consider a metric measure space (X, d,Σ, µ) of scaling dimensionD, and a µ-absolutely
continuous probability measure P , with continuous density function p : X→ [0,∞) supported on

X := {x ∈ X : p(x) > 0}.

For x ∈ X , if r >
(

k
p∗(x)n

)1/D

, then

P [εk(x) > r] ≤ e−p∗(x)rDn

(
e
p∗(x)rDn

k

)k
.

and, if r ∈
[
0,
(

k
p∗n

)1/D
)

, then

P [εk(x) ≤ r] ≤ e−p∗(x)rDn

(
ep∗rDn

k

)kp∗(x)/p∗

.

Proof: Notice that, for all x ∈ X and r > 0,
n∑
i=1

1{Xi∈B(x,r)} ∼ Binomial (n, P (B(x, r))) ,

and hence that many standard concentration inequalities apply. Since we are interested in small r
(and hence small P (B(x, r))), we prefer bounds on relative error, and hence apply multiplicative
Chernoff bounds. If r > (k/(p∗(x)n))

1/D, then, by definition of p∗, P (B(x, r)) < k/n, and so,
applying the multiplicative Chernoff bound with δ := p∗(x)rDn−k

p∗(x)rDn
> 0 gives

P [εk(x) > r] = P

[
n∑
i=1

1{Xi∈B(x,r)} < k

]

≤ P

[
n∑
i=1

1{Xi∈B(x,r)} < (1− δ)nP (B(x, r))

]

≤
(

e−δ

(1− δ)(1−δ)

)nP (B(x,r))

= e−p∗(x)rDn

(
ep∗(x)rDn

k

)k
.
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Similarly, if r < (k/(p∗n))
1/D, then, applying the multiplicative Chernoff bound with δ :=

k−p∗rDn
p∗rDn

> 0,

P [εk(x) < r] = P

[
n∑
i=1

1{Xi∈B(x,r)} ≥ k

]

≤ P

[
n∑
i=1

1{Xi∈B(x,r)} ≥ (1 + δ)nP (B(x, r))

]

≤
(

eδ

(1 + δ)(1+δ)

)nP (B(x,r))

≤ e−p∗(x)rDn

(
ep∗rDn

k

)kp∗(x)/p∗

The bound we prove below is written in a somewhat different form from the version of Lemma 4
in the main paper. This form follows somewhat more intuitively from Lemma 3, but does not make
obvious the connection to the asymptotic Erlang distribution. To derive the form in the paper, one
simply integrates the integral below by parts, plugs in the function x 7→ f

(
p∗(x)

/
k/n

cDεDk (x)

)
, and

applies the bound (e/k)k ≤ e√
kΓ(k)

.

Lemma 4. Consider the setting of Lemma 3 and assume X is compact with diameter ρ :=
supx,y∈X d(x, y). Suppose f : (0, ρ) → R is continuously differentiable, with f ′ > 0. Then,
for any x ∈ X , we have the upper bound

E [f+(εk(x))] ≤ f+

((
k

p∗(x)n

) 1
D

)
+

(e/k)k

D(np∗(x))
1
D

∫ np∗(x)ρD

k

e−yy
Dk+1−D

D f ′

((
y

np∗(x)

) 1
D

)
dy

(1)

and the lower bound

E [f−(εk(x))] ≤ f−

((
k

p∗n

) 1
D

)
+

(e/κ(x))
κ(x)

D (np∗(x))
1
D

∫ κ(x)

0

e−yy
Dκ(x)+1−D

D f ′

((
y

np∗(x)

) 1
D

)
dy,

(2)

where f+(x) = max{0, f(x)} and f−(x) = −min{0, f(x)} denote the positive and negative parts
of f , respectively, and κ(x) := kp∗(x)/p∗.

Proof: For notational simplicity, we prove the statement for g(x) = f
(
np∗(x)xD

)
; the main result

follows by substituting f back in.

Define

ε+
0 = f+

((
k

p∗(x)n

) 1
D

)
and ε−0 = f−

((
k

p∗n

) 1
D

)
.

Writing the expectation in terms of the survival function,

E [f+(εk(x))] =

∫ ∞
0

P [f(εk(x)) > ε] dε

=

∫ ε+0

0

P [f(εk(x)) > ε] dε+

∫ f+(ρ)

ε+0

P [f(εk(x)) > ε] dε,

≤ ε+
0 +

∫ f+(ρ)

ε+0

P [f(εk(x)) > ε] dε, (3)

since f is non-decreasing and P [εk(x) > ρ] = 0. By construction of ε+
0 , for all ε > ε+

0 ,
f−1(ε) > (k/(p∗(x)n))

1/D. Hence, applying Lemma 3 followed by the change of variables
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y = np∗(x)
(
f−1(ε)

)D
gives 2

∫ f+(ρ)

ε+0

P
[
εk(x) > f−1(ε)

]
dε ≤

∫ f+(ρ)

ε+0

e−np∗(x)(f−1(ε))
D

(
enp∗(x)

(
f−1(ε)

)D
k

)k
dε

=
(e/k)k

D(np∗(x))
1
D

∫ np∗(x)ρD

k

e−yy
kD+1−D

D f ′

((
y

np∗(x)

) 1
D

)
dy,

Together with (3), this gives the upper bound (1). Similar steps give

E [f(εk(x))] ≤ ε−0 +

∫ f−(0)

ε−0

P [f(εk(x)) < −ε] dε. (4)

Applying Lemma 3 followed the change of variables y = np∗(x)
(
f−1(−ε)

)D
gives∫ f−(ρ)

ε−0

P
[
εk(x) < f−1(−ε)

]
dε ≤ (e/κ(x))

κ(x)

D (np∗(x))
1
D

∫ κ(x)

0

e−yy
Dκ(x)+1−D

D f ′

((
y

np∗(x)

) 1
D

)
dy

Together with inequality (4), this gives the result (2).

B.1 Applications of Lemma 4

When f(x) = log(x), (1) gives

E
[
log+(εk(x))

]
≤ 1

D
log+

(
k

p∗(x)n

)
+
( e
k

)k Γ(k, k)

D
≤ 1

D

(
log+

(
k

p∗(x)n

)
+ 1

)
and (2) gives 3

E
[
log−(εk(x))

]
≤ 1

D

(
log−

(
k

p∗n

)
+

(
e

κ(x)

)κ(x)

γ(κ(x), κ(x))

)
(5)

≤ 1

D

(
log−

(
k

p∗n

)
+

1

κ(x)

)
. (6)

For α > 0, f(x) = xα, (1) gives

E [εαk (x)] ≤
(

k

p∗(x)n

) α
D

+
( e
k

)k αΓ (k + α/D, k)

D(np∗(x))α/D

≤ C2

(
k

p∗(x)n

) α
D

, (7)

where C2 = 1 + α
D . For any α ∈ [−Dκ(x), 0], when f(x) = −xα, (2) gives

E [εαk (x)] ≤
(

k

p∗n

) α
D

+

(
e

κ(x)

)κ(x)
αγ (κ(x) + α/D, κ(x))

D(np∗(x))α/D
(8)

≤ C3

(
k

p∗n

) α
D

, (9)

where C3 = 1 + α
Dκ(x)+α .

2f need not be surjective, but the generalized inverse f−1 : [−∞,∞] → [0,∞] defined by f−1(ε) :=
inf{x ∈ (0,∞) : f(x) ≥ ε} suffices here.

3Γ(s, x) :=
∫∞
x
ts−1e−t dt and γ(s, x) :=

∫ x

0
ts−1e−t dt denote the upper and lower incomplete Gamma

functions respectively. We used the bounds Γ(s, x), xγ(s, x) ≤ xse−x.
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C Proof of Bias Bound

Theorem 5. Consider the setting of Lemma 3. Suppose Suppose p is β-Hölder continuous, for some
β ∈ (0, 2]. Let f : (0,∞)→ R be differentiable, and define Mf : X → [0,∞) by

Mf (x) := sup
z∈[ p∗(x)

µ∗ , p
∗
µ∗ ]
‖∇f(z)‖

(assuming this quantity is finite for almost all x ∈ X ). Suppose that

CM := E
X∼p

[
Mf (X)

(p∗(X))
β
D

]
<∞.

Then, for CB := CML,∣∣∣∣ E
X,X1,...,Xn∼P

[
f(pεk(X)(X))

]
− F (p)

∣∣∣∣ ≤ CB (kn
) β
D

.

Proof: By construction of p∗ and p∗,

p∗(x) ≤ pε(x) =
P (B(x, ε))

µ(B(x, ε))
≤ p∗.

Also, by the Lebesgue differentiation theorem [2], for µ-almost all x ∈ X ,

p∗(x) ≤ p(x) ≤ p∗.

For all x ∈ X , applying the mean value theorem followed by inequality (7),

E
X1,...,Xn∼p

[∣∣f(p(x))− f(pεk(x)(x))
∣∣] ≤ E

X1,...,Xn∼p

[
‖∇f(ξ(x))‖

∣∣p(x)− pεk(x)(x)
∣∣]

≤Mf (x) E
X1,...,Xn∼p

[∣∣p(x)− pεk(x)(x)
∣∣]

≤ Mf (x)LD

D + β
E

X1,...,Xn∼P

[
εβk(x)

]
≤ C2Mf (x)LD

D + β

(
k

p∗(x)n

) β
D

Hence,∣∣∣∣ E
X1,...,Xn∼p

[
F (p)− F̂ (p)

]∣∣∣∣ =

∣∣∣∣ E
X∼p

[
E

X1,...,Xn∼p

[
f(p(X))− f(pεk(X)(X))

]]∣∣∣∣
≤ C2LD

D + β
E

X∼p

[
Mf (X)

(p∗(X))
β
D

](
k

n

) β
D

=
C2CMLD

D + β

(
k

n

) β
D

.

Lemma 6. Let c > 0. Suppose there exist b∂ ∈ (0, 1
c ), c∂ , ρ∂ > 0 such that for all x ∈ X with

ε(x) := dist(x, ∂X ) < ρ∂ , p(x) ≥ c∂εb∂ (x). Then,∫
X

(p∗(x))
−c

dµ(x) <∞.

Proof: Let X∂ := {x ∈ X : dist(x, ∂X ) < ρ∂} denote the region within ρ∂ of ∂X . Since
p∗ is continuous and strictly positive on the compact set X\X∂ , it has a positive lower bound
` := infx∈X\X∂ on this set, and it suffices to show∫

X\X∂
(p∗(x))

−c
dµ(x) <∞.
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For all x ∈ X∂ ,

p∗(x) ≥ min{`, c∂εb∂ (x)}
µ(B(x,

√
D))

.

Hence, ∫
X\X∂

(p∗(x))
−c

dµ(x) ≤
∫
X\X∂

`−c dµ(x) +

∫
X\X∂

c−c∂ ε−b∂/c(x) dµ(x).

The first integral is trivially bounded by `−c. Since ∂X is the union of 2D “squares” of dimension
D − 1, the second integral can be reduced to the sum of 2D integrals of dimension 1, giving the
bound

2Dc−c∂

∫ ρ∂

0

x−b∂/c(x) dx.

Since b∂/c < 1, the integral is finite.

For concreteness, we give an illustrative example of how Lemma 6 is useful.

Example: Consider the one-dimensional density p(x) = (α + 1)xα on (0, 1). Though the lower
bound p∗ provided by Lemma 2 is somewhat loose in this case, notice that, for x < r ∈ (0, 1),

P (B(x, r))

µ(B(x, r))
≥ (x+ r)α+1

2r
≥ (x(1 + 1/α))α+1

2x/α
=
α(1 + 1/α)α+1

2
xα,

and, for r < x ∈ (0, 1),

P (B(x, r))

µ(B(x, r))
=

(x+ r)α+1 − (x− r)α+1

2r
≥ 2rxα

2r
= xα.

In either case, for Cα := min
{

1, α(1 + 1/α)α+1/2
}

, we have

p∗(x) := Cαx
σ ≤ P (B(x, r))

µ(B(x, r))
.

Thus, we have a local lower bound p∗ of the form in Lemma, satisfying the conditions of Lemma 6
with b∂ = α.

Now consider more general densities p on (0, 1). If p(0) = 0 and p is right-differentiable at 0 with
limh→0

p(h)
h > 0 (i.e., the one-sided Taylor expansion of p at 0 has a non-zero first-order coefficient),

then, near 0, p is proportional to x. This intuition can be formalized to show that the example above
extends to quite general distributions.

D Proof of Variance Bound

Theorem 7. (Variance Bound) Suppose that B ◦ f is continuously differentiable and strictly mono-
tone. Assume that Cf,p := EX∼P

[
B2(f(p∗(X)))

]
< ∞, and that Cf :=

∫∞
0
e−yykf(y) < ∞.

Then, for

CV := 2 (1 +Nk,D) (3 + 4k) (Cf,p + Cf ) , we have V
[
F̂B(P )

]
≤ CV

n
.

Proof: For convenience, define

Hi := B
(
f

(
k/n

µ (B(Xi, εk(Xi)))

))
.

By the Efron-Stein inequality [1] and the fact that the F̂B(P ) is symmetric in X1, . . . , Xn,

V
[
F̂B(P )

]
≤ n

2
E
[(
F̂B(P )− F ′B(P )

)2
]

≤ nE
[(
F̂B(P )− F2:n

)2

+
(
F̂ ′B(P )− F2:n

)2
]

= 2nE
[(
F̂B(P )− F2:n

)2
]
,
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where F̂ ′B(P ) denotes the estimator after X1 is resampled, and F2:n := 1
n

∑n
i=2Hi. Then,

n(F̂n(P )− F2:n) = H1 +

n∑
i=2

1Ei (Hi −H ′i) ,

where 1Ei is the indicator function of the event Ei = {εk(Xi) 6= ε′k(Xi)}. By Cauchy-Schwarz
followed by the definition of Nk,D,

n2(F̂n(P )− F̂n−1(P ))2 =

(
1 +

n∑
i=2

1Ei

)(
H2

1 +

n∑
i=2

1Ei (Hi −H ′i)
2

)

= (1 +Nk,D)

(
H2

1 +

n∑
i=2

1Ei (Hi −H ′i)
2

)

≤ (1 +Nk,D)

(
H2

1 + 2

n∑
i=2

1Ei
(
H2
i +H ′2i

))
.

Taking expectations, since the terms in the summation are identically distributed, we need to bound

E
[
H2

1

]
, (10)

(n− 1)E
[
1E2H

2
2

]
(11)

and (n− 1)E
[
1E2

H ′22
]
. (12)

Bounding (10): Note that

E
[
H2

1

]
= E

[
B2 (f (p̂k(X1)))

]
= E

[
B2

(
g

(
p∗(x)

p̂k(x)

))]
for g(y) = f (p∗(x)/y). Applying the upper bound in Lemma 4, if B2 ◦ g is increasing,

E
[
H2

1

]
≤ B2(g(1)) +

e
√
k

Γ(k + 1)
C↑ = B2(f(p∗(x))) +

e
√
k

Γ(k + 1)
C↑.

If B2 ◦ g is decreasing, we instead use the lower bound in Lemma 4, giving a similar result. If B2 ◦ g
is not monotone (i.e., if B ◦ g takes both negative and positive values), then, since B ◦ f is monotone
(by assumption), we can apply the above steps to (B ◦ g)− and (B ◦ g)+, which are monotone, and
add the resulting bounds.

Bounding (11): Since {εk(X2) 6= ε′k(X2)} is precisely the event that X1 is amongst the k-NN of
X2, P [εk(Xi) 6= ε′k(Xi)] = k/(n− 1). Thus, since E2 is independent of εk(X2) and

(n− 1)E
[
1E2H

2
2

]
= (n− 1)E [1E2 ]E

[
H2

2

]
= kE

[
H2

2

]
= kE

[
H2

1

]
,

and we can use the bound for (10).

Bounding (12): Since E2 is independent of εk+1(X2) and

(n− 1)E
[
1E2

H ′22
]

= (n− 1)E
[
1E2
B2 (f (p̂k+1(X2)))

]
= (n− 1)E [1E2 ]E

[
B2 (f (p̂k+1(X2)))

]
= kE

[
B2 (f (p̂k+1(X2)))

]
.

Hence, we can again use the same bound as for (10), except with k + 1 instead of k.

Combining these three terms gives the final result.
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