
A The Lower Bounds

Theorem 2 (Lower bound for best arm identification in stochastic bandits). For any K � 2 and
✏ p1/8 and any best-arm identification algorithm, there exists a multi-armed bandit problem for
which the best arm i? is ✏ better than all others, but for which the estimate ˆi of the best arm must
have P[ˆi 6= i?] � 1/3 unless the number of samples collected T is at least K

72✏2 .

Proof. The proof is essentially the same as the regret lower bound for stochastic multi-armed bandits
from Auer et al. [3]. Since we want the lower bound for best arm identification instead of regret, we
include a full proof for completeness.

Following Auer et al. [3], the lower bound instance is drawn uniformly from a family of multi-armed
bandit problems with K arms each. There are K problems in the family, and each one is parametrized
by the optimal arm i?. For the i?th problem, arm i? produces rewards drawn from Ber(1/2+ ✏) while
all other arms produce rewards from Ber(1/2). Let Pi? denote the reward distribution for the i?th

bandit problem, so that Pi?(·|a = i?) = Ber(1/2 + ✏) and Pi?(·|a 6= i?) = Ber(1/2). Let P
0

denote
the reward distribution where all arms receive Ber(1/2) rewards.

Since the environment is stochastic, any randomized algorithm is just a distribution over deterministic
ones, and it therefore suffices to consider only deterministic algorithms. More precisely, a randomized
algorithm uses some random bits z and for each choice, the algorithm itself is deterministic. If we
lower bound Pi? [

ˆi 6= i?|z] for all z, then we also obtain a lower bound after taking expectation.

A deterministic algorithm can be specified as a sequence of mappings  t : {0, 1}t ! [K] with the
interpretation of  T as the estimate of the best arm. Note that  

0

is the first arm chosen, which does
not depend on any of the observations. The algorithm can be specified this way since the sequence of
actions played can be inferred by the sequence of observed rewards. Let Pi?, denote the distribution
over all T rewards when i? is the optimal arm and actions are selected according to  . We are
interested in bounding the error event Pi?, [ T 6= i?].

We first prove,

Pi?, [ T = i?]� P
0, [ T = i?]  1

2

r

E
0, [Ni? ] log

1

1� 4✏2
,

where Ni is the number of times  plays action i over the course of T rounds. Ni is a random variable
since it depends on the sequence of observations, and here we take expectation with respect to P

0

.

To prove this statement, notice that,

|Pi?, [ T = i?]� P
0, [ T = i?]|  kPi?, � P

0, kTV 
r

1

2

KL(P
0, ||Pi?, ) .

The first inequality is by definition of the total variation distance, while the second is Pinsker’s
inequality. We are left to bound the KL divergence. To do so, we introduce notation for sequences.
For any t 2 N, we use r

1:t 2 {0, 1}t to denote the binary reward sequence of length t. The KL
divergence is

KL(P
0, ||Pi?, ) =

X

r1:T2{0,1}T

P
0, (r1:T ) log

✓

P
0, (r1:T )

Pi?, (r1:T )

◆

=

T
X

t=1

X

r1:t2{0,1}t

P
0, (r1:t) log

✓

P
0, (rt|r1:t�1

)

Pi?, (rt|r1:t�1

)

◆

=

T
X

t=1

X

r1:t�1:at

=i?

P
0, (r1:t�1

)

0

@

X

x2{0,1}

P
0, (x) log

✓

P
0, (x|at = i?)

Pi?, (x|at = i?)

◆

1

A ,

where at is the chosen action at time t. To arrive at the second line we use the chain rule for
KL-divergence. The third line is based on the fact that if at 6= i?, then the log ratio is zero, since the
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two conditional distributions are identical. Continuing with straightforward calculations, we have

KL(P
0, ||Pi?, ) =

T
X

t=1

X

r1:t�1:at

=i?

P
0, (r1:t�1

)

✓

1

2

log

✓

1/2

1/2� ✏
◆

+

1

2

log

✓

1/2

1/2 + ✏

◆◆

=

✓

�1

2

log(1� 4✏2)

◆ T
X

t=1

X

r1:t�1:at

=i?

P
0, (r1:t�1

)

=

✓

�1

2

log(1� 4✏2)

◆ T
X

t=1

P
0, [at = i?].

This proves the sub-claim, which follows the same argument as as Auer et. al [3].

To prove the final result, we take expectation over the problem i?.

1

K

K
X

i?=1

Pi?, [ T = i?]  1

K

K
X

i?=1

P
0, [ T = i?] +

1

2K

K
X

i?=1

r

E
0, [Ni? ] log

1

1� 4✏2

 1

K
+

1

2

v

u

u

t

� log(1� 4✏2)

K
E
0, 

K
X

i?=1

Ni?  1

K
+

1

2

r

� log(1� 4✏2)T

K
.

If 4✏2  1/2 then � log(1� 4✏2)  8✏2. This follows by the Taylor expansion of � log(1� x),

� log(1� x) =
1
X

i=1

xi

i
 x

 1
X

i=0

2

�i

i+ 1

!

 x
1
X

i=0

2

�i
= 2x.

The inequality here uses the assumption that x  1/2.

Thus, whenever ✏ p1/8 and T  K
72✏2 , this number is smaller than 2/3, since we restrict to the

cases where K � 2. This is the success probability, so the failure probability is at least 1/3, which
proves the result.

A.1 The construction

Here we design a family of POMDPs for both lower bounds. As with multi-armed bandits above, the
lower bound will be realized by sampling a POMDP from a uniform distribution over this family of
problems. Fix H and K and pick a single xh 2 X for each level h 2 [H] so that xh 6= xh0 for all
pairs h 6= h0. For each level there are two states gh and bh for “good” and “bad.” The observation
marginal distribution Dg

h

= Db
h

is concentrated on xh for each level h, so the observations provide
no information about the underlying state. Rewards for all levels except for h = H are zero.

Each POMDPs in the family corresponds to a path p? = (a?
1

, . . . , a?H) 2 KH . The transition function
for the POMDP corresponding to the path p? is,

�(gh, a
?
h) , gh+1

�(gh, a) , bh+1

if a 6= a?h

�(bh, a) , bh+1

8 a.
The reward is drawn from Ber(1/2 + ✏) if the last state is gH and if the last action is a?H . For all
other outcomes the reward is drawn from Ber(1/2). Observe that these models have deterministic
transitions.

Clearly all of the models in this family are distinct, and there are KH such models. Moreover, since
the observations xh provide no information and only the final reward is non-zero, no information is
received until the full sequence of actions is selected. More formally, for any two policies ⇡,⇡0, the
KL divergence between the distributions of observations and rewards produced by the two policies is
exactly the KL divergence between the final rewards produced by the two policies. Therefore, the
problem is equivalent to a multi-armed bandit problem with KH arms, where the optimal arm gets a
Ber(1/2 + ✏) reward while all other arms get a Ber(1/2) reward. Thus, identifying a policy that is
no-more than ✏ suboptimal in this POMDP is information-theoretically equivalent to identifying the
best arm in the stochastic bandit problem in Theorem 2 with KH arms. Applying that lower bound
gives a sample complexity bound of ⌦(KH/✏2).
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A.2 Proving both lower bounds

To verify both lower bounds in Propositions 1 and 2, we construct the policy and regressor sets. For
Proposition 1, we need a set of reactive policies such that finding the optimal policy has a large
sample complexity. To this end, we use the set of all KH mappings from the H observations to
actions. Specifically, each policy ⇡ is identified with a sequence of H actions (a

1

, . . . , aH) and has
⇡(xh) = ah. These policies are reactive by definition since they do not depend on any previous
history, or state of the world. Clearly there are KH such policies, and each policy is optimal for
exactly one POMDP defined above, namely ⇡p is optimal for the POMDP corresponding to the path
p. Furthermore, in the POMDP defined by p, we have V (⇡p) = 1/2 + ✏, whereas V (⇡) = 1/2 for
every other policy. Consequently, finding the best policy in the class is equivalent to identifying the
best arm in this family of problems. Taking a uniform mixture of problems in the family as before,
we reason that this requires at least ⌦(KH/✏2) trajectories.

For Proposition 2, we use a similar construction. For each path p = (a
1

, . . . , aH), we associate a
regressor fp with,

fp(⇢) ,
1

2

+ ✏1[⇢ is a prefix of p].

Here we use ⇢ to denote the history of the interaction, which can be condensed to a sequence of
actions since the observations provide no information.

Clearly for the POMDP parameterized by p, fp correctly maps the history to future reward, meaning
that the POMDP is realizable for this regressor class. Relatedly, ⇡f

p

is the optimal policy for the
POMDP with optimal sequence p. Moreover, there are precisely KH regressors. As before, the
learning objective requires identifying the optimal policy and hence the optimal path, which requires
⌦(KH/✏2) trajectories.

B Full Algorithm Pseudocode

It is more natural to break the algorithm into more components for the analysis. This lets us focus on
each component in isolation.

We first clarify some notation involving value functions. For predictor f and policy ⇡, we use,

V f
(s,⇡) , Ex⇠D

s

[f(x,⇡(x))]

V (s,⇡) , Ex⇠D
s

[r(⇡(x)) + Es0⇠�(s,⇡(x))V (s0,⇡)].

Recall that V (sH+1

,⇡) = 0 for all sH+1

, which is a terminating state.

We often use a path p as the first argument, with the convention that the associated state is the last one
on the path. This is enabled by deterministic transitions. If a state is omitted from these functions,
then it is assumed to be the start state or the root of the search tree. We also use V ? for the optimal
value, where by assumption we have V ?

= V (⇡f?

) = V f?

(⇡f?

). Finally, throughout the algorithm
and analysis, we use Monte Carlo estimates of these quantities, which we denote as ˆV f , ˆV , etc.

Pseudocode for the compartmentalized version of the algorithm is displayed in Algorithm 4 with sub-
routines displayed as Algorithms 5, 6, 7, and 8. The algorithm should be invoked as LSVEE(F , ✏, �)
where F is the given class of regression functions, ✏ is the target accuracy and � is the target failure
probability. The two main components of the algorithm are the DFS-LEARN and EXPLORE-ON-
DEMAND routines. DFS-LEARN ensures proper invocation of the training step, TD-ELIM, by
verifying a number of preconditions, while EXPLORE-ON-DEMAND finds regions of the search tree
for which training must be performed.

It is easily verified that this is an identical description of the algorithm.

C The Full Analysis

The proof of the theorem hinges on analysis of the the subroutines. We turn first to the TD-
ELIM routine, for which we show the following guarantee. Recall the definition,

V f
(p,⇡f ) , Ex⇠D

p

f(x,⇡f (x)).
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Algorithm 4 Least Squares Value Elimination by Exploration: LSVEE (F , ✏, �)

1: F  DFS-LEARN(?,F , ✏, �/2).
2: Choose any f 2 F . Let ˆV ? be a Monte Carlo estimate of V f

(?,⇡f ).
3: f  EXPLORE-ON-DEMAND(F , ˆV ?, ✏, �/2).
4: Return ⇡f .

Algorithm 5 DFS-LEARN (p,F , ✏, �)

1: Set � =

✏
320H2

p
K

and ✏test = 20(H � |p|� 5/4)
p
K�.

2: for a 2 A do
3: if Not CONSENSUS(p � a,F , ✏test,�,

�/2
MKH ) then

4: F  DFS-LEARN(p � a,F , ✏, �). # Recurse
5: end if
6: end for
7: ˆF  TD-ELIM

⇣

p,F ,�, �/2MH

⌘

. # Learn in state p.

8: Return ˆF .

Theorem 3 (Guarantee for TD-ELIM). Consider running TD-ELIM at path p with regressors F ,
parameters �, � and with ntrain = 24 log(4N/�)/�2. Suppose that the following are true:

1. Estimation Precondition: We have access to estimates ˆV f
(p � a,⇡f ) for all f 2 F , a 2 A

such that, | ˆV f
(p � a,⇡f )� V f

(p � a,⇡f )|  �.

2. Bias Precondition: For all f, g 2 F and for all a 2 A, |V f
(p�a,⇡f )�V g

(p�a,⇡g)|  ⌧1.

Then the following hold simultaneously with probability at least 1� �:

1. f? is retained by the algorithm.
2. Bias Bound:

|V f
(p,⇡f )� V g

(p,⇡g)|  8�
p
K + 2�+ ⌧

1

. (7)

3. Instantaneous Risk Bound:

V ?
(p)� V f?

(p,⇡f )  4�
p
2K + 2�+ 2⌧

1

. (8)

4. Estimation Bound: Regardless of whether the preconditions hold, we have estimates
ˆV f

(p,⇡f ) with,

| ˆV f
(p,⇡f )� V f

(p,⇡f )|  �p
12

. (9)

The last three bounds hold for all surviving f, g 2 F .

The theorem shows that, as long as we call TD-ELIM with the two preconditions, then f?, the optimal
regressor, always survives. It also establishes a number of other properties about the surviving
functions, namely that they agree on the value of this path (the bias bound) and that the associated
policies take good actions from this path (the instantaneous risk bound). Note that the instantaneous
risk bound is not a cumulative risk bound. The second term on the left hand side is the reward
achieved by behaving like ⇡f for one action but then behaving optimally afterwards. The proof is
deferred to Appendix E.

Analysis of the CONSENSUS subroutine requires only standard concentration-of-measure arguments.
Theorem 4 (Guarantee for CONSENSUS). Consider running CONSENSUS on path p with ntest =

2 log(2N/�)/�2 and ✏test � 2�+ ⌧
2

, for some ⌧
2

> 0.

(i) With probability at least 1 � �, we have estimates ˆV f
(p,⇡f ) with

| ˆV f
(p,⇡f )� V f

(p,⇡f )|  � 8f 2 F .
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Algorithm 6 CONSENSUS(p,F , ✏test,�, �)

Set ntest = 2 log(2N/�)/�2.
Collect ntest observations xi ⇠ Dp.
Compute Monte-Carlo estimates for each value function,

ˆV f
(p,⇡f ) =

1

ntest

ntest
X

i=1

f(xi,⇡f (xi)) 8f 2 F .

if | ˆV f
(p,⇡f )� ˆV g

(p,⇡g)|  ✏test for all f, g 2 F then
return true.

end if
Return false.

Algorithm 7 TD-ELIM(p,F ,�, �)

Require estimates ˆV f
(p � a,⇡f ), 8f 2 F , a 2 A.

Set ntrain = 24 log(4N/�)/�2.
Collect ntrain observations (xi, ai, ri) where xi ⇠ Dp, ai is chosen uniformly at random, and
ri = ri(ai).
Update F to

⇢

f 2 F :

˜R(f)  min

f 02F
˜R(f 0

) + 2�2 +
22 log(2N/�)

ntrain

�

,

with ˜R(f) , 1

ntrain

ntrain
X

i=1

(f(xi, ai)� ri � ˆV f
(p � ai,⇡f ))2. (6)

Return F .

(ii) If |V f
(p,⇡f ) � V g

(p,⇡g)|  ⌧
2

, 8f, g 2 F , under the event (i), the algorithm returns
true.

(iii) If the algorithm returns true, then under the event in (1), we have |V f
(p,⇡f ) �

V g
(p,⇡g)|  2�+ ✏test 8f, g 2 F .

Appendix F provides the proof.

Analysis of both the DFS-LEARN and EXPLORE-ON-DEMAND routines requires a careful inductive
argument. We first consider the DFS-LEARN routine.
Theorem 5 (Guarantee for DFS-LEARN). Consider running DFS-LEARN on path p with regressors
F , and parameters ✏, �. With probability at least 1� �, for all h and all sh 2 Sh for which we called
TD-ELIM, the conclusions of Theorem 3 hold with � =

✏
320H2

p
K

and ⌧
1

= 20(H � h)
p
K�. If T

is the number of times the algorithm calls TD-ELIM, then the number of episodes executed by the
algorithm is at most,

O
✓

TH4K2

✏2
log(NMKH/�)

◆

.

Moreover, T MH for any execution of DFS-LEARN.

The proof details are deferred to Appendix G.

A simple consequence of Theorem 5 is that we can estimate V ? accurately once we have called
DFS-LEARN on ?.
Corollary 1 (Estimating V ?). Consider running DFS-LEARN at ? with regressors F , and parame-
ters ✏, �. Then with probability at least 1� �, the estimate ˆV ? satisfies,

| ˆV ? � V ?|  ✏/8.
Moreover the algorithm uses at most,

O
✓

MH5K2

✏2
log

✓

NMHK

�

◆◆
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Algorithm 8 EXPLORE-ON-DEMAND (F , ˆV ?, ✏, �)

Set ✏demand = ✏/2, n1 =

32 log(6MH/�)
✏2 and n2 =

8 log(3MH/�)
✏ .

while true do
Fix a regressor f 2 F .
Collect n1 trajectories according to ⇡f and estimate V (⇡f ) via a Monte-Carlo estimate ˆV (⇡f ).
If | ˆV (⇡f )� ˆV ?|  ✏demand, return ⇡f .
Otherwise update F by calling DFS-LEARN (p,F , ✏, �/(3MH2n2)) on each of the H � 1

prefixes p of each of the first n2 paths collected for the Monte-Carlo estimate.
end while

trajectories.

Proof. Since we ran DFS-LEARN at ?, we may apply Theorem 5. By specification of the algorithm,
we certainly ran TD-ELIM at ?, which is at level h = 1, so we apply the conclusions in Theorem 3.
In particular, we know that f? 2 F and that for any surviving f 2 F ,

| ˆV f
(p,⇡f )� V ?| = | ˆV f

(p,⇡f )� V f
(p,⇡f ) + V f

(p,⇡f )� V f?

(p,⇡f?

)|
 �p

12

+ 8�
p
K + 2�+ 20(H � 1)

p
K�  ✏/8.

The last bound follows from the setting of � and ⌧
1

. Since our estimate ˆV ? is ˆV f
(p,⇡f ) for some

surviving f , we guarantee estimation error at most ✏/8.

As for the sample complexity, Theorem 5 shows that the total number of executions of TD-ELIM can
be at most MH , which is our setting of T .

Finally we turn to the EXPLORE-ON-DEMAND routine.
Theorem 6 (Guarantee for EXPLORE-ON-DEMAND). Consider running EXPLORE-ON-DEMAND
with regressors F , estimate ˆV ? and parameters ✏, � and assume that | ˆV ? � V ?|  ✏/8. Then with
probability at least 1� �, EXPLORE-ON-DEMAND terminates after at most,

˜O
✓

MH6K2

✏3
log(N/�) log(1/�)

◆

trajectories and it returns a policy ⇡f with V ? � V (?,⇡f )  ✏.
See Appendix H for details.

D Proof of Theorem 1

The proof of the main theorem follows from straightforward application of Theorems 5 and 6. First,
since we run DFS-LEARN at the root, ?, the bias and estimation bounds in Theorem 3 apply at
?, so we guarantee accurate estimation of the value V ? (See Corollary 1). This is required by
the EXPLORE-ON-DEMAND routine, but at this point, we can simply apply Theorem 6, which is
guaranteed to find a ✏-suboptimal policy and also terminate in MH iterations. Combining these two
results, appropriately allocating the failure probability � evenly across the two calls, and accumulating
the sample complexity bounds establishes Theorem 1.

E Proof of Theorem 3

The proof of Theorem 3 is quite technical, and we compartmentalize into several components.
Throughout we will use the preconditions of the theorem, which we reproduce here.

Condition 1. For all f 2 F and a 2 A, we have estimates ˆV f
(p � a,⇡f ) such that,

| ˆV f
(p � a,⇡f )� V f

(p � a,⇡f )|  �.
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Condition 2. For all f, g 2 F and a 2 A we have,

|V f
(p � a,⇡f )� V g

(p � a,⇡g)|  ⌧1.

We will make frequent use of the parameters � and ⌧
1

which are specified by these two conditions,
and explicit in the theorem statement.

Recall the notation,

V f
(p,⇡g) , Ex⇠D

p

f(x,⇡g(x)),

which will be used heavily throughout the proof.

We will suppress dependence on the distribution Dp, since we are considering one invocation of
TD-ELIM and we always roll into p. This means that all (observation, reward) tuples will be drawn
from Dp. Secondly it will be convenient to introduce the shorthand V f

(p) = V f
(p,⇡f ) and similarly

for the estimates. Finally, we will further shorten the value functions for paths p � a by defining,

V f
a , Ex⇠D

p�af(x,⇡f (x)) = V f
(p � a,⇡f ).

We will also use ˆV f
a to denote the estimated versions which we have according to Condition 1.

Lastly, our proof makes extensive use of the following random variable, which is defined for a
particular regressor f 2 F :

Y (f) , (f(x, a)� r(a)� ˆV f
(p � a))2 � (f?(x, a)� r(a)� ˆV f?

(p � a))2.
Here (x, r) ⇠ Dp and a 2 A is drawn uniformly at random as prescribed by Algorithm 7. We use
Y (f) to denote the random variable associated with regressor f , but sometimes drop the dependence
on f when it is clear from context.

To proceed, we first compute the expectation and variance of this random variable.
Lemma 1 (Properties of TD Squared Loss). Assume Condition 1 holds. Then for any f 2 F , the
random variable Y satisfies,

Ex,a,r[Y ] = Ex,a

h

(f(x, a)� ˆV f
(p � a)� f?(x, a) + V f?

(p � a))2
i

� Ex,a

h

(

ˆV f?

(p � a)� V f?

(p � a))2
i

Var

x,a,r
[Y ]  32Ex,a[Y ] + 64�2.

Proof. For shorthand, denote f = f(x, a), f? = f?(x, a) and recall the definition of V f
a and ˆV f

a .

Ex,a,rY

= Ex,a,r

h

(f � ˆV f
a � r(a))2 � (f? � ˆV f?

a � r(a))2
i

= Ex,a,r

h

(f � ˆV f
a )

2 � 2r(a)(f � ˆV f
a � f? + ˆV f?

a )� (f? � ˆV f?

a )

2

i

Now recall that E[r(a)|x, a] = f⇤
(x, a)� V f?

a by definition of f⇤, which allows us to deduce,

Ex,a,rY

= Ex,a

h

(f � ˆV f
a )

2 � 2(f? � V f?

a )(f � ˆV f
a ) + 2(f? � ˆV f?

a +

ˆV f?

a � V f?

a )(f? � ˆV f?

a )� (f? � ˆV f?

a )

2

i

= Ex,a

h

(f � ˆV f
a )

2 � 2(f? � V f?

a )(f � ˆV f
a ) + (f? � ˆV f?

a )

2

+ 2(

ˆV f?

a � V f?

a )(f? � ˆV f?

a )

i

= Ex,a

h

(f � ˆV f
a )

2 � 2(f? � V f?

a )(f � ˆV f
a ) + (f? � V f?

a + V f?

a � ˆV f?

a )

2

+ 2(

ˆV f?

a � V f?

a )(f? � ˆV f?

a )

i

= Ex,a

h

(f � ˆV f
a � f? + V f?

a )

2

+ 2(V f?

a � ˆV f?

a )(f? � V f?

a ) + (V f?

a � ˆV f?

a )

2

+ 2(

ˆV f?

a � V f?

a )(f? � ˆV f?

a )

i

= Ex,a

h

(f � ˆV f
a � f? + V f?

a )

2 � (V f?

a � ˆV f?

a )

2

i

.

For the second claim, notice that we can write,

Y = (f � ˆV f
a � f? + ˆV f?

a )(f � ˆV f
a + f? � ˆV f?

a � 2r(a)),
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so that,

Y 2  16(f � ˆV f
a � f? + ˆV f?

a )

2.

This holds because all quantities in the second term are bounded in [0, 1]. Therefore,

Var(Y )  E[Y 2

]

 16Ex,a

h

(f(x, a)� ˆV f
a � f?(x, a) + ˆV f?

a )

2

i

= 16Ex,a

h

(f(x, a)� ˆV f
a � f?(x, a) + V f?

a +

ˆV f?

a � V f?

a )

2

i

 32Ex,a

h

(f(x, a)� ˆV f
a � f?(x, a) + V f?

a )

2

i

+ 32�2

 32Ex,aY + 64�2

The first inequality is straightforward, while the second inequality is from the argument above. The
third inequality uses the fact that (a + b)2  2a2 + 2b2 and the fact that for each a, the estimate
ˆV f?

a has absolute error at most � (By Condition 1). The last inequality adds and subtracts the term
involving (V f?

a � ˆV f?

a )

2 to obtain Ex,aY .

The next step is to relate the empirical squared loss to the population squared loss, which is done by
application of Bernstein’s inequality.
Lemma 2 (Squared Loss Deviation Bounds). Assume Condition 1 holds. With probability at least
1� �/2, where � is a parameter of the algorithm, f? survives the filtering step of Algorithm 7 and
moreover, any surviving f satisfies,

EY (f)  6�2 +
120 log(2N/�)

ntrain
.

Proof. We will apply Bernstein’s inequality on the centered random variable,
ntrain
X

i=1

Yi(f)� EYi(f),

and then take a union bound over all f 2 F . Here the expectation is over the ntrain samples (xi, ai, ri)
where (xi, r) ⇠ Dp, ai is chosen uniformly at random, and ri = r(ai). Notice that since actions are
chosen uniformly at random, all terms in the sum are identically distributed, so that EYi(f) = EY (f).

To that end, fix one f 2 F and notice that |Y � EY |  8 almost surely, as each quantity in the
definition of Y is bounded in [0, 1], so each of the four terms can be at most 4, but two are non-positive
and two are non-negative in Y � EY . We will use Lemma 1 to control the variance. Bernstein’s
inequality implies that, with probability at least 1� �,

ntrain
X

i=1

EYi � Yi 
s

2

X

i

Var(Yi) log(1/�) +
16 log(1/�)

3


s

64

X

i

(E(Yi) + 2�2) log(1/�) +
16 log(1/�)

3

The first inequality here is Bernstein’s inequality while the second is based on the variance bound in
Lemma 1.

Now letting X =

p

P

i(E(Yi) + 2�2), Z =

P

i Yi and C =

p

log(1/�), the inequality above is
equivalent to,

X2 � 2ntrain�
2 � Z  8XC +

16

3

C2

) X2 � 8XC + 16C2 � Z  2ntrain�
2

+ 22C2

) (X � 4C)

2 � Z  2ntrain�
2

+ 22C2

) �Z  2ntrain�
2

+ 22C2.
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Using the definition of �Z, this last inequality implies
ntrain
X

i=1

(f?(xi, ai)� ri(ai)� ˆV f?

(p � ai))2 
ntrain
X

i=1

(f(xi, ai)� ri(ai)� ˆV f
(p � ai))2 + 2ntrain�

2

+ 22 log(1/�).

Via a union bound over all f 2 F , rebinding �  �/(2N), and dividing through by ntrain, we have,

˜R(f?)  min

f2F
˜R(f) + 2�2 +

22 log(2N/�)

ntrain
.

Since this is precisely the threshold used in filtering regressors, we ensure that f? survives.

Now for any surviving regressor f , we are ensured that Z is upper bounded in the elimination step (6).
Specifically we have,

(X � 4C)

2  Z + 2ntrain�
2

+ 22C2  4ntrain�
2

+ 44C2

) X2  (

p

4ntrain�2 + 44C2

+ 4C)

2

 8ntrain�
2

+ 120C2.

This proves the claim since X2

= ntrainEY (f) + 2ntrain�2 (Recall that the Yis are identically
distributed).

This deviation bound allows us to establish the three claims in Theorem 3. We start with the estimation
error claim, which is straightforward.
Lemma 3 (Estimation Error). Let � 2 (0, 1). Then with probability at least 1� �, for all f 2 F that
are retained by the Algorithm 7, we have estimates ˆV f

(p,⇡f ) with,

| ˆV f
(p,⇡f )� V f

(p,⇡f )| 
s

2 log(2N/�)

ntrain
.

Proof. The proof is a consequence of Hoeffding’s inequality and a union bound. Clearly the Monte
Carlo estimate,

ˆV f
(p,⇡f ) =

1

ntrain

ntrain
X

i=1

f(xi,⇡f (xi)),

is unbiased for V f
(p,⇡f ) and the centered quantity is bounded in [�1, 1]. Thus Hoeffding’s inequality

gives precisely the bound in the lemma.

Next we turn to the claim regarding bias.
Lemma 4 (Bias Accumulation). Assume Conditions 1 and 2 hold. In the same 1 � �/2 event in
Lemma 2, for any pair f, g 2 F retained by Algorithm 7, we have,

V f
(p,⇡f )� V g

(p,⇡g)  2

p
K

s

7�2 +
120 log(2N/�)

ntrain
+ 2�+ ⌧

1

Proof. Throughout the proof, we use Ex[·] to denote expectation when x ⇠ Dp. We start by
expanding definitions,

V f
(p,⇡f )� V g

(p,⇡g) = Ex[f(x,⇡f (x))� g(x,⇡g(x))]

Now, since g prefers ⇡g(x) to ⇡f (x), it must be the case that g(x,⇡g(x)) � g(x,⇡f (x)), so that,

V f
(p,⇡f )� V g

(p,⇡g)  Exf(x,⇡f (x))� g(x,⇡f (x))

= Ex[f(x,⇡f (x))� ˆV f
(p � ⇡f (x),⇡f )� f?(x,⇡f (x)) + V f?

(p � ⇡f (x),⇡f?

)]

� Ex[g(x,⇡f (x))� ˆV g
(p � ⇡f (x),⇡g)� f?(x,⇡f (x)) + V f?

(p � ⇡f (x),⇡f?

)]

+ Ex[
ˆV f

(p � ⇡f (x),⇡f )� ˆV g
(p � ⇡f (x),⇡g)].
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This last equality is just based on adding and subtracting terms. The first two terms look similar, and
we will relate them to the squared loss. For the first, by Lemma 1, we have that for each x 2 X ,

Er,a|x[Y (f)] + Ea|x[( ˆV
f?

(p � a,⇡f?

)� V f?

(p � a,⇡f?

))

2

]

= Ea|x

h

(f(x, a)� ˆV f
(p � a,⇡f )� f?(x, a) + V f?

(p � a,⇡f?

))

2

i

� 1

K

h

(f(x,⇡f (x))� ˆV f
(p � ⇡f (x),⇡f )� f?(x,⇡f (x)) + V f?

(p � ⇡f (x),⇡f?

))

2

i

.

The equality is Lemma 1 while the inequality follows from the fact that each action, in particular
⇡f (x), is played with probability 1/K and the quantity inside the expectation is non-negative. Now
by Jensen’s inequality the first term can be upper bounded as,

Ex[f(x,⇡f (x))� ˆV f
(p � ⇡f (x),⇡f )� f?(x,⇡f (x)) + V f?

(p � ⇡f (x),⇡f?

)]


q

Ex[(f(x,⇡f (x))� ˆV f
(p � ⇡f (x),⇡f )� f?(x,⇡f (x)) + V f?

(p � ⇡f (x),⇡f?

))

2

]

=

s

KEx



1

K
(f(x,⇡f (x))� ˆV f

(p � ⇡f (x),⇡f )� f?(x,⇡f (x)) + V f?

(p � ⇡f (x),⇡f?

))

2

�


r

K
⇣

Ex,a,r[Y (f)] + Ex,a[(
ˆV f?

(p � a,⇡f?

)� V f?

(p � a,⇡f?

))

2

]

⌘


p
K
p

EY (f) + �2


p
K

s

7�2 +
120 log(N/�)

ntrain
,

where the last step follows from Lemma 2. This bounds the first term in the expansion of V f
(p,⇡f )�

V g
(p,⇡g). Now for the term involving g, we can apply essentially the same argument,

� Ex[g(x,⇡f (x))� ˆV g
(p � ⇡f (x),⇡g)� f?(x,⇡f (x)) + V f?

(p � ⇡f (x),⇡f?

)]


q

Ex[(g(x,⇡f (x))� ˆV g
(p � ⇡f (x),⇡g)� f?(x,⇡f (x)) + V f?

(p � ⇡f (x),⇡f?

))

2

]


p
K

s

7�2 +
120 log(N/�)

ntrain

Summarizing, the current bound we have is,

V f
(p,⇡f )� V g

(p,⇡g)  2

p
K

s

7�2 +
120 log(N/�)

ntrain
+ Ex[

ˆV f
(p � ⇡f (x),⇡f )� ˆV g

(p � ⇡f (x),⇡g)]
(10)

The last term is easily bounded by the preconditions in Theorem 3. For each a, we have,
ˆV f

(p � a,⇡f )� ˆV g
(p � a,⇡g)

 | ˆV f
(p � a,⇡f )� V f

(p � a,⇡f )|+ |V f
(p � a,⇡f )� V g

(p � a,⇡g)|+ |V g
(p � a,⇡g)� ˆV g

(p � a,⇡g)|
 2�+ ⌧

1

,

from Conditions 1 and 2. Consequently,

Ex[
ˆV f

(p � ⇡f (x),⇡f )� ˆV g
(p � ⇡f (x),⇡g)]

=

X

a2A
Ex

h

1[⇡f (x) = a]( ˆV f
(p � a,⇡f )� ˆV g

(p � a,⇡g))
i

 2�+ ⌧
1

.

This proves the claim.

Lastly, we must show how the squared loss relates to the risk, which helps establish the last claim
of the theorem. The proof is similar to that of the bias bound but has subtle differences that require
reproducing the argument.
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Lemma 5 (Instantaneous Risk Bound). Assume Conditions 1 and 2 hold. In the same 1� �/2 event
in Lemma 2, for any regressor f 2 F retained by Algorithm 7, we have,

V f?

(p,⇡f?

)� V f?

(p,⇡f ) 
p
2K

s

7�2 +
120 log(2N/�)

ntrain
+ 2(�+ ⌧

1

).

Proof.

V f?

(p,⇡f?

)� V f?

(p,⇡f ) = Ex[f
?
(x,⇡f?

(x))� f?(x,⇡f (x))]

 Ex[f
?
(x,⇡f?

(x))� f(x,⇡f?

(x)) + f(x,⇡f (x))� f?(x,⇡f (x))].

This follows since f prefers its own action to that of f?, so that f(x,⇡f (x)) � f(x,⇡f?

(x)). For
any observation x 2 X and action a 2 A, define,

�x,a = (f(x, a)� ˆV f
(p � a)� f?(x, a) + V f?

(p � a)),
where V f

(p) = Ex⇠D
p

[f(x,⇡f (x))] and similarly for ˆV p
(). Then we can write,

V f?

(p,⇡f?

)� V f?

(p,⇡f )

 Ex[�x,⇡
f

(x) ��x,⇡
f

? (x) +
ˆV f

(p � ⇡f (x))� V f?

(p � ⇡f (x))� ˆV f
(p � ⇡f?

(x)) + V f?

(p � ⇡f?

(x))].

The term involving both �s can be bounded as in the proof of Lemma 4. For any x 2 X
Er,a|xY (f) + Ea|x[( ˆV

f?

(p � a)� V f?

(p � a))2]
= Ea|x

h

(f(x, a)� ˆV f
(p � a)� f?(x, a) + V f?

(p � a))2
i

�
�

2

x,⇡
f

(x) +�

2

x,⇡
f

? (x)

K
� (�x,⇡

f

? (x) ��x,⇡
f

(x))
2

2K
.

Thus,

Ex[�x,⇡
f

(x) ��x,⇡
f

? (x)] 
s

2KE
(�x,⇡

f

(x) ��x,⇡
f

? (x))
2

2K


p
2K
p

EY (f) + �2 
p
2K

s

7�2 +
120 log(2N/�)

ntrain
.

We are left to bound the residual term,
(

ˆV f
(p � ⇡f (x))� V f?

(p � ⇡f (x))� ˆV f
(p � ⇡f?

(x)) + V f?

(p � ⇡f?

(x)))


�

�

�

V f
(p � ⇡f (x))� V f?

(p � ⇡f (x))� V f
(p � ⇡f?

(x)) + V f?

(p � ⇡f?

(x))
�

�

�

+ 2�

 2(�+ ⌧
1

).

Notice that Lemma 5 above controls the quantity V f?

(p,⇡f?

)� V f?

(p,⇡f ) which is the difference
in values of the optimal behavior from p and the policy that first acts according to ⇡f and then behaves
optimally thereafter. This is not the same as acting according to ⇡f for all subsequent actions. We
will control this cumulative risk V ?

(p)� V (p,⇡f ) in the second phase of the algorithm.

Proof of Theorem 3: Equipped with the above lemmas, we can proceed to prove the theorem. By
assumption of the theorem, Conditions 1 and 2 hold, so all lemmas are applicable. Apply Lemma 3
with failure probability �/2, where � is the parameter in the algorithm, and apply Lemma 2, which
also fails with probability at most �/2. A union bound over these two events implies that the failure
probability of the algorithm is at most �.

Outside of this failure event, all three of Lemmas 3, 4, and 5 hold. If we set ntrain = 24 log(4N/�)/�2

then these four bounds give,

| ˆV f
(p,⇡f )� V f

(p,⇡f )|  �p
12

|V f
(p,⇡f )� V g

(p,⇡g)|  8�
p
K + 2�+ ⌧

1

V f?

(p,⇡f?

)� V f?

(p,⇡f )  4�
p
2K + 2�+ 2⌧

1

.
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These bounds hold for all f, g 2 F that are retained by the algorithm. Of course by Lemma 2, we are
also ensured that f? is retained by the algorithm.

F Proof of Theorem 4

This result is a straightforward application of Hoeffding’s inequality. We collect ntest observations
xi ⇠ Dp by applying path p from the root and use the Monte Carlo estimates,

ˆV f
(p,⇡f ) =

1

ntest

ntest
X

i=1

f(xi,⇡f (xi)).

By Hoeffding’s inequality, via a union bound over all f 2 F , we have that with probability at least
1� �,

�

�

�

ˆV f
(p,⇡f )� V f

(p,⇡f )
�

�

�


s

2 log(2N/�)

ntest
.

Setting ntest = 2 log(2N/�)/�2, gives that our empirical estimates are at most � away from the
population versions.

Now for the first claim, if the population versions are already within ⌧
2

of each other, then the
empirical versions are at most 2�+ ⌧

2

apart by the triangle inequality,

| ˆV f
(p,⇡f )� ˆV g

(p,⇡g)|  | ˆV f
(p,⇡f )� V f

(p,⇡f )|+ |V f
(p,⇡f )� V g

(p,⇡g)|+ |V g
(p,⇡g)� ˆV g

(p,⇡g)|
 2�+ ⌧

2

.

This applies for any pair f, g 2 F whose population value predictions are within ⌧
2

of each other.
Since we set ✏test � 2�+ ⌧

2

in Theorem 4, this implies that the procedure returns true.

For the second claim, if the procedure returns true, then all empirical value predictions are at most
✏test apart, so the population versions are at most 2� + ✏test apart, again by the triangle inequality.
Specifically, for any pair f, g 2 F we have,

|V f
(p,⇡f )� V g

(p,⇡g)|  |V f
(p,⇡f )� ˆV f

(p,⇡f )|+ | ˆV f
(p,⇡f )� ˆV g

(p,⇡g)|+ | ˆV g
(p,⇡g)� V g

(p,⇡g)|
 2�+ ✏test.

Both arguments apply for all pairs f, g 2 F , which proves the claim.

G Proof of Theorem 5

Assume that all calls to TD-ELIM and CONSENSUS operate successfully, i.e., we can apply Theo-
rems 3 and 4 on any path p for which the appropriate subroutine has been invoked. We will bound
the number of calls and hence the total failure probability.

Recall that ✏ is the error parameter passed to DFS-LEARN and that we set � =

✏
320H2

p
K

.

We first argue that in all calls to TD-ELIM, the estimation precondition is satisfied. To see this, notice
that by design, the algorithm only calls TD-ELIM at path p after the recursive step, which means
that for each a, we either ran TD-ELIM on p � a or CONSENSUS returned true on p � a. Since both
Theorems 3 and 4 guarantee estimation error of order �, the estimation precondition for path p holds.
This argument applies to all paths p for which we call TD-ELIM, so that the estimation precondition
is always satisfied.

We next analyze the bias term, for which proceed by induction. To state the inductive claim, we define
the notion of an accessed path. We say that a path p is accessed if either (a) we called TD-ELIM on
path p or (b) we called CONSENSUS on p and it returned true.

The induction is on the number of actions remaining, which we denote with ⌘. At time point h there
are H � h+ 1 actions remaining.

Inductive Claim: For all accessed paths p with ⌘ actions remaining and any pair f, g 2 F of
surviving regressors,

|V f
(p,⇡f )� V g

(p,⇡g)|  20⌘
p
K�.
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Base Case: The claim clearly holds when ⌘ = 0 since there are zero actions remaining and all
regressors estimate future reward as zero.

Inductive Step: Assume that the inductive claim holds for all accessed paths with ⌘ � 1 actions
remaining. Consider any accessed path p with ⌘ actions remaining. Since we access the path p, either
we call TD-ELIM or CONSENSUS returns true. If we call TD-ELIM, then we access the paths p � a
for all a 2 A. By the inductive hypothesis, we have already filtered the regressor class so that for all
a 2 A, f, g 2 F , we have,

|V f
(p � a,⇡f )� V g

(p � a,⇡f )|  20(⌘ � 1)

p
K�.

We instantiate ⌧
1

= 20(⌘ � 1)

p
K� in the bias precondition of Theorem 3. We also know that the

estimation precondition is satisfied with parameter �. The bias bound of Theorem 3 shows that, for
all f, g 2 F retained by the algorithm,

|V f
(p,⇡f )� V g

(p,⇡g)|  8�
p
K + 2�+ ⌧

1

 10�
p
K + 20(⌘ � 1)�

p
K  20(⌘ � 1

2

)�
p
K. (11)

Thus, the inductive step holds in this case.

The other case we must consider is if CONSENSUS returns true. Notice that for a path p with ⌘
actions to go, we call CONSENSUS with parameter ✏test = 20(⌘ � 1/4)

p
K�. We actually invoke the

routine on path p when we are currently processing a path p0 with ⌘ + 1 actions to go (i.e., p = p0 � a
for some a 2 A), so we set ✏test in terms of H � |p0|� 5/4 = ⌘ � 1/4. (|p| is actually one less than
the level of the state reached by applying p from the root.) Then, by Theorem 4, we have the bias
bound,

|V f
(p,⇡f )� V g

(p,⇡f )|  2�+ 20(⌘ � 1/4)
p
K�

 20⌘
p
K�.

Thus, we have established the inductive claim.

Verifying preconditions for Theorem 3: To apply the conclusions of Theorem 3 at some state s, we
must verify that the preconditions hold, with the appropriate parameter settings, before we execute
TD-ELIM. We saw above that the estimation precondition always holds with parameter �, assuming
successful execution of all subroutines. The inductive argument also shows that the bias precondition
also holds with ⌧

1

= 20(⌘ � 1)

p
K� for a state s 2 SH�⌘+1

that we called TD-ELIM on. Thus,
both preconditions are satisfied at each execution of TD-ELIM, so the conclusions of Theorem 3
apply at any state s for which we have executed the subroutine. Note that the precondition parameters
that we use here, specifically ⌧

1

, depend on the actions-to-go ⌘.

Substituting the level h for the actions-to-go ⌘ gives ⌧
1

= 20(H � h)
p
K� at level h.

Sample Complexity: We now bound the number of calls to each subroutine, which reveals how to
allocate the failure probability and gives the sample complexity bound. Again assume that all calls
succeed.

First notice that if we call CONSENSUS on some state s with ⌘ actions-to-go for which we have
already called TD-ELIM, then CONSENSUS returns true (assuming all calls to subroutines succeed).
This follows because TD-ELIM guarantees that the population predicted values are at most 20(⌘ �
1/2)
p
K� apart (Eq. (11)), which becomes the choice of ⌧

2

in application of Theorem 4. This is
valid since,

2�+ 20(⌘ � 1/2)
p
K�  20(⌘ � 1/4)

p
K� = ✏test,

so that the precondition for Theorem 4 holds. Thus, at any level h, we can call TD-ELIM at most one
time per state s 2 Sh. In total, this yields MH calls to TD-ELIM.

Next, since we only make recursive calls when we execute TD-ELIM, we expand at most M paths
per level. This means that we call CONSENSUS on at most MK paths per level, since the fan-out of
the tree is K. Thus, the number of calls to CONSENSUS is at most MKH .

By our setting � in the subroutine calls (i.e. �/(2MKH) in calls to CONSENSUS and �/(2MH) in
calls to TD-ELIM), and by Theorems 3 and 4, the total failure probability is therefore at most �.
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Each execution of TD-ELIM requires ntrain trajectories while executions of CONSENSUS require
ntest trajectories. Since before each execution of TD-ELIM we always perform K executions of
CONSENSUS, if we perform T executions of TD-ELIM, the total sample complexity is bounded by,

T (ntrain +Kntest)  (3⇥ 10

6

)

TH4K

✏2
log(8NMH/�) + (3⇥ 10

5

)

TH4K2

✏2
log(4NMKH/�)

= O
✓

TH4K2

✏2
log

✓

NMHK

�

◆◆

.

The total number of executions of TD-ELIM can be no more than MH , by the argument above.

H Analysis for EXPLORE-ON-DEMAND

Throughout the proof, assume that | ˆV ?�V ?|  ✏/8. We will ensure that the first half of the algorithm
guarantees this. Let E denote the event that all Monte-Carlo estimates ˆV (?,⇡f ) are accurate and all
calls to DFS-LEARN succeed (so that we may apply Theorem 5). By accurate, we mean,

| ˆV (?,⇡f )� V (?,⇡f )|  ✏/8.
Formally, E is the intersection over all executions of DFS-LEARN of the event that the conclusions
of Theorem 5 apply for this execution and the intersection over all iterations of the loop in EXPLORE-
ON-DEMAND of the event that the Monte Carlo estimate ˆV (?,⇡f ) is within ✏/8 of V (?,⇡f ). We
will bound this failure probability, i.e. P[ ¯E ], toward the end of the proof.
Lemma 6 (Risk bound upon termination). If E holds, then when EXPLORE-ON-DEMAND terminates,
it outputs a policy ⇡f with V ? � V (⇡f )  ✏.

Proof. The proof is straightforward.

V ? � V (⇡f )  |V ? � ˆV ?|+ | ˆV ? � ˆV (⇡f )|+ | ˆV (⇡f )� V (⇡f )|
 ✏/8 + ✏/2 + ✏/8 = 3✏/4  ✏.

The first bound follows by assumption on ˆV ? while the second comes from the definition of ✏demand
and the third holds under event E .

Lemma 7 (Termination Guarantee). If E holds, then when EXPLORE-ON-DEMAND selects a policy
that is at most ✏/4-suboptimal, it terminates.

Proof. We must show that the test succeeds, for which we will apply the triangle inequality,

| ˆV ? � ˆV (⇡f )|  | ˆV ? � V ?|+ |V ? � V (⇡f )|+ |V (⇡f )� ˆV (⇡f )|
 ✏/8 + ✏/4 + ✏/8  ✏/2 = ✏demand.

Therefore the test is guaranteed to succeed. Again the last bound here holds under event E .

At some point in the execution of the algorithm, define a set of learned states L as

L(F) ,
[

h

⇢

s 2 Sh : max

f2F
V ?

(s)� V f?

(s,⇡f )  4�
p
2K + 2�+ 40(H � h)

p
K�

�

. (12)

By Theorem 3, any state for which we have successfully called TD-ELIM is L(F), since the condition
is precisely the instantaneous risk bound. Since we only ever call TD-ELIM through DFS-LEARN,
the fact that these calls to TD-ELIM succeeded is implied by the event E . The unlearned states are
denoted ¯L, where the dependence on F is left implicit.

For a policy ⇡f , let q⇡f

[s! ¯L] denote the probability that when behaving according to ⇡f starting
from state s, we visit an unlearned state. We now show that q⇡f

[?! ¯L] is related to the risk of the
policy ⇡f .
Lemma 8 (Policy Risk). Define L as in Eq. (12) and define q⇡f

[s! ¯L] accordingly. Assume that E
holds and let f be a surviving regressor, so that ⇡f is a surviving policy. Then,

V ? � V (?,⇡f )  q⇡f

[?! ¯L] + 40

p
K�H2.
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Proof. Recall that under event E , we can apply the conclusions of Theorem 3 with � =

✏
320H2

p
K

and ⌧
1

= 20(H � h)
p
K� for any h and state s 2 Sh for which we have called TD-ELIM. Our

proof proceeds by creating a recurrence relation through application of Theorem 3 and then solving
the relation. Specifically, we want to prove the following inductive claim.

Inductive Claim: For a state s 2 L with ⌘ actions to go,

V ?
(s)� V (s,⇡f )  40�

p
K⌘2 + q⇡f

[s! ¯L].

Base Case: With zero actions to go, all policies achieve zero reward and no policies visit ¯L from this
point, so the inductive claim trivially holds.

Inductive Step: For the inductive hypothesis, consider some state s at level h, for which TD-ELIM
has successfully been called. There are ⌘ = H � h+ 1 actions to go. By Theorem 5, we know that,

V ?
(s)� V f?

(s,⇡f )  4�
p
2K + 2�+ 2⌧

1

,

with ⌧
1

= 20(H � h)�
p
K. This bound is clearly at most 40⌘�

p
K. Now,

V ?
(s)� V (s,⇡f ) = V ?

(s)� V f?

(s,⇡f ) + V f?

(s,⇡f )� V (s,⇡f )

 40⌘�
p
K + E

(x,r)⇠D
s

r(⇡f (x)) + V ?
(s � ⇡f (x))� r(⇡f (x))� V (s � ⇡f (x),⇡f ).

Let us focus on just the second term, which is equal to,
Ex⇠D

s

[(V ?
(s � ⇡f (x))� V (s � ⇡f (x),⇡f )) (1[�(s,⇡f (x)) 2 L] + 1[�(s,⇡f (x)) /2 L])]


X

s02L

Px⇠D
s

[�(s,⇡f (x)) = s0] (V ?
(s0)� V (s0,⇡f )) + Px⇠D

s

[�(s,⇡f (x)) /2 L].

Since all of the recursive terms above correspond only to states s0 2 L, we may apply the inductive
hypothesis, to obtain the bound,

40⌘�
p
K +

X

s02L

Px2D
s

[�(s,⇡f (x)) = s0]
⇣

40(h� 1)

2�
p
K + q⇡f

[s0 ! ¯L]
⌘

+ Px⇠D
s

[�(s,⇡f (x)) /2 L]

 40⌘�
p
K + 40(⌘ � 1)

2�
p
K + q⇡f

[s! ¯L]

 40�
p
K⌘2 + q⇡f

[s! ¯L].

Thus, we have proved the inductive claim. Applying at the root of the tree gives the result.

Recall that we set � =

✏
320H2

p
K

in DFS-LEARN. This ensures that 40H2�
p
K  ✏/8, which

means that if q⇡f

[?! ¯L] = 0, then we ensure V ? � V (?,⇡f )  ✏/8.
Lemma 9 (Each non-terminal iteration makes progress). Assume that E holds. If ⇡f is selected
but fails the test, then with probability at least 1� exp(�✏n2/8), at least one of the n2 trajectories
collected visits a state s /2 L.

Proof. First, if ⇡f fails the test, we know that,

✏demand < | ˆV (?,⇡f )� ˆV ?|  ✏/4 + |V (?,⇡f )� V ?|,
which implies that,

✏/4 < V ? � V (?,⇡f ).

On the other hand Lemma 8, shows that,

V ? � V (?,⇡f )  q⇡f

[?! ¯L] + 40H2

p
K�.

Using our setting of �, and combining the two bounds gives,
✏/4 < q⇡f

[?! ¯L] + ✏/8) q⇡f

[?! ¯L] > ✏/8.

Thus, the probability that all n2 trajectories miss ¯L is,
P[all trajectories miss ¯L] = (1� q⇡f

[?! ¯L])n2

 (1� ✏/8)n2  exp(�✏n2/8).

Therefore, we must hit ¯L with substantial probability.
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H.1 Proof of Theorem 6

Again assume that E holds. First, by Lemma 6, we argued that if EXPLORE-ON-DEMAND terminates,
then it outputs a policy that satisfies the PAC-guarantee. Moreover, by Lemma 7, we also argued that
if EXPLORE-ON-DEMAND selects a policy that is at most ✏/4 suboptimal, then it terminates. Thus
the goal of the proof is to show that it quickly finds a policy that is at most ✏/4 suboptimal.

Every execution of the loop in EXPLORE-ON-DEMAND either passes the test or fails the test at level
✏demand. If the test succeeds, then Lemma 6 certifies that we have found an ✏-suboptimal policy, thus
establishing the PAC-guarantee. If the test fails, then Lemma 9 guarantees that we call DFS-LEARN
on a state that was not previously trained on. Thus at each non-terminal iteration of the loop, we
call DFS-LEARN and hence TD-ELIM on at least one state s /2 L, so that the set of learned states
grows by at least one. By Lemma 8 and our setting of �, if we have called TD-ELIM on all states at
all levels, then we guarantee that all surviving policies have risk at most ✏/8. Thus the number of
iterations of the loop is at most MH since that is the number of unique states in the model.

Bounding P[ ¯E ]: Since we have bounded the total number of iterations, we are now in a position to
assign failure probabilities and bound the event E . Actually we must consider not only the event E
but also the event that all non-terminal iterations visit some state s /2 L. Call this new event E 0 which
is the intersection of E with the event that all unsuccessful iterations visit ¯L.

More formally, we use the fact that for events A
0

, . . . , At, we have,

P[
t
[

i=0

Ai]  P[A
0

] +

t
X

i=1

P[Ai| ¯A0

, . . . , ¯Ai�1

]. (13)

This inequality is based on applying the union bound to the events A0
i = (Ai \

Ti�1

j=0

Aj).

Our analysis above bounds events of this form, namely the probability of a failure event conditioned
on no previous failure event occurring. Specifically, we decompose E 0 into three types of events.

1. B(1)

t denotes the event that the Monte Carlo estimate ˆV (?,⇡f ) is accurate for the tth

iteration of the while loop.

2. B(2)

t denotes the event that DFS-LEARN succeeds at the tth iteration of the while loop.

3. B(3)

t denotes the event that t is a non-terminal iteration and we visit ¯L at the tth iteration.

These events are defined for t 2 [MH], since we know that if all events hold we will perform at most
MH iterations. E 0 is the intersection of all of these events.

The failure probability can be expressed as,

P[ ¯E 0
] = P[

MH
[

t=1

¯B(1)

t [ ¯B(2)

t [ ¯B(3)

t ],

and via Equation 13, it suffices to bound each event, conditioned on all previous success events.

We have � probability to allocate, and since we perform at most MH iterations, we allocate �/(MH)

probability to each iteration and 1/3 of the available failure probability to each type of event.

For the initial Monte-Carlo estimate in event B(1)

t , by Hoeffding’s inequality, we know that,

| ˆV (?,⇡f )� V (?,⇡f )| 
s

log(6MH/�)

2n1
.

We want this bound to be at most ✏/8 which requires,

n1 � 32 log(6MH/�)

✏2
.

This bound holds for any fixed ⇡f , and it is independent of previous events.

For the second event, for each of the Hn2 calls to DFS-LEARN, we set the parameter to be
�/(3MH2n2), so that by Theorem 5, we may apply Theorem 3 at all states that we have called
TD-ELIM on. Again this bounds the probability of ¯B(2)

t , independently of previous events.
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Finally, conditioned on B(1)

t , we may apply Lemma 9 at iteration t to observe that the the conditional
probability of ¯B(3)

t is at most exp(�n2✏/8). And for this to be smaller than �/(3MH) we require,

n2 � 8 log(3MH/�)

✏
.

Both conditions on n1 and n2 are met by our choices in the algorithm specification.

In total, if we set, n1 =

32 log(6MH/�)
✏2 and n2 = 8 log(3MH/�)/✏ in EXPLORE-ON-DEMAND and

if EXPLORE-ON-DEMAND always call DFS-LEARN with parameter �/(3MH2n2) we guarantee
that the total failure probability for this subroutine is at most �.

Sample Complexity: It remains to bound the sample complexity for the execution of EXPLORE-
ON-DEMAND. We do at most MH iterations, and in each iteration we use n1 trajectories to
compute Monte-Carlo estimates, contributing an MHn1 to the sample complexity. We also call
DFS-LEARN on each of the Hn2 prefixes collected during each iteration so that there are at
most MH2n2 calls to DFS-LEARN in total. Naïvely, each call to DFS-LEARN takes at most
O(

MH5K2

✏2 log(n2NMKH/�)) episodes, leading to a crude sample complexity bound of,

˜O
✓

M2H7K2

✏3
log(N/�) log(1/�)

◆

.

Recall that the ˜O notation suppresses all logarithmic factors except those involving N and �.

This bound can be significantly improved using a more careful argument. Apart from the first call to
TD-ELIM in each application of DFS-LEARN, the total number of additional calls to TD-ELIM is
bounded by MH since once we call TD-ELIM on a state, CONSENSUS always returns true.

Each call to TD-ELIM requires ntrain +Kntest samples (because we always call CONSENSUS on all
direct descendants before), and the total number of calls is at most,

MH2n2 +MH = O
✓

MH2

✏
log(MH/�)

◆

.

With our settings of ntrain and ntest, the sample complexity is therefore at most,

O
✓

MH6K2

✏3
log(MHKN/(✏�)) log(MH/�)

◆

=

˜O
✓

MH6K2

✏3
log(N/�) log(1/�)

◆

.

This concludes the proof of Theorem 6.
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