Interpretable Distribution Features with Maximum Testing Power

Supplementary Material

A Algorithm

The full algorithm for the proposed tests from parameter tuning to the actual two-sample testing is given in

Algorithm([T]

Algorithm 1 Optimizing parameters and testing

Input: Two samples X, Y, significance level o, and number of test locations .J
1: Split D := (X, Y) into disjoint training and test sets, D' and D*®, of the same size n‘®

2: Optimize parameters § = arg maxy /\7 /2(9) where )\Z’"/2(9) is computed with the tralmng set D"
3: Set T, to the (1 — a)-quantile of x2(J").

4: Compute the test statistic )\te/Q (0) using D,
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: Reject Hy if )\:f/Q(O) >T,.

B Experiments on NIPS text collection

The full procedure for processing the NIPS text collection is summarized as following.

1. Download all 5903 papers from 1988 to 2015 from https://papers.nips.cc/ as PDF files.
. Convert each PDF file to text with pdftot extﬂ

. Keep only nouns. We use the list of nouns as available in WordNet—3.(ﬂ

N NN

Also, word length must be between 3 and 20 characters (inclusive).

6. Keep only words which occur in at least 5 documents, and in no more than 2000 documents.

Remove all stop words. We use the list of stop words from http://www.ranks.nl/stopwords|

. Keep only words which contain only English alphabets i.e., does not contain punctuations or numbers.

7. Convert all characters to small case. Stem all words with SnowballStemmer in NLTK (Bird et al., [2009)).

For example, “recognize” and “recognizer” become “recogn” after stemming.

8. Categorize papers into disjoint collections. A paper is treated as belonging to a group if its title has
at least one word from the list of keywords for the category. Papers that match the criteria of both

categories are not considered. The lists of keywords are as follows.

(a) Bayesian inference (Bayes): graphical model, bayesian, inference, mcmc, monte carlo, posterior,

prior, variational, markov, latent, probabilistic, exponential family.

(b) Deep learning (Deep): deep, drop out, auto-encod, convolutional, neural net, belief net, boltzmann.

(c) Learning theory (Learn): learning theory, consistency, theoretical guarantee, complexity, pac-
bayes, pac-learning, generalization, uniform converg, bound, deviation, inequality, risk min,

minimax, structural risk, VC, rademacher, asymptotic.

(d) Neuroscience (Neuro): motor control, neural, neuron, spiking, spike, cortex, plasticity, neural
decod, neural encod, brain imag, biolog, perception, cognitive, emotion, synap, neural population,

cortical, firing rate, firing-rate, sensor.

9. Randomly select 2000 words from the remaining words.

10. Treat each paper as a bag of words and construct a feature vector with TF-IDF (Manning et al., 2008)).

’pdftotext is available at http: //poppler.freedesktop.org.
3WordNet is available online at https://wordnet . princeton.edu/wordnet/citing-wordnet/,
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B.1 Discriminative terms identified by ME test

In this section, we provide full lists of discriminative terms following the procedure described in Sec.d] The top
ten words in each problem are as follows.

e Bayes-Bayes: collabor, traffic, bay, permut, net, central, occlus, mask, draw, joint.

Bayes-Deep: infer, bay, mont, adaptor, motif, haplotyp, ecg, covari, boltzmann, classifi.

Bayes-Learn: infer, markov, graphic, segment, bandit, boundari, favor, carlo, prioriti, prop.

Bayes-Neuro: spike, markov, cortex, dropout, recurr, iii, gibb, basin, circuit, subsystem.

Learn-Deep: deep, forward, delay, subgroup, bandit, recept, invari, overlap, inequ, pia.

Learn-Neuro: polici, interconnect, hardwar, decay, histolog, edg, period, basin, inject, human.
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C Runtimes

In this section, we provide runtimes of all the experiments. The runtimes of the “Test power vs. sample n”
experiment are shown in Fig. [5] The runtimes of the “Test power vs. dimension d” experiment are shown in Fig.
[6] Table[] [5]give the runtimes of the two real-data experiments.

10° 10° 10° 10°
107 4 ME-full
102 102 102 . t-4 ME-grid
2 2 gLy ] | sCRul
;ﬁﬁ g ;;:ﬁ g ’__C"/_,;’:j:—j B e |11 SCRord
. = = . F 10t I~ MMD-quad
10°0 L feeoa-- ¥ 3 o ; 1 .
:z—_____g—_—__:f-_x::%:%’-?f'ﬁ 10° fff??:?::feﬂ'}”“"?“ = " TFERD SO S — 102 —t ?}MD-lln
3 v v 3 3 T
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 101000 2000 3000 4000 5000
Test sample size Test sample size Test sample size Test sample size
() SG. d = 50. (b) GMD. d = 100. (¢) GVD. d = 50. (d) Blobs.

Figure 5: Plots of runtimes in the “Test power vs. sample n”’ experiment.

, 10?

10 102 . ME-full
5 100 10! 10 _ -4 ME-grid
G 2 = S
= G - < 100 3= SCF-full
2 10° @ 100 g 10707 .
£ v E | -4 SCF-grid

E 10
107 " 10t 10 44 MMD-lin
10? 102 107 T2
5 300 600 900 1200 1500 5 300 600 900 1200 1500 5 100 200 300 400 500
Dimension Dimension Dimension
(a) SG (b) GMD (c) GVD

Figure 6: Plots of runtimes in the “Test power vs. dimension d” experiment. The test sample size is 10000.
Table 4: Runtimes (in seconds) in the problem of distinguishing NIPS papers from two categories.

Problem n'® | ME-full ME-grid SCF-full SCF-grid MMD-quad MMD-lin
Bayes-Bayes 215 | 126.7 116 34.67 1.855 13.66 6112
Bayes-Deep 216 | 118.3 111.7 36.41 1.933 13.59 5105
Bayes-Learn 138 | 94.59 89.16 23.69 1.036 2.152 .36
Bayes-Neuro 394 | 142.5 130.3 69.19 3.533 32.71 .8643
Learn-Deep 149 | 105 99.59 24.99 1.253 2417 4744
Learn-Neuro 146 | 101.2 93.53 25.29 1.178 2.351 .3658

Table 5: Runtimes (in seconds) in the problem of distinguishing positive (+) and negative (-) facial expressions.
Problem n'® ‘ ME-full ME-grid SCF-full SCF-grid MMD-quad MMD-lin

+vs.+ 201 87.7 83.4 10.5 1.45 9.93 0.464
+vs. — 201 85.0 80.6 11.7 1.42 10.4 0.482

In the cases where n is large (Fig. [5), MMD-quad has the largest runtime due to its quadratic dependency on the
sample size. In the extreme case where the test sample size is 10000 (Fig. [6), it is computationally infeasible to
run MMD-quad. We observe that the proposed ME-full and SCF-full have a slight overhead from the parameter
optimization. However, since the optimization procedure is also linear in n, we are able to conduct an accurate
test in less than 10 minutes even when the test sample size is 10000 and d = 1500 (see Fig. [6a] [6b). We note
that the actual tests (after optimization) for all ME and SCF variants take less than one second in all cases. In
the ME-full, we initialize the test locations with realizations from two multivariate normal distributions fitted to
samples from P and (). When d is large, this heuristic can be expensive. An alternative initialization scheme for
V is to randomly select .J points from the two samples.
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D Proof of theorem

Recall Theorem[2}

Theorem 2 (Consistency of 5\n in the ME test). Let X C R< be a measurable set, and V be a collection in which
each element is a set of J test locations. All suprema over V and k are to be understood as supy,cy and supy,c
respectively. For a class of kernels K on X C R?, define

Fl = {X — k’(X,V) ‘ ke IC,V c X}, Fo = {X — k’(X,V)k(X7v/) | ke K:,V’V/ € X}7 )
Fy = {(x,y) = k(x, V)k(y, V) | K € v, v/ € X}, @

Assume that (1) K is a uniformly bounded (by B) family of k : X x X — R measurable kernels, (2) ¢ :=
supy ;. |7 r < o0, and (3) Fi = {fo, | 0; € ©;} is VC-subgraph with VC-index V C(F;), and 6 — fg,(m)
is continuous (Ym,i = 1,2,3). Let ¢, := 4B>Jv/Jé,¢y := 4BV J¢, and ¢3 := 4B%J&. Let Ci-s (i = 1,2, 3)
be the universal constants associated to F;-s according to Theorem 2.6.7 invan der Vaart and Wellner (2000).
Then for any 6 € (0, 1) with probability at least 1 — 6,

sup |z, (S +Ynl) ™ 'Zn — MTE?IH)
V., k
B - 2
< 2TF (361&72” ! +62\/7) + iaJ(Tn +Tr) + Sl + C3n, where
Yn n—1 n Tn -1
16y/2B%i 2r[VO(F;) — 1 - [21og(5/68
Tr, = % <2\/10g [C; x VC(F;)(16e)VCFD] + [ 2( ) }> +BY %,

forj=1,23and (1 =1,(o = (3 = 2.

A proof is given as follows.

D.1 Notations

Let (A,B) . := tr (A"B) be the Frobenius inner product, and |A| := \/(A,A). A = 0 means that
A € R4 js symmetric, positive semidefinite. Fora € R?, ||a||s = (a,a), = a'a. [a;;...;ay] € R TFdy
is the concatenation of the a,, € R% vectors. R¥ is the set of positive reals. f o g is the composition of function

f and g. Let M denote a general metric space below. In measurability requirements metric spaces are meant to
be endowed with their Borel o-algebras.

Let C be a collection of subsets of M (C' C 2M). C is said to shatter an {p1, pa,...,p;} C M set, if for any
S C{p1,pa,...,pi} there exist C' € C such that S = C' N {p1,p2, ..., pi}; in other words, arbitrary subset of
{p1,p2,-..,pi} can be cut out by an element of C. The VC index of C is the smallest ¢ for which no set of size i
is shattered:

VC’(C):inf{i: max [{CN{p1,...,p;} : C €C} <22}.
P1,---,Pi

A collection C of measurable sets is called VC-class if its index V' C' (C) is finite. The subgraph of a real-valued
function f : M — Ris sub(f) = {(m,u) : u < f(m)} C M x R. A collection of F measurable functions is
called VC-subgraph class, or shortly VC if the collection of all subgraphs of 7, {sub(f)} ; » is a VC-class of

sets; its index is defined as VC (F) := VC ({sub(f)}fe}-).

Let L°(M) be the set of M — R measurable functions. Given an i.i.d. (independent identically distributed)

sample from P (w; b P), let wy., = (w1, ..., w,) and let P,, = % >, 6w, denote the empirical measure.
1

L9 (MBy) = { £ € L0 M) [fllzacnp) = [ F ) 0B ()] = [2 50, [F(w)l7]F < o0} @ <
q < 00), | fll oo (r) = SUPmen | f(m)]. Define Pf := S f(w)dP(w), where P is a probability distribution
on M. Let [P, — P|| z := supsc 7 [Pnf — Pf|.

The diameter of a class F C L* (M, Py,) is diam(F, L*(M,Py)) := sups prez [If — f'llLzmp,)s its -
covering number (r > 0) is the size of the smallest r-net

N (r,F,L* (M,P,)) =inf {t > 1:3f1,..., fy € F suchthat F C U/_  B(r, f;) },
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where B(r, f) = {g € L* (M,P,) | |f — gllL2(mp,) < 7} is the ball with center f and radius r. x,Q; is
the N- fold product measure. For sets Q;, X", Q; is their Cartesian product. For a function class 7 C L° (M)
and wy., € M", R(F,w1.,) :=E, [supfef- |% S rif (w;) |] is the empirical Rademacher average, where
r := ry., and r;-s are i.i.d. samples from a Rademacher random variable [P(r; = 1) = P(r; = —1) = %].
Let (O, p) be a metric space; a collection of F = {fy | 0 € ©} C L°(M) functions is called a separable
Carathéodory family if © is separable and 6 — fy(m) is continuous for all m € M. span(-) denotes the linear
hull of its arguments. I'(¢) = fooo u'~te~“du denotes the Gamma function.

D.2 Bound in terms of S,, and z,,

For brevity, we will interchangeably use S,, for S,,(V) and z,, for Z,, (V). S,,(V) and z,, (V) will be used mainly
when the dependency of V' needs to be emphasized. We start with sup,, ;. |E;Lr (Sp +vuI) "2, — u" X' uland
upper bound the argument of sup,, ;, as

’Z’I(Sn + ’an)712n - NT271/J/|
=1Zy (Sn+ D) —p (EA ) et (D) e MTE*W’

Z, (Sn+9nd) Z — ' (B + )7 u‘ + ‘NT (47D - uTE_lu‘

= () + (M)
For ((J;), we have
70 S+ ) En = T (S D)

= ’<anzv(sn +7n1)71>p - <N/‘Ta (% +7n1)71>F’
<Z"ZI’ (Sn +'7nI)_1>F - <anlv (2 + 'Ynl)_1>F + <anlv 0> +'Ynl)_1>F - <IJ'/J/T7 (% +'Ynl)_1>F)
< (@2 (Su+ D)™ = (B4uD) ) [+ (77 - (S 4D ) |

1Z,

Zylel(Sn+7u D)™ = (B4 7aD) e + 1202, — pp |6 (Z+70) " lr

(@) _ o _ _ _
< 202, (S + 7 D) T (430 d) = (Sn + 7 D] (B + 73 D) " ||r + |20Zy — Zop" + Zop" — " |[2|Z7"|F

@ - - o - 3 -
<22, |2 1(Sn + 9 D) THEIZ = Sull e 127 e + 120 (@0 — ) T2 IZ7 e + 1Zn — )T 2127 e
®) \F

U A 1Zall2Zn — 2B e + 220 — pll2 |37 r,

where at (a) we use || (Z+7,0)" " |r < [|ZYr and at (b) we use [[(Sn + yml) tr < VII(S, +
W) Hl2 < VT [
For (O2), we have

TE+) - uTE_lu‘ - ‘<uuT, (Z+7.0) " - E_1>F‘

< lpp’ IIFH(2+% ) =2 e

= |ulB3l (= + D)~ [E (E+wDZ e
= Yulll3l (Z+vD) " =7 p

< YulllBI (B + D) FIS e

(a) _
< TallelZNIET -
Combining the upper bounds for ((J; ) and ({Jz), we arrive at
12, (Sn+ )20 — " 27 gy

YZm _ _ _ _ _
STIIZnIIEHE*SnIIFII2 Hr + (1Znll2 + ell2) 2 — pll2lI =7 F + vl sl IS

n
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§4B2J”\FHE Sullr + 4BV JE|Z, — pl2 + 4B% T,

C o _
= 71 IS — Sullp + e2l|Zn — pll2 +
n

3

with ¢ := 4B%JV/JE,¢; := 4BVJE, ¢3 := 4B%J&, and ¢ := supy,;, [|S7!||p < oo, where we applied
the triangle inequality, the CBS (Cauchy-Bunyakovskii-Schwarz) inequality, and ||ab " ||z = ||a/|2||b||2. The

boundedness of kernel £ with the Jensen inequality implies that

~ 1 — 1 — 1 —
Il = M5 Dol < 53l = 1 3 Mk vi) = Ky v

=1

1 n J
2
= ZZZ X“VJ (ywa)]
i=1 j=1
9 n J
<z i ., vi) < 4B?J,
—ngg (i, vj) kK (y v;) <
) J J ) )
O3 = By [k(x,v5) = k(y, ;)] Z k(x,v;) = k(y,v;)]” < 4B%J.
Jj=1 j=1

Taking sup in (@), we get

_ e _ C _ _ _
sup |7, (Sn + Y l) " 'Zn — p B p| < 7isup |E — SpllF + Casup |z, — w2 + E379n-
k V.k

k n

D.3 Empirical process bound on z,,

Recall that z, (V) = 12? zi(V) € R, z,(V) = (k(xi,v)) — k(yi,vj));]:1 e R, uV)

(Exy [k(x,v;) = k(y, v;)]);_,; thus

sup sup [z, (V) — p(V)[2 =supsup sup (b,z,(V) — p(V)),
V kek V keK beB(1,0)

using that [|al|, = supyep(1,0) (, b),. Let us bound the argument of the supremum:

n

J
_ 1
(.20 (V) = (W), < D Ibl | D [k(xi. vy) = By v5)] = Exy [k(x,v5) = k(y. v)]
=1 i=1
J 1 n 1 n
<Y |bl < - D k(xi,vj) = Bxk(x,v;)| + -~ > k(yi,vj) — Byk(y,v;)
=1 i=1 i=1
1 n n
<VJ sup sup |— Z k(x;,v) — Exk(x,v)| + Nai sup sup
veX ke | P veX kek |1 =1

=VI|Py = Ply, +VIQn—Ql

by the triangle inequality and exploiting that ||b||, < v/J|/bl|, < v/J with b € B(1,0). Thus, we have

supsup |2, (V) = w(V)ll2 < VI|IPy = Pllz + VT @Qn = Qll 5 -
S

D.4 Empirical process bound on S,,

Noting that

15
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15.00) = V)l < |23 (V)2 ()~ Buy (202" ]| + | gy 30 S 2a (V) () = (V)" (V)
a=1 a=1 b#a F
=: (x1) + (x2). ®)
() = | Y 2a(¥) [nl > m] T V)
a=1 b#a F

IN
S|+
()=
N
s
—
3
—_
—

N
S
=

I
=
4|
=
~_

IN
VR
S|
(]

N
2
=

N~
VR
3
| |~
—_

N
=
=

\
=
<
N~
4|

a=1 b=1 F F
+ ( > za(V) - N(V)> p' (V)
a=1 F
= W)l | S8 )~ 60|+ V) W) + 2 ) — O 6O,
b=1 2
<2BVI ( o — OV, + if_“f) L d B+ 2BV 2 (V) — ()
= iB_Q'f +2BVJ 2:__11 170 — (V) ©)

using the triangle inequality, the sub-additivity of sup, HabTHF = |lally [Iblly, |Zn V)l < 2BV, ||2a(V)]], <
2B+/J [see Eq. )] and

1 n
n—1 Zzb(V) B
b=1

with Eq. (6). Considering the first term in Eq. (8)

n n 1
7, — v
z n—l'u( >+n—1

n _ 1
< oz = nO)ls + —— IO,

n

n(V)

2

n

= su l z ZT - z Z—r
= <Bn§_j (V)25 (V) = Exy [2(V) (V>]>F

- 3 25l ) By [s0)270)

< sup Z|B”|

BeB(l 0,51

< sup Z|BU|<

BeB(l 0,52

F

Z (Xas Vi) = K(Ya, Vi) [k(Xa, Vj) = k(Yar V)] = Exy ([R(x,vi) = k(y, vi)] [k(x, v;) = k(yvvj)])‘

Z (Xa, Vi) k(Xa, V) — By [k(x, vi)k(x, ;)]

=1

+- Z k(Xa, Vi)k(Ya, V) — Bxy [k(x,vi)E(y, v;)]

n

LS ke v k(Y v,) — By 6y, v k(y, v,)]

a=1

+ %Zk(ya,vi)k(xa,vj) — By [k(y, vi)k(x,v;)]| +

)

n

S Rk, V)0, ) — B (B, V)G,V

<J sup sup
v, v/ EX kEKX
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n

+2J sup sup 1 z k(xq,V)k(ya: V') — Exy [k(x, v)k(y, V)]
n

v,v eEX kek a—1
n
+7 sup sup Z (Var V)(yar v') — By [b(y, v)h(y, v')]
v,v/eEX keEK 1

by exploiting that [|A|| . = supgep(1,0) (B, A) -, and Z
the bounds obtained for the two terms of Eq. (§), we get

SUp Sup [Sn(V) = ZV)[|F <

ij=11Bijl < J Bz < J with B € B(1,0). Using

8B2 _
T+ 23\7 sgp sup 120 = W)l + T (1P = Pllz, +21(P x Q)n — (P x Q)ll £, + 1Qn — Qll 5,) -
(10)
D.5 Bounding by concentration and the VC property
By combining Eqgs. (3), (7) and (T0)
supsup |ZTTL(SH + )2, — MTZ*IM <
¢ [8B%J 2n —
< — +2BV VT (1P~ Pl + @0~ Qll,)
Y |n—1 -1
#0 (1B = Pl +21(P % Q= (P @)l + 100 - Al
+52\/j (HPn - PH}] +1|@n — Q”}'l) + C37n
2 _ 2n—1 _ _
— (1P, — Py, + 1Qn — Q1) (WclBJ - +c2\/3) T oy
C1 8 ElBQJ
o (172 = Pllz, + 1@n = Qllz, + 2 (P x Q) — (P x Q)| £,] + poren AR
Applying Lemmawith 2 we get the statement with a union bound. 0

Lemma 3 (Concentration of the empirical process for uniformly bounded separable Carathéodory VC classes).
Let F be

1. VC-subgraph class of M — R functions with VC index VC(F),
2. a uniformly bounded (||f||LOC(M) < K < o00,Vf € F) separable Carathéodory family.

Let Q be a probability measure, and let Q,, = % >i | 8z, be the corresponding empirical measure. Then for
any ¢ € (0, 1) with probability at least 1 — 0

16v2K 2r[VO(F) — 1] 2log (1)
Q| < 2\/1 16¢)VC(P) oy 21o8(5)
10, ~ QU < =25 |2y/1og [C x VOF) 166) 0] + YT -y =2
where the universal constant C' is associated according to Lemmal[/[iv).
Proof. Notice that g(z1,...,2,) = [|Q, — Q| £ satisfies the bounded difference property with b = % [see
Eq. (8)]:
lg(x1,...,%,) — g (Xl, . ,xj,x;-,xj_H, .. ,xn) |

IA

1 « 1 « 1 ,
sup o -~ ;f(xn - sup or -~ ; o)+~ [F05) = £0<5)] \‘

IN

1 / 1 /
. ;telglf(xj) - f(x;)| < . (;ggf(xj)l +Jsctel£>__f(xj)|> <
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Hence, applying Lemma [§] and using symmetrization [Steinwart and Christmann| (2008) (Prop. 7.10) for the
uniformly bounded separable Carathéodory F class, for arbitrary 0 € (0, 1) with probability at least 1 — §

2log (%

1Qn ~ @5 < Euy, 12, - QUL + Ky 2260
21og (%

< 2E,, R(F,x1.) + K %(5).

By the Dudley entropy bound [Bousquet (2003) [see Eq. (4.4); diam(F,L*(M,Q,))
2suprer [flleimn) < 2supser [[fllemy < 2K < oo], Lemma iv) [with FF = K, ¢ =
M = Q,] and the monotone decreasing property of the covering number, one arrives at

o IA

R(F,x1.) < 8\/@ " Vg N(r, F, L2(M,Q,))dr
< 8\‘//5 [/K Viog N(r, F,L*(M,Q,,))dr + K+/log N(K, F, LQ(M,Qn))]
< 852; / Vg N(rK, F, L2(M,Q,))dr + \/log N(K, F, L2(M, Qn))}
< 8\52;( / Ulog a1 dr—i— v/ log all 8\[}( l2 log(aq +/ Haglog 1
8\/§K
= NG log(ay) 5 ] ,

where a; := C x VO(F)(16¢)VCF), ay := 2[VCO(F) — 1] and [, \/log (})dr = [ t2etdt =T (&) =

yT O

Lemma 4 (Properties of F; from K).

1. Uniform boundedness of Fi-s [see Egqs. (I)-@)]: If K is uniformly bounded, ie., 3B < oo
such that supjcy SUp(x yyex2 |k(X,y)| < B; then Fi, F2 and F3 [Eqs. (I)-@)] are also uni-

formly bounded with B, B? B? constants, respectively. That is, supycx yex [k(x,v)| < B,
SUPjex (vvyens B VIR, V) < B2, supge (v viyens k(X V)E(y, V)| < B2

2. Separability of F;: since F\, Fo and Fs is parameterized by © = I x X, K x X2, K x X?, separability
of I implies that of ©.

3. Measurability of F;: Yk € K is measurable, then the elements of F; (i = 1,2, 3) are also measurable.
a

E Example kernel families

Below we give examples for K kernel classes for which the associated F;-s are VC-subgraph and uniformly
bounded separable Carathéodory families. The VC property will be a direct consequence of the VC indices of
finite-dimensional function classes and preservation theorems (see Lemma[7); for a nice example application see
Srebro and Ben-David| (2006) (Section 5) who study the pseudo-dimension of (x,y) — k(x,y) kernel classes,
for different Gaussian families. We take these Gaussian classes (isotropic, full) and use the preservation trick to
bound the VC indices of the associated F;-s.

Lemma 5 (F;-s are VC-subgraph and uniformly bounded separable Carathéodory families for isotropic Gaussian
Ix—yli3

kernel). Let K = {ka (XY) EXXXCRIXRI e 27 o> 0}. Then the F1, F», F3 classes [see
Egs. (I)-@)] associated to K are

o VC-subgraphs with indices VC(F1) < d+4, VC(Fa) <d+4, VC(F3) < 2d+ 4, and
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e uniformly bounded separable Carathéodory families, with Hf||Loo(M) < 1lforall f € {F1, Fa, fg}.

Proof. VC subgraph property:

e F;: Consider the function class G = {x — % =55 (Hng —-2(x,v), + Hv||§> o0>0,ve X} -
LO(R%). G C G := span (x — ||x||§ Ax et x e 1) vector space, dim(G) < d + 2. Thus
by Lemmai)-(ii), G is VC with VC(G) < d+4; applying Lemmaiii) with ¢(2) = e %, F1 = ¢oG
is also VC with index VC(F;) < d + 4.

_ i3 Hx=v/|I3

o Fo: Since F, = x = k(x,v)k(x,v) =e¢ 257 :U>O,V€X,V’EX},

2 112
Iz

and o

:a>O,VEX,v’€X} - S =
span (X>—> ||x||§,{x»—> Tl x 1),VC’(]:2) <d+4.
e F3: Since

=V 4]y —v||3 Iyl =[viv/]1I3

f3:{(x,y>~>k<x7v>k<y,v'>=e S :a>0,ve]Rd,v’e]Rd},

from the result on F; we get that VC'(F3) < 2d + 4.

Uniformly bounded, separable Carathéodory family:

lx—y13
The result follows from Lemmaby noting that |k(x,y)] < 1 = B, (x,y) — e 27 * is continuous
lx—v13 lx=vi3 _ [I==vII3
(Vo > 0), RT is separable, and the (o,v) — e 202 “ (o,v,v') = e 27 e T, (o,v,V') —
Clx=vi3 lly=v'II3 i i
e 207 e 202  mappings are continuous (Vx,y € X). U

Lemma 6 (F;-s are VC-subgraph and uniformly bounded separable Carathéodory families for full Gaussian
kernel). Let K = {ka : (x,y) € X x X C R% x RY s e~V AC=Y) : A > 0}. Then the Fy, Fo, F3
classes [see Eqs. (I)-(2)] associated to K are

e VC-subgraphs with indices VC(F;) < % +d+2 VC(F) < W +d+2 VC(F3) <
d(d+ 1)+ 2d + 3,

e uniformly bounded separable Carathéodory families, with Hf||Loc(M) < 1forall f € {Fy, Fp, F3} B

Proof. We prove the VC index values; the rest is essentially identical to the proof of Lemma 5]

o Fi: Using that § = {XH(X—V)TA(X—V)ZAEO,VEX} - S
span ({X — I,‘Jij}lgigjgd, {X — xi}1§i§d, X > 1), we have VC(]:l) < VC(Q) < dzm(S) +2
W) 4 g+ 3.

IA

e Fy: Since Fy = {X = k(x, v)k(x, V') = T A+ (x=v) A GV ) =0,ve X,V € X},
and
{(X,y) S x—v)TAX-—V)+ (x—Vv) Ax— V/)} cs
= span ({x = zizjhi<icj<a, (X = Tihi<i<a, X = 1),

we have VC(F2) < VC(S) = dim(S) +2 < @ +d+3.

*M = X for Fi and Fa, and M = X? in case of Fs.
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e F3: Exploiting that
T nT ’
Fs = {(x,y> o b VIk(y, V) = ¢ [ TARH ) BOYIL A g B0 ve xv e X} )

and {xy)—»x-v)TAx-v)+(y-Vv)' By -V} C S =
span ({(%,y) = ziz; hi<ici<a, {(%,y) = @ithici<a, (%) = L{(%y) = viy; h<i<i<a, {(6,¥) = viti<i<a),
we have VC(F3) < VCO(S) = dim(S) +2 < d(d+1) + 2d + 3.

O

F Proof of proposition|]]

Recall Proposition[T}

Proposition 1 (Lower bound on ME test power). Let KC be a uniformly bounded (i.e., 3B < oo such that
SUPj ek SUP(x,y) €2 |k(x,y)| < B) family of k : X x X — R measurable kernels. Let V be a collection in

which each element is a set of J test locations. Assume that ¢ := supycy pex ||E7 1| p < co. For large n, the
test power P (S\n > Ta) of the ME test satisfies P (S\n > Ta) > L(\y) where

[hn(An—=Ta)(n—=1)—£5n]2

L(An) =1 267510\"7%)2/71 — % Ean(2n—1)2 _ 26*[(/\-,L7T,,)/3763nyn]2'yi/£4’

andcs, &1, ... &4 are positive constants depending on only B, J and é. The parameter \,, := npu' X~ is the
population counterpart of A := nZ, (Sn + Ynl) ™" Zn where p = Exylz1] and £ = Exy[(z1 — p)(z1 — p) 7).
For large n, L(\,,) is increasing in )\

F.1 Proof
By (@), we have

cin
An = An |<717||z Sullr + E2nl[Zn — pl2 + E3nYn. (12)

We will bound each of the three terms in (12).

Bounding ||Z, — p/|> (second term in (12))

Let g(X7 Y, V) = k’(X, V>_k<ya V)' Deﬁne V* ‘= arg maxve{vl ..... VJ} ’% 2?21 g(Xi7 Yi, V) - IExy [g(X, Y, V)} |
Define G; := g(x;,y:, V").

1Zn —plla = sup (b,Zn —p),

beB(1,0)

< sup Z |51 Z (xi,vj) = k(yi, vi)] — Exy [k(x,v;) — k(}’,"j)]’
beB(1,0) n

= sup Z |b | Z X’Layl7v_7) IExy [g(x,y,vj)]
beB(1,0)

1
S Gz - Ex 1 sup b
n ; v beB(1,0) Z &l
ZG Exy [G1]| sup |b]2
beB(1,0)

V7 %Zci—mxy ]l
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where we used the fact that ||b||; < v/J||b||s. It can be seen that —2B < G; < 2B because
Gi = k(xiav*) - k(ylav*) < |k'(X7I7V*)| + |k(ylav*>| < 2B.
Using Hoeffding’s inequality (Lemma@) to bound |% S G — Exy[Gh] |, we have

2
P(n@nzn—mu<a>>1—2exp( e Jn) (13)

Bounding first (|| — S,, || ») and third terms in (12)

‘ 1 a= 1g(xa>YaaVz)g(xa>YauVj) - IExy [Q(X7Y7Vi)g(xayavj)”' Define (VT7V§) =
n(vW),v®). Define H; := g(xi,yi,vi)g(xi,¥i, v5). By (8), we have

Let n(v;,v;) =

arg max(vu) v@)e{(v;, VJ)}z =1

[Sn — Blr < (+1) + (*2),

n

) = |5 Y woa] By lmal]

a=1

)

F

8B2%J 2n —
(x2) = +2B,€\f ||Zn w2
n—1
We can upper bound (*2) by applying Hoeffding’s inequality to bound ||z,, — p||2 giving

cin (@Y — aynn + 8B%¢; Jn)?
P{— < >1-2 — . 14
< (x2) < O‘) =T eew ( 3213 2n(2n — 1)2 (19

We can upper bound (*;

)
1 n
(x1) = sup <B, - Zzazl Exy zlzﬁ>
F

BeB(1,0) =1

J J
B;
SB:;&));;' /
sup ZZ\BM

ZH Exy [H1]
BeB(1,0) ;=7 ;=1

ZH Exy [H1]

where we used the fact that Z@ 1 Z 1 |Bij| < J||BJ|p. It can be seen that —4B* < H, < 4B?. Using
Hoeffding’s inequality (Lemma@) to bound |y Ha — Exy [Hi]],

Z 9\ XasYa, Vz)g(xaa Ya, V]) ]Exy [g(x, Yy, Vi)g(X7 Yy, Vj)]

n

1
J ﬁZHa_Exy [Hl} )

a=1

sup | Bllr =
BeB(1,0)

2.2
c1n ay;
Pl — < >1-2 - 15
(G =e)z1-2e0 (). 1
implying that
— 2 9
cin (a —C3nyn) i
P(’Yn (1) + C3nyn <Oé> >1-—2exp <_3234(]20%n> . (16)

Applying a union bound on (13), (14), and with t = a/3, we can conclude that
P(

2 (tynn — ty, — 24B%¢,Jn)? (t/3 — Esnyn)* 42
>1—2exp (- ) —2exp (- “2exp | - o
=T < 32 ~832c§Jn) P ( 32. 32B1E J2n(2n — 1)2 P 32B112En

A — A

cn
< t) >P (;IE — Sullp +Canl|Zn — pll2 + sy, < t)

A rearrangement yields
P (A >T)
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>1-2exp (_M) ~2exp (_ (i (A = Tu)(n — 1) — 243261Jn>2) e (_((An ~T.)/3 —Esmn)2ﬁ> .

32.8B2¢Jn 32.32B4¢2.J2n(2n — 1)2 32B4J%¢n
Define &; := m & 1= 24B%J, &5 = 32 - 32B*¢1 2%, ¢, := 32B*.J?¢3. We have
P (Xn > Ta)
_ 2 _ _ _ 2 _ _ = 2 _2
>1—2exp (—7&()\"1I To) ) — 2exp (— (A gi(z;in_ 11))2 &an) ) — 2exp <_ (An Ta)/?é4 C3nYn) %) .

O

G External lemmas

In this section we detail some external lemmas used in our proof.

Lemma 7 (properties of VC classes, see page 141, 146-147 in|van der Vaart and Wellner|(2000) and page 160-161
in [Kosorok] (2008))).

(i) Monotonicity: G C G C LO(M) = VC(G) < VC(G).

(ii) Finite-dimensional vector space: if G is a finite-dimensional vector space of measurable functions, then
VC(G) < dim(G) + 2.

(iii) Composition with monotone function: If G is VC and ¢ : R — R is monotone, then for po G := {¢pog:
g€ GLVC(poG) <VC(G).

(iv) The r-covering number of a VC class grows only polynomially in % Let F be VC on the domain M with
measurable envelope F (|f(m)| < F(m), Vm € M, f € F). Then for any q¢ > 1 and M probability
measure for which ||F'l| o pqapy > 0

1 ) alveF)-1)

N (P IFl agagan  F FHMM) ) < C x VE(F)(16¢)V O (T

a7

for any r € (0,1) with a universal constant C.
Lemma 8 (McDiarmid’s inequality). Let X1, ..., X, € M be independent random variables and let g : M™ —
R be a function such that the

sup |g(x1,...,x”)—g(xl,...,xj,xg,xj_‘_l,...,x")’Sb (18)
X1,0sXn, X5 EM

bounded difference property holds. Then for arbitrary 6 € (0,1)

1 1
P g(X,..., X0) < E[g(X1,. .., X,)] + W >1-4
Lemma 9 (Hoeffding’s inequality). Let X1,..., X, be i.i.d. random variables with P(a < X; < b) = 1. Let
X :=15" X, Then,

T n

P(|X —E[X]| <t) >1—2exp <_(b2112)2)

Equivalently, for any 6 € (0,1), with probability at least 1 — §, it holds that

X - E[X]| < b9 fos(@/0).
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