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Abstract

Online allocation problems have been widely studied due to their numerous prac-
tical applications (particularly to Internet advertising), as well as considerable
theoretical interest. The main challenge in such problems is making assignment
decisions in the face of uncertainty about future input; effective algorithms need to
predict which constraints are most likely to bind, and learn the balance between
short-term gain and the value of long-term resource availability.
In many important applications, the algorithm designer is faced with multiple
objectives to optimize. In particular, in online advertising it is fairly common to
optimize multiple metrics, such as clicks, conversions, and impressions, as well
as other metrics which may be largely uncorrelated such as ‘share of voice’, and
‘buyer surplus’. While there has been considerable work on multi-objective offline
optimization (when the entire input is known in advance), very little is known
about the online case, particularly in the case of adversarial input. In this paper,
we give the first results for bi-objective online submodular optimization, providing
almost matching upper and lower bounds for allocating items to agents with two
submodular value functions. We also study practically relevant special cases of
this problem related to Internet advertising, and obtain improved results. All our
algorithms are nearly best possible, as well as being efficient and easy to implement
in practice.

1 Introduction

As a central optimization problem with a wide variety of applications, online resource allocation
problems have attracted a large body of research in networking, distributed computing, and electronic
commerce. Here, items arrive one at a time (i.e. online), and when each item arrives, the algorithm
must irrevocably assign it to an agent; each agent has a limited resource budget / capacity for items
assigned to him. A big challenge in developing good algorithms for these problems is to predict future
binding constraints or learn future capacity availability, and allocate items one by one to agents who
are unlikely to hit their capacity in the future. Various stochastic and adversarial models have been
proposed to study such online allocation problems, and many techniques have been developed for
these problems. For stochastic input, a natural approach is to build a predicted instance (for instance,
via sampling, or using historical data), and some of these techniques solve a dual linear program
to learn dual variables that are used by the online algorithm moving forward [6, 10, 2, 23, 16, 18].
However, stochastic approaches may provide poor results on some input (for example, when there
are unexpected spikes in supply / demand), and hence such problems have been extensively studied
in adversarial models as well. Here, the algorithm typically maintains a careful balance between
greedily exploiting the current item by assigning it to agents with high value for it, and assigning the
item to a lower-value agent for whom the value is further from the distribution of ‘typical’ items they
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have received. Again, primal-dual techniques have been applied to learn the dual variables used by
the algorithm in an online manner [17, 3, 9].

A central practical application of such online algorithms is the online allocation of impressions or
page-views to ads on the Internet [9, 2, 23, 5, 7]. Such problems are present both in the context of
sponsored search advertising where advertisers have global budget constraints [17, 6, 3], or in display
advertising where each ad campaign has a desired goal or a delivery constraint [9, 10, 2, 23, 5, 7].
Many of these online optimization techniques apply to general optimization problems including the
online submodular welfare maximization problem (SWM) [20, 13].

For many real-world optimization problems, the goal is to optimize multiple objective functions [14,
1]. For instance, in Internet advertising, such objectives might include revenue, clicks, or conversions.
A variety of techniques have been developed for multi-objective optimization problems; however, in
most cases, these techniques are only applicable for offline multi-objective optimization problems [21,
26], and they do not apply to online settings, especially for online competitive algorithms that work
against an adversarial input [17, 9] or in the presence of traffic spikes [18, 8] or hard-to-predict traffic
patterns [5, 4, 22].

Our contributions. Motivated by the above applications and the increasing need to satisfy multiple
objectives, we study a wide class of multi-objective online optimization problems, and present both
hardness results and (almost tight) bi-objective approximation algorithms for them. In particular, we
study resource allocation problems in which a sequence of items (also referred to as impressions)
i from an unknown set I arrive one by one, and we have to allocate each item to one agent (for
example, one advertiser) a in a given set of agents A. Each agent a has two monotone submodular
set functions fa, ga : 2I → R associated with it. Let Sa be the set of items assigned to bin a as
a result of online allocation decisions. The goal of the online allocation algorithm is to maximize
two social welfare functions based on fa’s and ga, i.e.,

∑
a∈A fa(Sa) and

∑
a∈A ga(Sa). We first

present almost tight online approximation algorithms for the general online bi-objective submodular
welfare maximization problem (see Theorems 2.3 and 2.5, and Fig. 1). We show that a simple random
selection rule along with the greedy algorithm (when each item arrives, randomly pick one objective
to greedily optimize) results in almost optimal algorithms. Our allocation rule is thus both very
fast to run and trivially easy to implement. The main technical result of this part is the hardness
result showing that the achieved approximation factor is almost tight unless P=NP. Furthermore, we
consider special cases of this problem motivated by online ad allocation. In particular, for the special
cases of online budgeted allocation and online weighted matching, motivated by sponsored search
and display advertising (respectively), we present improved primal-dual-based algorithms along with
improved hardness results for these problems (see, for example, the tight Theorem 3.1).

Related Work. It is known that the greedy algorithm leads to a 1/2-approximation for the submodular
social welfare maximization problem (SWM) [11], and this problem admits a 1− 1/e-approximation
in the offline setting [24], which is tight [19]. However, for the online setting, the problem does
not admit a better than 1/2-approximation algorithm unless P= NP [12]. Bi-objective online
allocation problems have been studied in two previous papers [14, 1]. The first paper presents [14]
an online bi-objective algorithm for the problem of maximizing a general weight function and the
cardinality function, and the second paper [1] presents results for the combined budgeted allocation
and cardinality constraints. Our results in this paper improve and generalize those results for
more general settings. Submodular partitioning problems have also been studied based on mixed
robust/average-case objectives [25].

Our work is related to online ad allocation problems, including the Display Ads Allocation (DA)
problem [9, 10, 2, 23], and the Budgeted Allocation (AdWords) problem [17, 6]. In both of these
problems, the publisher must assign online impressions to an inventory of ads, optimizing efficiency
or revenue of the allocation while respecting pre-specified contracts. The Display Ad (DA) problem is
the online matching problem described above with a single weight objective [9, 7]. In the Budgeted
Allocation problem, the publisher allocates impressions resulting from search queries. Advertiser
a has a budget B(a) on the total spend, instead of a bound n(a) on the number of impressions.
Assigning impression i to advertiser a consumes wia units of a’s budget instead of 1 of the n(a)
slots, as in the DA problem. For both of these problems, 1− 1

e -approximation algorithms have been
designed under the assumption of large capacities [17, 3, 9]. None of the above papers for adversarial
models studies multiple objectives at the same time.
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2 Bi-Objective Online Submodular Welfare Maximization

2.1 Model and Overview

For any allocation S , let Sa denote the set of items assigned to agent a ∈ A by this allocation. In the
classic Submodular Welfare Maximization problem (SWM) for which there is a single monotone
submodular objective, each agent a ∈ A is associated with a submodular function fa defined on
the set of items I . The welfare of allocation S is defined as

∑
a fa(Sa), and the goal of SWM is to

maximize this welfare. In the classic SWM, the natural greedy algorithm is to assign each item (when
it arrives) to the agent whose gain increases the most. This greedy algorithm (note that it is an online
algorithm) is (1/2 + 1/n)-competitive, and this is the best possible [15].

In this section, we consider the extension of online SWM to two monotone submodular functions.
Formally, each agent a ∈ A is associated with two submodular functions - fa and ga - defined on I .
The goal is to find an allocation S that does well on both objectives

∑
a fa(Sa) and

∑
a ga(Sa). We

measure the performance of the algorithm by comparison to the offline optimum for each objective:
Let S∗f = argmaxallocations S

∑
a fa(Sa) and S∗g = argmaxallocations S

∑
a ga(Sa). An algorithm

A is (α, β)-competitive if, for every input, it produces an allocation S such that
∑
a fa(Sa) ≥

α
∑
a fa(S∗fa ) and

∑
a ga(Sa) ≥ β

∑
a ga(S

∗g
a ).

A (1, 1)-competitive algorithm would be one that finds an allocation which is simultaneously optimal
in both objectives, but since the objectives are distinct, no single allocation may maximize both,
even ignoring computational difficulties or lack of knowledge of the future. One could attempt to
maximize a linear combination of the two submodular objectives, but since the linear combination is
itself submodular, this is no harder than the classic online SWM. Instead, we provide algorithms with
the stronger guarantee that they are simultaneously competitive with the optimal solution for each
objective separately. Further, our algorithms are parametrized, so the user can balance the importance
of the two objectives.

Similar to previous approaches for bi-objective online allocation problems [14], we run two simulta-
neous greedy algorithms, each based on one of the objective functions. Upon arrival of each online
item, with probability p we pass the item to the greedy algorithm based on the objective function f ,
and with probability 1− p we pass the item to the greedy algorithm based on g.

First, as a warmup, we provide a charging argument to show that the greedy algorithm for (single-
objective) SWM is 1/2-competitive. This charging argument is similar to the usual primal-dual
analysis for allocation problems. However, since the objective functions are not linear, it may not be
possible to interpret the proof using a primal-dual technique. Later, we modify our charging argument
and show that if we run the greedy algorithm for SWM but only consider items for allocation with
probability p, the competitive ratio is p

1+p . (Note that a naive analysis would yield a competitive ratio
of p/2, since we lose a factor of p in the sampling and a factor of 1/2 due to the greedy algorithm.)

Since our algorithm for bi-objective online SWM passes items to the ‘first’ greedy algorithm with
probability p and passes items to the second greedy algorithm with probability 1− p, the modified
charging argument immediately implies that our algorithm is ( p

1+p ,
1−p
2−p ) competitive, as we state in

Theorem 2.3 below. Also, using a factor-revealing framework, assuming NP 6= RP , we provide an
almost tight hardness result, which holds even if the objective functions have the simpler ‘coverage’
structure. Both our competitive ratio and the associated hardness result are presented in Figure 1.

2.2 Algorithm for Bi-Objective online SWM

We define some notation and ideas that we use to bound the competitive ratio of our algorithm. Let Gr
be the greedy algorithm and let Opt be a fixed optimum allocation. For an agent j, and an algorithm
Alg, let Algj be the set of online items allocated to the agent j by Alg; Optj denotes the set of online
items allocated to j in Opt. Trivially, for any two agents j and k, we have Algj ∩Algk = ∅.
For each online item i we define a variable αi, and for each agent j we define a variable βj . In order
to bound the competitive ratio of the algorithm Alg by c, it suffices to set the values of αis and βjs

such that 1) the value of Alg is at least c
(∑n

i=1 αi +
∑m
j=1 βj

)
and 2) the value of Opt is at most∑n

i=1 αi +
∑m
j=1 βj .
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Figure 1: The lower (blue) curve is the competitive ratio of our algorithm, and the red curve is the
upper bound on the competitive ratio of any algorithm.

Theorem 2.1. (Warmup) The greedy algorithm is 0.5-competitive for online SWM.

Proof. For each online item i, let αi be the marginal gain by Gr from allocating item i upon its
arrival. It is easy to see that

∑n
i=1 αi is equal to the value of Gr. For each agent j, let βj be the total

value of the allocation to j at the end of the algorithm. By definition, we know that
∑m
j=1 βj is equal

to the value of Gr. Thus, the value of Gr is clearly 0.5
(∑n

i=1 αi +
∑m
j=1 βj

)
.

Recall that fj(.) denotes the valuation function of agent j. Below, we show that fj(Optj) is upper-
bounded by βj +

∑
i∈Optj

αi. Note that for distinct agents j and k, Optj and Optk are disjoint. Thus,
by summing over all agents, we can upper-bound the value of Opt by

∑n
i=1 αi +

∑m
j=1 βj . This

means that the competitive ratio of Gr is 0.5.

Now, we just need to show that for any agent j we have fj(Optj) ≤ βj +
∑
i∈Optj

αi. Note that for
any item i ∈ Optj , the value of αi is at least the marginal gain that would have been obtained from
assigning i to j when it arrives. Applying submodularity of fj , we have αi ≥ fj(Grj ∪ i)− fj(Grj).
Moreover, by definition we have βj = fj(Grj). Thus, we have:

βj +
∑
i∈Optj

αi ≥ fj(Grj) +
∑
i∈Optj

(fj(Grj ∪ i)− fj(Grj))

≥ fj(Grj) +
(
fj(Grj ∪ Optj)− fj(Grj)

)
= fj(Grj ∪ Optj) ≥ fj(Optj),

where the second inequality follows by submodularity, and the last inequality by monotonicity. This
completes the proof.

Lemma 2.2. Let Grp be an algorithm that with probability p passes each online item to Gr for
allocation, and leaves it unmatched otherwise. Grp is p

1+p -competitive for online SWM.

Proof. The proof here is fairly similar to Theorem 2.1. For each online item i, set αi to be the
marginal gain that would have been achieved from allocating item i upon its arrival (assuming i is
passed to Gr), given the current allocation of items. Note that αi is a random variable (depending on
the outcome of previous decisions to pass items to Gr or not), but it is independent of the coin toss
that determines whether it is passed to Gr, and so the expected marginal gain of allocating item i,
(given all previous allocations) is pE[αi]. Thus, by linearity of expectation, the expected value of Grp
is pE[

∑n
i=1 αi]. On the other hand, for each agent j, set βj to be the value of the actual allocations

to j at the end of the algorithm. Again, we have
∑m
j=1 βj equal to the value of Grp. Combining these

two, we conclude that the expected value of Grp is equal to 1
1+1/p

(∑n
i=1E[αi] +

∑m
j=1E[βj ]

)
.
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As before, we show that fj(Optj) is upper-bounded by βj +
∑
i∈Optj

αi. Therefore, we can conclude

that the competitive ratio of Grp is 1
1+1/p = p

1+p .

It remains only to show that for any agent j, we have fj(Optj) ≤ βj +
∑
i∈Optj

αi. This is exactly
the same as our proof for Theorem 2.1: By submodularity of fj we have, αi ≥ fj(Grp(j) ∪ i) −
fj(Grp(j)), and by definition we have βj = fj(Grp(j)). We provide the complete proof in the full
version.

The main theorem of this section follows immediately.

Theorem 2.3. For any 0 < p < 1, there is a ( p
1+p ,

1−p
2−p )-competitive algorithm for bi-objective

online SWM.

2.3 Hardness of Bi-Objective online SWM

We now prove that Theorem 2.3 is almost tight, by describing a hard instance for bi-objective online
SWM. To describe this instance, we define notions of super nodes and super edges, which capture
the hardness of maximizing a submodular function even in the offline setting. Using the properties of
super nodes and edges, we construct and analyze a hard example for bi-objective online SWM.

Our construction generalizes that of Kapralov et al. [12], who prove the upper bound corresponding to
the two points (0.5, 0) and (0, 0.5) in the curve shown in Figure 1. They use the following result: For
any fixed c0 and ε′ it is NP-hard to distinguish between the following two cases for offline SWM with
n agents and m = kn items. This holds even for submodular functions with ‘coverage’ valuations.

• There is an allocation with value n.
• For any l ≤ c0, no allocation allocates kl items and gets a value more than 1− e−l + ε′.

Intuitively, in the former case, we can assign k items to each agent and obtain value 1 per agent. In the
latter case, even if we assign 2k items (however they are split across agents), we can obtain total value
at most 0.865. It also follows that there exist ‘hard’ instances such that there is an optimal solution
of value n, but for any l < 1, any assigment of ml edges obtains value at most (1− e−l + ε′)n.

We now define a super edge to be a hard instance of offline SWM as defined above. We refer to the
set of agents in a super edge as the agent super node, and the set of items in the super edge as the
item super node. If two super edges share a super node, it means that they share the agents / items
corresponding to that super node in the same order. If (in expectation) we allocate ml items of a
super edge, we say the load of that super edge is l. Similarly, if (in expectation) we allocate ml items
to an agent super node, we say the load of that super node is l. Using the definition of super edge and
super node, the hardness result of Kapralov et al. [12] gives us the following lemma:
Lemma 2.4. Assume RP 6= NP and let ε be an arbitrary small constant. If the (expected) load of a
randomized polynomial algorithm on an agent super node is l, the expected welfare of all agents is at
most (1− e−l + ε)n.

Now with Lemma 2.4 in hand, we are ready to present an upper bound for bi-objective online SWM.
Theorem 2.5. Assume RP 6= NP . The competitive ratio (α, β) of any algorithm for bi-objective
online SWM is upper bounded by the red curve in Figure 1. More precisely (assuming w.l.o.g. that
α ≥ β), for any γ ∈ [0, 1], there is no algorithm with α > 0.5+γ2/6

1+γ2 and β > γα.

3 Bi-Objective Online Weighted Matching

In this section, we consider two special cases of bi-objective online SWM, each of which generalizes
the (single objective) online weighted matching problem (with free disposal). Here, each item i has
two weights wfij and wgij for agent j, and each agent j has (large) capacity Cj . The weights of item i
are revealed when it arrives, and the algorithm must allocate it to some agent immediately.

In the first model, after the algorithm terminates, and each agent j has received items Sj , it chooses a
subset S ′j ⊆ Sj of at most Cj items. The total value in the first objective is then

∑
j

∑
i∈S′j

wfij , and

in the second objective
∑
j

∑
i∈S′j

wgij . Intuitively, each agent must pick a subset of its items, and it
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Exponential Weight Algorithm.
Set βj to 0 for each agent j.
Upon arrival of each item i:

1. If there is agent j with wij − βj > 0

(a) Let j be the agent that maximizes wij − βj
(b) Assign i to j, and set αi to wij − βj .
(c) Let w1, w2, . . . , wCj be the weights of the Cj highest weight items, matched to j in

a non-increasing order.

(d) Set βj to
∑Cj

j=1 wj

(
1+ 1

Cj

)j−1

Cj((1+1/Cj)
Cj−1)

.

2. Else: Leave i unassigned.

Figure 2: Exponential weight algorithm for online matching with free disposal.

gets paid its (additive) value for these items. In the (single-objective) case where each agent can only
be allocated Cj items, this is the online weighted b-matching problem, where vertices are arriving
online, and we have edge weights in the bipartite (item, agent) graph. This problem is completely
intractable in the online setting, while the free disposal variant [9] in which additional items can be
assigned, but at most Cj items count towards the objective, is of theoretical and practical interest.

In the second model, after the algorithm terminates and agent j has received items Sj , it chooses two
(not necessarily disjoint) subsets S′fj and S ′gj ; items in S ′fj are counted towards the first objective,
and those in S ′gj are counted towards the second objective.

Theorem 3.1. For any (α, β) such that α+ β ≤ 1− 1
e , there is an (α, β)-competitive algorithm for

the first model of the bi-objective online weighted matching. For any constant ε > 0, there is no such
algorithm when α+ β > 1− 1

e + ε.

To obtain the positive result, with probability p, run the exponential weight algorithm (see Figure 2)
for the first objective (for all items), and with probability 1− p run the exponential weight algorithm
for the second objective for all items; this combination is (p(1− 1

e ), (1− p)(1−
1
e ))-competitive.

We deffer the proof of this and the matching hardness results to the full version.

Having given matching upper and lower bounds for the first model, we now consider the second model,
where if we assign a set Sj of items / edges to an agent j we can select two subsets S ′fj ,S

′g
j ⊆ Sj

and use them for the first and second objective functions respectively.

Theorem 3.2. There is a (p(1 − 1
e1/p

), (1 − p)(1 − 1
e1/(1−p) ))-competitive algorithm for the bi-

objective online weighted matching problem in the second model as minj{Cj} tends to infinity.

Theorem 3.3. The competitive ratio of any algorithm for bi-objective online weighted matching in
the second model is upper bounded by the curve in figure 3.

4 Bi-Objective Online Budgeted Allocation

In this section, we consider the bi-objective online allocation problem where one of the objectives is
a budgeted allocation problem and the other objective function is weighted matching. Here, each
item i has a weight wij and a bid bij for agent j. Each agent j has a capacity Cj and a budget Bj . If
an agent is allocated items Sj , for the first objective (weighted matching), it chooses a subset S ′j of
at most Cj items; its score is

∑
i∈S′j

wij . For the second objective, its score is min{
∑
i∈Sj bij , Bj}.

Note that in the second objective, the agent does not need to choose a subset; it obtains the sum of the
bids of all items assigned to it, capped at its budget Bj .

Clearly, if we set all bids bij to 1, the goal of the budgeted allocation part will be maximizing the
cardinality. Thus, this is a clear generalization of the bi-objective online allocation to maximize
weight and cardinality, and the same hardness results hold here.
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Figure 3: The blue curve is the competitive ratio of our algorithm in the second model, while the red
line and the green curves are the upper bounds on the competitive ratio of any algorithm.

As is standard, throughout this section we assume that the bid of each agent for each item is
vanishingly small compared to the budget of each bidder. Interestingly, again here, we provide a
(p(1− 1

e1/p
), (1− p)(1− 1

e1/(1−p) ))-competitive algorithm, which is almost tight. At the end, as a
corollary of our results, we provide a a (p(1− 1

e1/p
), (1− p)(1− 1

e1/(1−p) ))-competitive algorithm,
for the case that both objectives are budgeted allocation problems (with separate budgets).

Our algorithm here is roughly the same as for two weight objectives. For each item, with probability
1−p, we pass it to the Exponential Weight algorithm for matching, and allocate it based on its weight.
With the remaining probability p, we assign the algorithm based on its bids and count it towards the
Budgeted Allocation objective. However, the algorithm we use for Budgeted Allocation is slightly
different: We virtually run the Balance algorithm of Mehta et al. [17] for Budgeted Allocation (Fig. 4),
as though we were assigning all items (not just those passed to this algorithm), but with each item’s
bids scaled down by a factor of p. For those p fraction of items to be assigned by the Budgeted
Allocation algorithm, assign them according to the recommendation of the virtual Balance algorithm.

Theorem 3.2 from the previous section shows that our algorithm is (1− p)(1− 1
e1/(1−p) )-competitive

against the optimum weighted matching objective. Thus, in the rest of this section, we only need
to show that this algorithm is p(1 − 1

e1/p
)-competitive against the optimum Budgeted Allocation

solution. First, using a primal dual approach, we show that the outcome of the virtual Balance
algorithm (that runs on p fraction of the value of each item) is p(1− 1

e1/p
) against the optimum with

the actual weights. Then, using the Hoeffding inequality, we show that the expected value of our
allocation for the budgeted allocation objective is fairly close to the virtual algorithm’s value, i.e. the
difference between the competitive ratio of our allocation and the virtual allocation is o(1).

Lemma 4.1. When maxi,j bij
Bj

→ 0, the total allocation of the virtual balance algorithm that runs on
p fraction of the value of each bid is at least p(1− 1

e1/p
) times that of the optimum with the actual

values.

The proof of this lemma is similar to the analysis of Buchbinder et al. [3] for the basic Budgeted
Allocation problem. We provide this proof in the full version.

Lemma 4.2. For any constant p, assuming maxi,j bij
Bj

→ 0, the budgeted allocation value of our
algorithm tends to the value of Balance with p fraction of each bid, with high probability.

In the virtual Balance algorithm, we allocate p fraction of each item, while in our real algorithm, we
allocate every item according to the virtual Balance algorithm with probability p. Since each item’s
bids are small compared to the budgets, the lemma follows from a straightforward concentration
argument. We present the complete proof in the full version.

The following lemma is an immediate result of combining Lemma 4.1 and Lemma 4.2.
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Virtual Balance algorithm on p fraction of values.
Set βj and yj to 0 for each agent j.
Upon arrival of each item i:

1. If i has a neighbor with bij(1− βj) > 0

(a) Let j be the agent that maximizes bij(1− βj)
(b) Assign i to j i.e. set xij to 1.
(c) Set αi to bij(1− βj).
(d) Increase yj by bij

Bj

(e) Increase βj by eyj−1/p

1−e−1/p

bij
Bj

2. Else: Leave i unassigned.

Figure 4: Maintaining solution to primal and dual LPs.

Lemma 4.3. For any constant p, assuming maxi,jbij
Bj

→ 0, our algorithm is p(1− 1
e1/p

)-competitive
against the optimum budgeted allocation solution.

Lemma 4.3 immediately gives us the following theorem.

Theorem 4.4. For any constant p, assuming maxi,jbij
Bj

→ 0, there is a (p(1 − 1
e1/p

), (1 − p)(1 −
1

e1/(1−p) ))-competitive algorithm for the bi-objective online allocation with two budgeted allocation
objectives.

Moreover, if we pass each item to the exponential weight algorithm with probability p, the expected
size of the output matching is at least p(1− 1

e1/p
) that of the optimum [14]. Together with Lemma

4.3, this gives us the following theorem.

Theorem 4.5. For any constant p, assuming maxi,jbij
Bj

→ 0, there is a (p(1 − 1
e1/p

), (1 − p)(1 −
1

e1/(1−p) ))-competitive algorithm for the bi-objective online allocation with a budgeted allocation
objective and a weighted matching objective.

5 Conclusions

In this paper, we gave the first algorithms for several bi-objective online allocation problems. Though
these are nearly tight, it would be interesting to consider other models for bi-objective online
allocation, special cases where one may be able to go beyond our hardness results, and other
objectives such as fairness to agents.
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