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Abstract

Active learning enables us to reduce the annotation cost by adaptively selecting
unlabeled instances to be labeled. For pool-based active learning, several effec-
tive methods with theoretical guarantees have been developed through maximiz-
ing some utility function satisfying adaptive submodularity. In contrast, there have
been few methods for stream-based active learning based on adaptive submodu-
larity. In this paper, we propose a new class of utility functions, policy-adaptive
submodular functions, which includes many existing adaptive submodular func-
tions appearing in real world problems. We provide a general framework based
on policy-adaptive submodularity that makes it possible to convert existing pool-
based methods to stream-based methods and give theoretical guarantees on their
performance. In addition we empirically demonstrate their effectiveness by com-
paring with existing heuristics on common benchmark datasets.

1 Introduction

Active learning is a problem setting for sequentially selecting unlabeled instances to be labeled, and
it has been studied with much practical interest as an efficient way to reduce the annotation cost. One
of the most popular settings of active learning is the pool-based one, in which the learner is given
the entire set of unlabeled instances in advance, and iteratively selects an instance to be labeled next.
The stream-based setting, which we deal with in this paper, is another important setting of active
learning, in which the entire set of unlabeled instances are hidden initially, and presented one by one
to the learner. This setting also has many real world applications, for example, sentiment analysis of
web stream data [26], spam filtering [25], part-of-speech tagging [10], and video surveillance [23].

Adaptive submodularity [19] is an adaptive extension of submodularity, a natural diminishing return
condition. It provides a framework for designing effective algorithms for several adaptive problems
including pool-based active learning. For instance, the ones for noiseless active learning [19, 21]
and the ones for noisy active learning [20, 9, 8] have been developed in recent years. Not only they
have strong theoretical guarantees on their performance, but they perform well in practice compared
with existing widely-used heuristics.

In spite of its considerable success in the pool-based setting, little is known about benefits of adaptive
submodularity in the stream-based setting. This paper answers the question: is it possible to con-
struct algorithms for stream-based active learning based on adaptive submodularity? We propose a
general framework for creating stream-based algorithms from existing pool-based algorithms.

In this paper, we tackle the problem of stream-based active learning with a limited budget for making
queries. The goal is collecting an informative set of labeled instances from a data stream of a
certain length. The stream-based active learning problem has been typically studied in two settings:
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the stream setting and the secretary setting, which correspond to memory constraints and timing
constraints respectively; we treat both in this paper.

We formalize these problems as the adaptive stochastic maximization problem in the stream or sec-
retary setting. For solving this problem, we propose a new class of stochastic utility functions:
policy-adaptive submodular functions, which is another adaptive extension of submodularity. We
prove this class includes many existing adaptive submodular functions used in various applications.
Assuming the objective function satisfies policy-adaptive submodularity, we propose simple meth-
ods for each problem, and give theoretical guarantees on their performance in comparison to the
optimal pool-based method. Experiments conducted on benchmark datasets show the effectiveness
of our methods compared with several heuristics. Due to our framework, many algorithms developed
in the pool-based setting can be converted to the stream-based setting.

In summary, our main contributions are the following:

• We provide a general framework that captures budgeted stream-based active learning and other
applications.

• We propose a new class of stochastic utility functions, policy-adaptive submodular functions,
which is a subclass of the adaptive submodular functions, and prove this class includes many
existing adaptive submodular functions in real world problems.

• We propose two simple algorithms, AdaptiveStream and AdaptiveSecretary, and give the-
oretical performance guarantees on them.

2 Problem Settings

In this section, we first describe the general framework, then illustrate applications including stream-
based active learning.

2.1 Adaptive Stochastic Maximization in the Stream and Secretary Settings

Here we specify the problem statement. This problem is a generalization of budgeted stream-based
active learning and other applications.

Let V = {v1, · · · , vn} denote the entire set of n items, and each item vi is in a particular state out of
the set Y of possible states. Denote by ϕ : V → Y a realization of the states of the items. Let Φ be a
random realization, and Yi a random variable representing the state of each item vi for i = 1, · · · , n,
i.e., Yi = Φ(vi). Assume that ϕ is generated from a known prior distribution p(ϕ). Suppose the
state Yi is revealed when vi is selected. Let ψA : A→ Y denote the partial realization obtained after
the states of items A ⊆ V are observed. Note that a partial realization ψA can be regarded as the set
of observations {(s, ψA(s)) | s ∈ A} ⊆ V × Y .

We are given a set function1 f : 2V×Y → R≥0 that defines the utility of observations made when
some items are selected. Consider iteratively selecting an item to observe its state and aiming to
make observations of high utility value. A policy π is some decision tree that represents a strategy
for adaptively selecting items. Formally it is defined to be a partial mapping that determines an
item to be selected next from the observations made so far. Given some budget k ∈ Z>0, the goal
is constructing a policy π maximizing EΦ[f(ψ(π,Φ))] subject to |ψ(π, ϕ)| ≤ k for all ϕ where
ψ(π, ϕ) denotes the observations obtained by executing policy π under realization ϕ.

This problem has been studied mainly in the pool-based setting, where we are given the entire set V
from the beginning and adaptively observe the states of items in any order. In this paper we tackle
the stream-based setting, where the items are hidden initially and arrive one by one. The stream-
based setting arises in two kinds of scenarios: one is the stream setting2, in which we can postpone
deciding whether or not to select an item by keeping it in a limited amount of memory, and at any
time observe the state of the stored items. The other is the secretary setting, in which we must decide

1In the original definition of stochastic utility functions [19], the objective value depends not only on the
partial realization ψ, but also on the realization ϕ. However, given such f : 2V ×YV → R≥0, we can redefine
f̃ : 2V ×Y → R≥0 as f̃(ψA) = EΦ[f(A,Φ) | Φ ∼ p(Φ|ψA)], and it does not critically change the overall
discussion in our problem settings. Thus for notational convenience, we use the simpler definition.

2In this paper, “stream-based setting” and “stream setting” are distinguished.
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Figure 1: Examples of a pool-based policy and a stream-based policy in the case of Y = {+1,−1}.
(a) A pool-based policy can select items in an arbitrary order. (b) A stream-based policy must select
items under memory or timing constraints taking account of only items that arrived so far.

immediately whether or not to select an item at each arrival. In both settings we assume the items
arrive in a random order. The comparison of policies for the pool-based and stream-based settings
is indicated in Figure 1.

2.2 Budgeted Stream-based Active Learning

We consider a problem setting called Bayesian active learning. Here V represents the set of in-
stances, Y1, · · · , Yn the initially unknown labels of the instances, and Y the set of possible labels.

Let H denote the set of candidates for the randomly generated true hypothesis H , and pH denote
a prior probability over H. When observations of the labels are noiseless, every hypothesis h ∈ H
represents a particular realization, i.e., h corresponds to some ϕ ∈ YV . When observations are noisy,
the probability distribution P[Y1, · · · , Yn|H = h] of the labels is not necessarily deterministic for
each h ∈ H. In both cases, we can iteratively select an instance and query its label to the annotation
oracle. The objective is to determine the true hypothesis or one whose prediction error is small. Both
the pool-based and stream-based settings have been extensively studied. The stream-based setting
contains the stream and secretary settings, both of which have a lot of real world applications.

A common approach for devising a pool-based algorithm is designing some utility function that
represents the informativeness of a set of labeled instances, and greedily selecting the instance max-
imizing this utility in terms of the expected value. We introduce the utility into stream-based active
learning, and aim to collect k labeled instances of high utility where k ∈ Z>0 is the budget on
the number of queries. While most of the theoretical results for stream-based active learning are
obtained assuming the data stream is infinite, we assume the length of the total data stream is given
in advance.

2.3 Other Applications

We give a brief sketch of two examples that can be formalized as the adaptive stochastic maximiza-
tion problem in the secretary setting. Both are variations for streaming data of the problems first
proposed by Golovin and Krause [19].

One is adaptive viral marketing whose aim is spreading information about a new product through
social networks. In this problem we adaptively select k people to whom a free promotional sample
of the product is offered so as to let them recommend the product to their friends. We cannot know if
he recommends the product before actually offering a sample to each. The objective is maximizing
the number of people that information of the product reaches. There arise some situations where
people come sequentially, and at each arrival we must decide whether or not to offer a sample to
them.

Another is adaptive sensor placement. We want to adaptively place k unreliable sensors to cover the
information obtained by them. The informativeness of each sensor is unknown before its deploy-
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ment. We can consider the cases where the timing of placing sensors at each location is restricted
for some reasons such as transportation cost.

3 Policy-Adaptive Submodularity

In this section, we discuss conditions satisfied by the utility functions of adaptive stochastic maxi-
mization problems.

Submodularity [17] is known as a natural diminishing return condition satisfied by various set func-
tions appearing in a lot of applications, and adaptive submodularity was proposed by Golovin and
Krause [19] as an adaptive extension of submodularity. Adaptive submodularity is defined as the
diminishing return property about the expected marginal gain of a single item, i.e., ∆(s|ψA) ≥
∆(s|ψB) for any partial realization ψA ⊆ ψB and item s ∈ V \B, where

∆(s|ψ) = EΦ[f(ψ ∪ {(s,Φ(s))})− f(ψ) | Φ ∼ p(Φ|ψ)].

Similarly, adaptive monotonicity, an adaptive analog of monotonicity, is defined to be ∆(s|ψA) ≥ 0
for any partial realization ψA and item s ∈ V . It is known that many utility functions used in the
above applications satisfy the adaptive submodularity and the adaptive monotonicity. In the pool-
based setting, greedily selecting the item of the maximal expected marginal gain yields (1 − 1/e)-
approximation if the objective function is adaptive submodular and adaptive monotone [19].

Here we propose a new class of stochastic utility functions, policy-adaptive submodular functions.
Let range(π) denote the set containing all items that π selects for some ϕ, and we define policy-
adaptive submodularity as the diminishing return property about the expected marginal gain of any
policy as follows.
Definition 3.1 (Policy-adaptive submodularity). A set function f : 2V×Y → R≥0 is policy-adaptive
submodular with respect to a prior distribution p(ϕ), or (f, p) is policy-adaptive submodular, if
∆(π|ψA) ≥ ∆(π|ψB) holds for any partial realization ψA, ψB and policy π such that ψA ⊆ ψB
and range(π) ⊆ V \B, where

∆(π|ψ) = EΦ[f(ψ ∪ ψ(π,Φ))− f(ψ) | Φ ∼ p(Φ|ψ)].

Since a single item can be regarded as a policy selecting only one item, policy-adaptive submodu-
larity is a stricter condition than adaptive submodularity.

Policy-adaptive submodularity is also a natural extension of submodularity. The submodularity of a
set function f : 2V → R≥0 is defined as the condition that f(A∪{s})−f(A) ≥ f(B∪{s})−f(B)
for any A ⊆ B ⊆ V and s ∈ V \ B, which is equivalent to the condition that f(A ∪ P )− f(A) ≥
f(B ∪ P ) − f(B) for any A ⊆ B ⊆ V and P ⊆ V \ B. Adaptive extensions of these conditions
are adaptive submodularity and policy-adaptive submodularity respectively. Nevertheless there is
a counterexample to the equivalence of adaptive submodularity and policy-adaptive submodularity,
which is given in the supplementary materials.

Surprisingly, many existing adaptive submodular functions in applications also satisfy the policy-
adaptive submodularity. In active learning, the objective function of generalized binary search
[12, 19], EC2 [20], ALuMA [21], and the maximum Gibbs error criterion [9, 8] are not only adaptive
submodular, but policy-adaptive submodular. In other applications including influence maximiza-
tion and sensor placements, it is often assumed that the variables Y1, · · · , Yn are independent, and
the policy-adaptive submodularity always holds in this case. The proofs of these propositions are
given in the supplementary materials.

To give the theoretical guarantees for the algorithms introduced in the next section, we assume
not only the adaptive submodularity and the adaptive monotonicity, but also the policy-adaptive
submodularity. However, our theoretical analyses can still be applied to many applications.

4 Algorithms

In this section we describe our proposed algorithms for each of the stream and secretary settings, and
state the theoretical guarantees on their performance. The full versions of pseudocodes are given in
the supplementary materials.
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Algorithm 1 AdaptiveStream algorithm & AdaptiveSecretary algorithm
Input: A set function f : 2V×Y → R≥0 and a prior distribution p(ϕ) such that (f, p) is policy-

adaptive submodular and adaptive monotone. The number of items in the entire stream n ∈ Z>0.
A budget k ∈ Z>0. Randomly permuted stream of the items, denoted by (s1, · · · , sn).

Output: Some observations ψk ⊆ V × Y such that |ψk| ≤ k.
1: Let ψ0 := ∅.
2: for each segment Sl = {si | (l − 1)n/k < i ≤ ln/k} do
3: Select an item s out of Sl by{

selecting the item of the largest expected marginal gain (AdaptiveStream)

applying the classical secretary algorithm (AdaptiveSecretary)
4: Observe the state y of item s and let ψl := ψl−1 ∪ {(s, y)}.
5: return ψk as the solution

4.1 Algorithm for the Stream Setting

The main idea of our proposed method is simple: divide the entire stream into k segments and select
the best item from each one. For simplicity, we consider the case where n is a multiple integer of
k. If n is not, we can add k⌈nk ⌉ − n dummy items with no benefit and prove the same guarantee.
Our algorithm first divides the item sequence s1, · · · , sn into Sl = {si | (l − 1)n/k < i ≤ ln/k}
for l = 1, · · · , k. In each segment, the algorithm selects the item of the largest expected marginal
gain, that is, argmax{∆(s|ψl−1) | s ∈ Sl} where ψl−1 is the partial realization obtained before
the lth segment. This can be implemented with only O(1) space by storing only the item of the
maximal expected marginal gain so far in the current segment. We provide the theoretical guarantee
on the performance of this algorithm by utilizing the policy-adaptive submodularity of the objective
function.

Theorem 4.1. Suppose f : 2V×Y → R≥0 is policy-adaptive submodular and adaptive monotone
w.r.t. a prior p(ϕ). Assume the items come sequentially in a random order. For any policy π such
that |ψ(π, ϕ)| ≤ k holds for all ϕ, AdaptiveStream selects k items using O(1) space and achieves
at least 0.16 times the expected total gain of π in expectation.

4.2 Algorithm for the Secretary Setting

Though our proposed algorithm for the secretary setting is similar in its approach to the one for the
stream setting, it is impossible to select the item of the maximal expected marginal gain from each
segment in the secretary setting. Then we use classical secretary algorithm [13] as a subroutine to
obtain the maximal item at least with some constant probability. The classical secretary algorithm
lets the first ⌊n/(ek)⌋ items pass and then selects the first item whose value is larger than all items
so far. The probability that this subroutine selects the item of the largest expected marginal gain is
at least 1/e at each segment. This algorithm can be viewed as an adaptive version of the algorithm
for the monotone submodular secretary problem [3]. We give the guarantee similar to the one for
the stream setting.

Theorem 4.2. Suppose f : 2V×Y → R≥0 is policy-adaptive submodular and adaptive monotone
w.r.t. a prior p(ϕ). Assume the items come sequentially in a random order. For any policy π such
that |ψ(π, ϕ)| ≤ k holds for all ϕ, AdaptiveSecretary selects at most k items and achieves at
least 0.08 times the expected total gain of π in expectation.

5 Overview of Theoretical Analysis

In this section we briefly describe the proofs of Theorem 4.1 and 4.2, and compare our techniques
with the previous work. The full proofs are given in the supplementary materials.

The methods used in the proofs of both theorems are almost the same. They consist of two steps:
in the first step, we bound the expected marginal gain of each item and in the second step, we take
summation of one step marginal gains and derive the overall bound for the algorithms. Though
our techniques used in the second step are taken from the previous work [3], the first step contains
several novel techniques.
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Let ∆i be the expected marginal gain of an item picked from the ith segment Si. First we bound it
from below with the difference between the optimal pool-based policy π∗

T for selecting k items from
T and the policy πσi−1 that encodes the algorithm until i− 1th step under a permutation σ in which
the items arrive. For the non-adaptive setting, the items in the optimal set are distributed among
the segments uniformly at random, then we can evaluate ∆i by considering whether Si contains
an item included in the optimal set [3]. On the other hand, in the adaptive setting, it is difficult to
consider how π∗

T is distributed in the unarrived items because the policy is closely related not only
to the contained items but also to the order of items. Then we compare ∆i and the marginal gain
of π∗

T directly. With the adaptive monotonicity, we obtain ∆i ≥ (1 − exp(− k
k−i+1 ))(favg(π

∗
T ) −

favg(π
σ
i−1))/k where favg(π) = EΦ[f(ψ(π,Φ))].

Next we bound favg(π∗
T ) with the optimal pool-based policy π∗

V that selects k items from V . For the
non-adaptive setting, we can apply a widely-used lemma proved by Feige, Mirrokni, and Vondrák
[15]. This lemma provides a bound for the expected value of a randomly deleted subset. To extend
this lemma to the adaptive setting, we define a partially deleted policy tree, grafted policy, and prove
the adaptive version of the lemma with the policy-adaptive submodularity. From this lemma we can
obtain the bound Eσ[favg(π∗

T )] ≥ (k − i+ 1)favg(π
∗
V )/k. We also provide an example that shows

adaptive submodularity is not enough to prove this lemma.

Summing the bounds for each one-step expected marginal gain until lth step (l is specified in the
full proof for optimizing the resulting guarantees), we can conclude that our proposed algorithms
achieve some constant factor approximation in comparison to the optimal pool-based policy. Though
AdaptiveSecretary is the adaptive version of the existing algorithm, our resulting constant factor
is a little worse than the original (1− 1/e)/7 due to the above new analyses.

6 Experiments

6.1 Experimental Setting

We conducted experiments on budgeted active learning in the following three settings: the pool-
based, stream, and secretary settings. For each setting, we compare two methods: one is based
on the policy-adaptive submodularity and the other is based on uncertainty sampling as baselines.
Uncertainty sampling is the most widely-used approach in applications. Selecting random instances,
which we call random, is also implemented as another baseline that can be used in every setting.

We select ALuMA [21] out of several pool-based methods based on adaptive submodularity, and
convert it to the stream and secretary settings with AdaptiveStream and AdaptiveSecretary,
which we call stream submodular and secretary submodular respectively. For comparison, we
also implement the original pool-based method, which we call pool submodular. Though ALuMA
is designed for the noiseless case, there is a modification method that makes its hypotheses sampling
more noise-tolerant [7], which we employ. The number of hypotheses sampled at each time is set
N = 1000 in all settings.

For the pool-based setting, uncertainty sampling is widely-known as a generic and easy-to-
implement heuristic in many applications. This selects the most uncertain instance, i.e., the instance
that is closest to the current linear separator. In contrast, there is no standard heuristic for the stream
and secretary settings. We apply the same conversion to the pool-based uncertain sampling method
as AdaptiveStream and AdaptiveSecretary, i.e., in the stream setting, selecting the most un-
certain instance from the segment at each step, and in the secretary setting, running the classical
secretary algorithm to select the most uncertain instance at least with probability 1/e. A similar one
to this approach in the stream setting is used in some applications [26]. In every setting, we first
randomly select 10 instances for the initial training of a classifier and after that, select k − 10 in-
stances with each method. We use the linear SVM trained with instances labeled so far to judge the
uncertainty. We call these methods pool uncertainty, stream uncertainty, secretary uncertainty
respectively, and use them as baselines.

We conducted experiments on two benchmark datasets, WDBC3 and MNIST4. The WDBC dataset
contains 569 instances, each of which consists of 32-dimensional features of cells and their diagnosis

3
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

4
http://yann.lecun.com/exdb/mnist/
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Figure 2: Experimental results

results. From the MNIST dataset, the dataset of handwritten digits, we extract 14780 images of the
two classes, 0 and 1, so as to consider the binary classification problem, and apply PCA to reduce
its dimensions from 784 to 10. We standardize both datasets so that the values of each feature have
zero mean and unit variance.

We evaluate the performance through 100 trials, where at each time an order in which the instances
arrive is generated randomly. For all the methods, we calculate the error rate by training linear SVM
with the obtained labeled instances and testing with the entire dataset.

6.2 Experimental Results

Figure 2(a)(b) illustrate the average error rate achieved by each method with budget k = 30, 40, 50.
Our methods stream submodular and secretary submodular outperform not only random, but
also stream uncertainty and secretary uncertainty respectively, i.e., the methods based on policy-
adaptive submodularity perform better than the methods based on uncertainty sampling in each of
the stream and secretary settings. Moreover, we can observe our methods are stabler than the other
methods from the error bars representing the standard deviation.

Figure 2(c)(d) show how the error rate decreases as labels are queried in the case of k = 50. In
both datasets, we can observe the performance of stream submodular is competitive with pool
submodular.

7 Related Work

Stream-based active learning. Much amount of work has been dedicated to devising algorithms
for stream-based active learning (also known as selective sampling) from both the theoretical and
practical aspects. From the theoretical aspects, several bounds on the label complexity have been
provided [16, 2, 4], but their interest lies in the guarantees compared to the passive learning, not the
optimal algorithm. From the practical aspects, it has been applied to many real world problems such
as sentiment analysis of web stream data [26], spam filtering [25], part-of-speech tagging [10], and
video surveillance [23], but there is no definitive widely-used heuristic.
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Of particular relevance to our work is the one presented by Sabato and Hess [24]. They devised
general methods for constructing stream-based algorithms satisfying a budget based on pool-based
algorithms, but their theoretical guarantees are bounding the length of the stream needed to emulate
the pool-based algorithm, which is a large difference from our work. Das et al. [11] designed the
algorithm for adaptively collecting water samples, referring to the submodular secretary problem,
but they focused on applications to marine ecosystem monitoring, and did not give any theoretical
analysis about its performance.

Adaptive submodular maximization. The framework of adaptive submodularity, which is an adap-
tive counterpart of submodularity, is established by Golovin and Krause [19]. It provides the simple
greedy algorithm with the near-optimal guarantees in several adaptive real world problems. Specifi-
cally it achieves remarkable success in pool-based active learning. For the noiseless cases, Golovin
and Krause [19] described the generalized binary search algorithm [12] as the greedy algorithm
for some adaptive submodular function, and improved its approximation factor. Golovin et al. [20]
provided an algorithm for Bayesian active learning with noisy observations by reducing it to the
equivalence class determination problem. On the other hand, there have been several studies on
adaptive submodular maximization in other settings, for example, selecting multiple instances at the
same time before observing their states [7], guessing an unknown prior distribution in the bandit
setting [18], and maximizing non-monotone adaptive submodular functions [22].

Submodular maximization in the stream and secretary settings. Submodular maximization in
the stream setting, called streaming submodular maximization, has been studied under several con-
straints. Badanidiyuru et al. [1] provided a (1/2− ϵ)-approximation algorithm that can be executed
in O(k log k) space for the cardinality constraint. For more general constraints including matching
and multiple matroids constraints, Chakrabarti and Kale [5] proposed constant factor approximation
algorithms. Chekuri et al. [6] devised algorithms for non-monotone submodular functions.

On the other hand, much effort is also devoted to submodular maximization in the secretary set-
ting, called submodular secretary problem, under various constraints. Bateni et al. [3] specified the
problem first and provided algorithms for both monotone and non-monotone submodular secretary
problems under several constraints, one of which our methods are based on. Feldman et al. [14]
improved constant factors of the theoretical guarantees for monotone cases.

8 Concluding Remarks

In this paper, we investigated stream-based active learning with a budget constraint in the view of
adaptive submodular maximization. To tackle this problem, we introduced the adaptive stochastic
maximization problem in the stream and secretary settings, which can formalize stream-based active
learning. We provided a new class of objective functions, policy-adaptive submodular functions, and
showed this class contains many utility functions that have been used in pool-based active learning
and other applications. AdaptiveStream and AdaptiveSecretary, which we proposed in this pa-
per, are simple algorithms guaranteed to be constant factor competitive with the optimal pool-based
policy. We empirically demonstrated their performance by applying our algorithms to the budgeted
stream-based active learning problem, and our experimental results indicate their effectiveness com-
pared to the existing methods.

There are two natural directions for future work. One is exploring the possibility of the concept,
policy-adaptive submodularity. By studying the nature of this class, we can probably yield theoreti-
cal insight for other problems. Another is further developing the practical aspects of our results. In
real world problems sometimes it happens that the items arrive not in a random order. For example,
in sequential adaptive sensor placement [11], an order of items is restricted to some transportation
constraint. In this setting our guarantees do not hold and another algorithm is needed. In contrast to
the non-adaptive setting, even in the stream setting, it seems much more difficult to design a constant
factor approximation algorithm because the full information of each item is totally revealed when
its state is observed and memory is not so powerful as in the non-adaptive setting.
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A Proofs of the Policy-Adaptive Submodularity

In this section, we show several adaptive submodular functions used as utility functions in applica-
tions are policy-adaptive submodular.

Let H denote the set of candidates for the true hypothesis. First we consider the noiseless case. Each
hypothesis h ∈ H represents some realization, i.e., h : V → Y . Let pH be a prior distribution over
hypotheses. For convenience, we use pH as the sum of the probability pH(H′) =

∑
h∈H′ pH(h)

for any H′ ⊆ H. We can obtain the prior distribution over realizations as p(ϕ) = pH({h | ∀s ∈
V, h(s) = ϕ(s)}). The version space under observations ψ is defined to be H(ψ) = {h ∈ H |
∀(s, y) ∈ ψ, h(s) = y}.

The objective function of generalized binary search. Generalized binary search in the Bayesian
setting [12], designed for noiseless active learning, is executed by greedily maximizing

fGBS(ψ) = 1− pH(H(ψ)).

Golovin and Krause [19] proved this function is adaptive submodular, and improved the upper bound
on the number of labels made by generalized binary search for deciding the true hypothesis.

Proposition A.1. fGBS is policy-adaptive submodular w.r.t. p(ϕ).

Proof. Let ψ0 be any partial realization and π any policy such that range(π) ⊆ V \ dom(ψ0). The
set of all resulting observations of π is defined to be L(π) = {ψ | ∃ϕ, ψ(π, ϕ)}. The expected
marginal gain of π under the observations ψ0 is

∆(π|ψ0) =
∑

ψ∈L(π)

p(ψ|ψ0)
(
fGBS(ψ ∪ ψ0)− fGBS(ψ0)

)
=

∑
ψ∈L(π)

pH(H(ψ ∪ ψ0))

pH(H(ψ0))

(
pH(H(ψ0))− pH(H(ψ ∪ ψ0))

)
.

Let g be a function of x = (xψ)ψ = (pH(H(ψ ∪ ψ0)))ψ such that g(x) = ∆(π|ψ0), then g(x) =∑
ψ xψ −

∑
ψ x

2
ψ/
∑
ψ xψ . We show this function is monotonically increasing about each xψ .

By differentiating g with respect to xψ ,

∂

∂xψ
g(x) = 1 +

∑
ψ′ x2ψ′

(
∑
ψ′ xψ′)2

− 2xψ∑
ψ′ xψ′

=

(
1− xψ∑

ψ′ xψ′

)2

+

∑
ψ′ ̸=ψ x

2
ψ′

(
∑
ψ′ xψ′)2

which is at least 0. Therefore g is monotonically increasing w.r.t. each xψ .

If ψA and ψB are partial realizations such that ψA ⊆ ψB and range(π) ⊆ V \ B, it holds that
pH(H(ψ ∪ ψA)) ≥ pH(H(ψ ∪ ψB)) for all ψ ∈ L(π), which implies ∆(π|ψA) ≥ ∆(π|ψB).

The objective function of EC2 algorithm. Suppose that H is partitioned into equivalence classes
H1, · · · ,Hm, i.e., H1 ∪ · · · ∪ Hm = H and Hi ∩ Hj = ∅ for every i ̸= j. The equivalence class
determination problem [20] is the problem of deciding which equivalence class the true hypothesis
lies in. Golovin et al. [20] proves that

fEC(ψ) = 1−
∑
i<j

(
pH(Hi(ψ)) pH(Hj(ψ))

)
is adaptive submodular and adaptive monotone, and this function achieves the value 1 if and only
if the equivalence class that the true hypothesis lies in is determined. Now we show (fEC, p) is
policy-adaptive submodular.

Proposition A.2. fEC is policy-adaptive submodular w.r.t. p(ϕ).

Proof. Let ψ0 be any partial realization and π any policy such that range(π) ⊆ V \ dom(ψ0). The
set of all resulting observations of π is defined to be L(π) = {ψ | ∃ϕ, ψ(π, ϕ)}. The expected

10



marginal gain of π under the partial realization ψ0 is

∆(π|ψ0) =
∑

ψ∈L(π)

p(ψ|ψ0)
(
fEC(ψ∪ ψ0)− fEC(ψ0)

)

=
∑

ψ∈L(π)

pH(H(ψ ∪ ψ0))

pH(H(ψ0))

(∑
i<j

(
pH(Hi(ψ0))pH(Hj(ψ0))

)

−
∑
i<j

(
pH(Hi(ψ ∪ ψ0))pH(Hj(ψ ∪ ψ0))

))
.

Let g be a function of x = (xi,ψ)i,ψ = (pH(Hi(ψ ∪ ψ0)))i,ψ such that g(x) = ∆(π|ψ0), then

g(x) =
∑
ψ

 ∑
i xi,ψ∑

i,ψ′ xi,ψ′

∑
i<j

∑
ψ′

xi,ψ′

∑
ψ′

xj,ψ′

− xi,ψxj,ψ

 .
In the same way as the proof of the adaptive submodularity of fEC given by Golovin et al. [20], we
can see this function is monotonically increasing about each xi,ψ by showing the non-negativity of
the derivative of g.

If ψA and ψB are partial realizations such that ψA ⊆ ψB and range(π) ⊆ V \ B, it holds that
pH(Hi(ψ∪ψA)) ≥ pH(Hi(ψ∪ψB)) for all i = 1, · · · ,m andψ ∈ L(π), which implies ∆(π|ψA) ≥
∆(π|ψB).

The objective function of ALuMA algorithm. We consider the binary classification problem, i.e.,
Y = {+1,−1}, for linearly separable instances. Suppose the parameter w ∈ Rd is uniformly
distributed in the d-dimensional unit ball Bd1, and the classifier of parameter w classifies an instance
x ∈ Rd into the class sgn(⟨w,x⟩). Gonen et al. [21] proposed the objective function

fALuMA(ψ) = 1− P[{w ∈ Bd1 | ∀(x, y) ∈ ψ, y = sgn(⟨w,x⟩)}],

and prove it is adaptive submodular. The prior probability over realizations is p(ϕ) = P[{w ∈ Bd1 |
∀x ∈ V,Φ(x) = sgn(⟨w,x⟩)}].
Proposition A.3. The objective function fALuMA is policy-adaptive submodular w.r.t. p(ϕ).

Proof. It is a special case of fGBS where the prior probability p(ϕ) can be expressed as above.
Hence fALuMA is policy-adaptive submodular.

Though running exactly the greedy algorithm for fALuMA is difficult, there is a method to approxi-
mately execute the greedy policy within some constant factor [21]. We can apply this approximate
method to the stream-based setting and give the performance guarantees by using the policy-adaptive
submodularity.

The objective function of maximum Gibbs error criterion. Now suppose labels are generated
from noisy distribution, i.e., P[Y1, · · · , Yn|H = h] is not deterministic. In this case, the prior over
realizations is expressed as p(ϕ) =

∑
h∈H pH(h)P[ϕ|H = h]. By using this distribution, the utility

function of the maximum Gibbs error criterion [9, 8] is defined as

fGibbs(ψ) = 1− p(ψ).

Proposition A.4. fGibbs is policy-adaptive submodular w.r.t. p(ϕ).

Proof. The same proof as the one of Proposition A.1 can be applied by replacing the probability
mass of hypotheses pH(H(ψ)) with the probability mass of partial realizations p(ψ).

In cases where the states of the items are independent. In many applications other than active
learning, it is often assumed that the states of the items are independent of each other. For instance,
this assumption is often used in adaptive variations of sensor placements and influence maximiza-
tion, both of which are introduced by Golovin and Krause [19]. In this case, the policy-adaptive
submodularity follows from the adaptive submodularity.
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Proposition A.5. If Y1, · · · , Yn are independent and (f, p) is adaptive submodular, then (f, p) is
policy-adaptive submodular.

Proof. Let ψA and ψB be any partial realization such that ψA ⊆ ψB , and let π denote any policy
such that range(π) ⊆ V \ B. We prove ∆(π|ψA) ≥ ∆(π|ψB) with the induction on the height of
policy tree π.

In the case where the height of π is 1, i.e., π is a policy selecting only a single item, the statement
follows from the adaptive submodularity of (f, p).

Assume that the statement holds for all policies whose height is at most l − 1. Suppose the height
of π is l. Let s denote the first item that π selects and πy be the subpolicy of π that is executed just
after Ys turns out to be y for each y ∈ Y . Since Y1, · · · , Yn are independent and s ∈ V \B, it holds
that p(Ys = y|ψA) = p(Ys = y|ψB). Applying the induction hypothesis to πy , whose height is at
most l − 1, we obtain ∆(πy|ψA ∪ {(s, y)}) ≥ ∆(πy|ψB ∪ {(s, y)}). Therefore, we can see that

∆(π|ψA) = ∆(s|ψA) +
∑
y∈Y

p(Ys = y|ψA)∆(πy|ψA ∪ {(s, y)})

≥ ∆(s|ψB) +
∑
y∈Y

p(Ys = y|ψB)∆(πy|ψB ∪ {(s, y)})

= ∆(π|ψB)

A counterexample to the equivalence. As described above, many adaptive submodular objective
functions proposed in previous work are also policy-adaptive submodular. However, there is a simple
counterexample to the equivalence of adaptive submodularity and policy-adaptive submodularity.

Example A.6. Let V = {a, b, c} and Y = {+1,−1}. If w : V → R≥0 is a weight vector such that
w(a) = w(b) = w(c) = 1, the sum of weights f(ψ) =

∑
s∈dom(ψ) w(s) is adaptive submodular

w.r.t. any prior distribution p(ϕ).

Let π denote a policy that selects b first, and proceeds to select c if Yb = +1. Assume the marginal
distribution of {Ya, Yb} is defined as P[Ya = +1, Yb = +1] = 0.09, P[Ya = +1, Yb = −1] =
P[Ya = −1, Yb = +1] = 0.01, and P[Ya = −1, Yb = −1] = 0.89. Since ∆(π|{(a,+1)}) = 1.9 is
larger than ∆(π|∅) = 1.1, we know that (f, p) is not policy-adaptive submodular.

(f, p) is not only adaptive submodular, but linear and strongly adaptive monotone5, hence we can
see that policy-adaptive submodularity does not follow from any combination of these conditions.

B Pseudocodes of the Proposed Algorithms

Algorithm 2 AdaptiveStream algorithm
Input: A set function f : 2V×Y → R≥0 and a prior distribution p(ϕ) such that (f, p) is policy-

adaptive submodular and adaptive monotone. The number of items in the entire stream n ∈ Z>0.
A budget k ∈ Z>0. Randomly permuted stream of the items, denoted by (s1, · · · , sn).

Output: Some observations ψk ⊆ V × Y such that |ψk| ≤ k.
1: Let ψ0 := ∅.
2: for each segment Sl = {si | (l − 1)n/k < i ≤ ln/k} do
3: δmax := 0
4: for each item s ∈ Sl do
5: if ∆(s|ψl−1) ≥ δmax then
6: smax := s, δmax := ∆(s|ψl−1).
7: Observe the state y of item smax and let ψl := ψl−1 ∪ {(smax, y)}.
8: return ψk as the solution

5The strong adaptive monotonicity of (f, p) is defined to be ψ ⊆ ψ′ ⇒ f(ψ) ≤ f(ψ′).

12



Algorithm 3 AdaptiveSecretary algorithm
Input: A set function f : 2V×Y → R≥0 and a prior distribution p(ϕ) such that (f, p) is policy-

adaptive submodular and adaptive monotone. The number of items in the entire stream n ∈ Z>0.
A budget k ∈ Z>0. Randomly permuted stream of the items, denoted by (s1, · · · , sn).

Output: Some observations ψk ⊆ V × Y such that |ψk| ≤ k.
1: Let ψ0 := ∅.
2: for each segment Sl = {si | (l − 1)n/k < i ≤ ln/k} do
3: Let the first ⌊n/(ek)⌋ items in Sl pass,

and let δmax := {∆(si|ψl−1) | (l − 1)n/k < i ≤ (l − 1)n/k + ⌊n/(ek)⌋}.
4: select := false
5: for each si such that (l − 1)n/k + ⌊n/(ek)⌋ < i ≤ ln/k do
6: if ∆(si|ψl−1) ≥ δmax then
7: Observe the state y of item si and let ψl := ψl−1 ∪ {(si, y)}.
8: select := true
9: break

10: if select = false then
11: ψl := ψl−1.
12: return ψk as the solution

C Proofs of the Theoretical Guarantees of the Algorithms

Define the conditional function as f(ψ′|ψ) = f(ψ′ ∪ ψ) − f(ψ) where ψ and ψ′ are partial real-
izations. We denote the expected marginal gain about function f by ∆f . We can show the policy-
adaptive submodularity is preserved by restriction as follows.

Lemma C.1. Suppose f : 2V×Y → R is policy-adaptive submodular w.r.t. a prior p(ϕ). For an
arbitrary partial realization ψS , f(·|ψS) is also policy-adaptive submodular w.r.t. the prior distri-
bution p(ϕ|ψS).

Proof. Let ψA and ψB be partial realizations such that ψA ⊆ ψB andB ⊆ V \S. Let π be any policy
such that range(π) ⊆ V \ (S ∪B). From the definition, ∆f(·|ψS)(·|ψA) is equal to ∆f (·|ψA ∪ψS).
This leads to

∆f(·|ψS)(π|ψA) = ∆f (π|ψA ∪ ψS) ≥ ∆f (π|ψB ∪ ψS) = ∆f(·|ψS)(π|ψB).

The inequality is due to the policy-adaptive submodularity of (f, p). It follows that f(·|ψS) is
policy-adaptive submodular w.r.t. p(ϕ|ψS).

Define E(π, ϕ) to be the set of items obtained when π is executed under realization ϕ, that is,
E(π, ϕ) = dom(ψ(π, ϕ)). To prove the next lemma, we use the following lemma proved by Golovin
and Krause [19].

Lemma C.2 (See [19, Lamme 5.3]). Suppose we have made observations ψ after selecting dom(ψ).
Let π∗ be any policy such that |E(π∗, ϕ)| ≤ k for all ϕ. Then for adaptive monotone submodular f

∆(π∗|ψ) ≤ max
A⊆E,|A|≤k

∑
e∈A

∆(e|ψ).

Define favg(π) = ∆(π|∅) to be the average gain of a policy π. Here we prove the lemma about the
maximal expected gain of a random selected subset without the policy-adaptive submodularity.

Lemma C.3. Let f : 2V×Y → R≥0 be a set function and p any prior over realizations such that
(f, p) is adaptive submodular and adaptive monotone. Let π be any policy such that |ψ(π, ϕ)| ≤ k
for all ϕ. Let T ⊆ V be a random set that contains each item of V independently with probability
r ∈ [0, 1]. Then it holds that

ET
[
max
s∈T

∆(s|∅)
]
≥ 1− e−rk

k
favg(π).
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Proof. From the adaptive data dependent bound (Lemma C.2), we have

favg(π) = ∆(π|∅) ≤ max
A⊆V,|A|≤k

∑
s∈A

∆(s|∅).

Let {s1, · · · , sk} = argmaxA⊆V,|A|≤k
∑
s∈A∆(s|∅). The probability that none of s1, · · · , sk is in

T is upper bounded as

PT [∀j = 1, · · · , k, sj ̸∈ T ] = (1− r)
k ≤ e−rk.

Under the condition that there is at least one sj in T , the expected value of max{∆(sj |∅) | sj ∈ T}
is no less than the average

∑k
j=1 ∆(sj |∅)/k because of the symmetry of sjs. Since we have at least

one sj with probability no less than (1− e−rk), it holds that

ET [max{∆(s|∅) | s ∈ T}]
= PT [∃j = 1, · · · , k, sj ∈ T ] ET [max{∆(s|∅) | s ∈ T} | ∃j = 1, · · · , k, sj ∈ T ]

≥ 1− e−rk

k

k∑
j=1

∆(sj |∅)

≥ 1− e−rk

k
favg(π).

Feige, Mirrokni, and Vondrák [15] gave the useful lemma about the value of a randomly selected
subset for non-adaptive submodular functions as follows:

Lemma C.4 (See [15, Lemma 2.2]). Let g : 2X → R be submodular. Denote by A(p) a random
subset of A where each element appears with probability p. Then

E[g(A(p))] ≥ (1− p)g(∅) + pg(A)

This lemma is a crucial part of many randomized algorithms for submodular maximization, but can-
not be extended straightforward to adaptive submodular functions. However, assuming the policy-
adaptive submodularity, we can prove a similar property for the adaptive setting. Before stating the
lemma, we define a partially deleted policy tree.

Definition C.5 (Grafted policy). Let π be an arbitrary policy, and let T be a subset of V . Let s
denote the item that π selects first, and πy the subpolicy executed by π when Ys turns out to be y for
each y ∈ Y . Formally, the grafted policy πT of π for T under partial realization ψ is a randomized
policy6 defined recursively as follows: If s ∈ T , πT selects s first, observes its label y and proceeds
to the grafted policy of πy for T under partial realization ψ ∪ {(s, y)}. If s ̸∈ T , πT proceeds
randomly with probability P[Ys = y|ψ] to the grafted policy of πy for T under partial realization
ψ ∪ {(s, y)} for each y ∈ Y . For simplicity, we omit to mention the partial realization if it is the
grafted policy under no observation.

Intuitively, the grafted policy is obtained by repeating the grafting operation, which is indicated in
Figure 3, from the leaves to the root for each removed item.

Now we prove the adaptive version of Lemma C.4.

Lemma C.6. Let f : 2V×Y → R be a set function and p any prior over realizations such that (f, p)
is policy-adaptive submodular. Let π denote an arbitrary policy. Let T be a random subset of V
where each element appears with probability r ∈ [0, 1]. If πT is the grafted policy for T , it holds
that

ET [favg(πT )] ≥ (1− r)f(∅) + rfavg(π).

6Here we must extend the definition of the policy to randomized policies. A randomized policy is a partial
mapping from the current partial realization to a distribution over items that represents the item to be selected
next. It is easy to see that the optimal deterministic policy is still optimal among randomized policies under any
budget since a randomized policy can be expressed as the weighted sum of deterministic policies.
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s

π1 π|Y|· · ·

if Ys = |Y|if Ys = 1

remove s

π1 π|Y|· · ·

with prob.
p(Ys = 1|ψ)

with prob.
p(Ys = |Y||ψ)

Figure 3: If item s is not contained in restricted set T , remove s from the original policy π and
proceed to the subpolicy, which is executed by π when Ys turns out to be y, with probability P[Ys =
y|ψ]. Repeating this operation recursively from the leaves to the root, we obtain the grafted policy
of π.

Proof. We apply the induction on the height k of the policy tree π to prove the statement.

In the case of k = 1, the item s ∈ T that π selects is also selected by πT if s ∈ T . If s ̸∈ T , no item is
selected by πT . Since the probability that T contains s is r, ET [favg(πT )] = (1−r)f(∅)+rfavg(π).
Assume the statement holds in the case of k ≤ l − 1, we show it holds in the case of k = l. Let π
be any policy whose height is l. Let s be the item π selects first and πy the subpolicy executed by π
just after the label of s turns out to be y ∈ Y . Denoted by πT,y the grafted policy of πy for T under
the observation {(s, y)}.

Now we can decompose the expected total gain of the policy π into the root and subtrees, i.e.,

favg(π) = f(∅) + ∆(s|∅) +
∑
y∈Y

p(ψy)∆(πy|ψy) (1)

where ψy = {(s, y)} for each y ∈ Y .

From Lemma C.1, (f(·|ψy), p(·|ψy)) is policy-adaptive submodular. The grafted policy πT,y under
the observation ψy is the same as the grafted policy of πy for T under no observation with respect
to p(ϕ|ψy). Since f(∅|ψy) = 0, applying the induction hypothesis and we obtain that for all y ∈ Y ,

ET [∆(πT,y|ψy)] ≥ r∆(πy|ψy). (2)

We consider separately the cases where s ∈ T and s ̸∈ T . In the case of s ∈ T , it holds that

favg(πT ) = f(∅) + ∆(s|∅) +
∑
y∈Y

p(ψy)∆(πT,y|ψy). (3)

In the case of s ̸∈ T , we have

favg(πT ) = f(∅) +
∑
y∈Y

p(ψy)favg(πT,y)

≥ f(∅) +
∑
y∈Y

p(ψy)∆(πT,y|ψy). (4)

The second inequality is due to the policy-adaptive submodularity of (f, p).
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Hence we obtain

ET [favg(πT )] = P[s ∈ T ] ET [favg(πT ) | s ∈ T ] + P[s ̸∈ T ] ET [favg(πT ) | s ̸∈ T ]

≥ r

f(∅) + ∆(s|∅) +
∑
y∈Y

(
p(ψy)ET [∆(πT,y|ψy) | s ∈ T ]

)
+ (1− r)

f(∅) +∑
y∈Y

(
p(ψy)ET [∆(πT,y|ψy) | s ̸∈ T ]

) (Since (3) and (4))

= f(∅) + r∆(s|∅) +
∑
y∈Y

p(ψy)ET [∆(πT,y|ψy)]

≥ f(∅) + r∆(s|∅) +
∑
y∈Y

p(ψy)r∆(πy|ψy) (Since (2))

= (1− r)f(∅) + r

f(∅) + ∆(s|∅) +
∑
y∈Y

p(ψy)∆(πy|ψy)


= (1− r)f(∅) + rfavg(π). (Since (1))

We illustrate adaptive submodularity is not enough to prove this lemma by providing an example
that satisfies adaptive submodularity but not the inequality in Lemma C.6.

Example C.7. Let f and p be the same as Example A.6. Define a policy π as follows. First it selects
a and if the state of a is −1, it ends. If the state of a is +1, it next selects b and proceeds to select c
if the state of b is +1. Consider the case of r = 0.5.

Let T be a random subset of {a, b, c}. The case of T = {b, c} is most important among eight cases.
In this case the grafted policy πT selects b with probability 0.1, and if the state of b is +1, it next
selects c. The original policy π selects cwith probability 0.09 but the grafted policy πT selects cwith
probability 0.01. This difference results in ET [favg(πT )] = 0.585 and (1 − r)f(∅) + rfavg(π) =
0.595, which violates the inequality in Lemma C.6.

Lemma C.6 implies the following property about the optimal pool-based policy constructed in a
randomly selected subset.

Lemma C.8. Let f : 2V×Y → R≥0 be a set function and p any prior over realizations such that
(f, p) is policy-adaptive submodular. Let T be a random subset of V where each element appears
with probability r ∈ [0, 1], and π∗

V and π∗
T the optimal pool-based policy selecting k items from V

and T respectively. Then it holds

ET [favg(π∗
T )] ≥ rfavg(π

∗
V ).

Proof. Let πT be the grafted policy of π∗
V for T . From Lemma C.6, we obtain

ET [favg(πT )] ≥ (1− r)f(∅) + rfavg(π
∗
V ) ≥ rfavg(π

∗
V )

The second inequality holds because of the non-negativity of f . Due to the optimality of π∗
T , it holds

that favg(π∗
T ) ≥ favg(πT ) for any T ⊆ V , which leads to the statement.

Suppose Φ ∼ ψ means Φ follows the distribution p(Φ|ψ). Let π′ @π denote the concatenated policy
that run π to completion and run π′ ignoring the information so far. To prove the main theorem we
refer to the following lemma.

Lemma C.9 (See [19, Lamme A.7]). Fix a function f : 2E×OE → R≥0. Then ∆(e|ψ) ≥ 0 for all
ψ with P[Φ ∼ ψ] > 0 and all e ∈ E if and only if for all policies π and π′, favg(π) ≤ favg(π

′@π).

We prove the theorem about the theoretical guarantee for AdaptiveStream algorithm.
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Proof of Theorem 4.1. Let σ denote a random permutation in which the items arrive. Let πσi be
the stream-based policy executed by running AdaptiveStream until it selects an item from the ith
segment Si under the permutation σ and then terminating. Let Ψσi be a random partial realization
obtained by πσi .

First we bound from below the expected ith marginal gain Eσ[favg(πσi ) − favg(π
σ
i−1)] of the algo-

rithm. Since at the ith step, the algorithm selects the item of the largest expected marginal gain in
Si,

Eσ[favg(πσi )− favg(π
σ
i−1)] = Eσ,Φ

[
max
s∈Si

∆(s|Ψσi−1)

]
. (5)

Fix S1 ∪ S2 ∪ · · · ∪ Si−1 (formally, fix the part of a random permutation σ), we can regard Si as a
random subset that contains each item s ∈ V \(S1∪S2∪· · ·∪Si−1) independently with probability
1/(k − i+ 1). Let T = V \ (S1 ∪ S2 ∪ · · · ∪ Si−1). Since f(·|Ψσi−1) is adaptive submodular w.r.t.
p(ϕ|Ψσi−1), from Lemma C.3 we obtain

Eσ,Φ
[
max
s∈Si

∆(s|Ψσi−1)

]
≥

1− exp(− k
k−i+1 )

k
Eσ,Φ

[
∆(π∗

T |Ψσi−1)
]

(6)

where π∗
T is the optimal pool-based policy selecting k items from T .

Under any fixed σ, we can view EΦ[∆(π∗
T |Ψσi−1)] as the expected gain of π∗

T after πσi is executed,
then it holds that

EΦ

[
∆(π∗

T |Ψσi−1)
]
= favg(π

∗
T @πσi−1)− favg(π

σ
i−1)

≥ favg(π
∗
T )− favg(π

σ
i−1). (7)

The inequality follows from the adaptive monotonicity of (f, p) and Lemma C.9.

Let π∗
V be the optimal pool-based policy selecting k items from V . Since T can be regarded as a

random subset that contains each item of V independently with probability (k − i + 1)/k, from
Lemma C.8 we have

Eσ[favg(π∗
T )] ≥

k − i+ 1

k
favg(π

∗
V ). (8)

From (5), (6), (7), and (8), we obtain

Eσ[favg(πσi )− favg(π
σ
i−1)] ≥

1− exp(− k
k−i+1 )

k

{
k − i+ 1

k
favg(π

∗
V )− Eσ[favg(πσi−1)]

}
≥ (1− e−1)(k − i+ 1)

k2
favg(π

∗
V )−

1

k
Eσ[favg(πσi−1)].

The upper and lower bounds 0 ≤ exp(− k
k−i+1 ) ≤ e−1 are used in the second inequality.

We use the proof by contradiction to give the performance guarantee of AdaptiveStream. Assume
Eσ[favg(πσk )] < αfavg(π

∗
V ) (the concrete value of α is specified later). Due to the adaptive mono-

tonicity of (f, p), we know that Eσ[favg(πσi )] is increasing monotonically as i increases. Hence for
all i = 1, · · · , k, it holds that Eσ,Φ[favg(πσi )] < αfavg(π

∗
V ).

Let l = ⌊(
√
3− 1)k⌋. Taking the summation of the above inequality until the lth step, we obtain the

following:

Eσ[favg(πσl )] ≥
1− e−1

k2

l∑
i=1

(k − i+ 1)favg(π
∗
V )−

1

k

l∑
i=1

Eσ[favg(πσi−1)]

>
1− e−1

k2

l∑
i=1

(k − i+ 1)favg(π
∗
V )−

1

k

l∑
i=1

αfavg(π
∗
V ).

Similarly, taking the summation until the (l + 1)th step, we obtain

Eσ[favg(πσl+1)] >
1− e−1

k2

l+1∑
i=1

(k − i+ 1)favg(π
∗
V )−

1

k

l+1∑
i=1

αfavg(π
∗
V ).
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Since Eσ[favg(πσl )] and Eσ[favg(πσl+1)] are at most αfavg(π∗
V ) from the assumption, we have

2αfavg(π
∗
V ) >

1− e−1

k2

{
2

l∑
i=1

(k − i+ 1) + (k − l)

}
favg(π

∗
V )− 2(

√
3− 1)αfavg(π

∗
V )

≥
{
(4
√
3− 6)(1− e−1)− 2(

√
3− 1)α

}
favg(π

∗
V ).

If α ≤ (2−
√
3)(1− e−1), it leads to the contradiction. Therefore we conclude that

Eσ[favg(πσk )] ≥ (2−
√
3)(1− e−1)favg(π

∗
V ) ≥ 0.16favg(π

∗
V ).

Next we prove the theorem about the theoretical guarantee for AdaptiveSecretary algorithm.

Proof of Theorem 4.2. Similarly as the stream setting, let πσi be the stream-based policy obtained
by running AdaptiveSecretary until it selects an item from or passes the ith segment Si under
the permutation σ and then terminating. Let Ψσi be a random partial realization obtained by πσi . The
outline is completely the same as the proof of Theorem 4.1, but the lower bound of the expected
marginal gain at each step is different.

The adaptive secretary algorithm uses the classical secretary algorithm as a subroutine. It selects the
item of the maximal expected marginal gain at least with probability 1/e from each segment, i.e.,

Eσ[favg(πσi )− favg(π
σ
i−1)] ≥ Eσ,Φ

[
1

e
max
s∈Si

∆(s|Ψσi−1)

]
.

The lower bound of the expected marginal gain at each step is

Eσ[favg(πσi )− favg(π
σ
i−1)] ≥

(1− e−1)(k − i+ 1)

ek2
favg(π

∗
V )−

1

ek
Eσ[favg(πσi−1)].

Applying the similar evaluation to this inequality with l = ⌊(−e +
√
e2 + 2e)k⌋, we conclude that

Eσ[favg(πσk )] ≥
1− e−1

2e
√

1 + 2/e
favg(π

∗
V ) ≥ 0.08favg(π

∗
V ).
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