
Supplement to: Sampling for Bayesian Program
Learning

Kevin Ellis
Brain and Cognitive Sciences

MIT
ellisk@mit.edu

Armando Solar-Lezama
CSAIL

MIT
asolar@csail.mit.edu

Joshua B. Tenenbaum
Brain and Cognitive Sciences

MIT
jbt@mit.edu

1 Proofs

Due to space considerations we have included the proofs of our theoretical results here; see original
paper for context.
Proposition 1. Let x ∈ X be a sample from q(·). The probability of accepting x is at least

1
1+|X|2|x∗|−d where x∗ = arg minx|x|.

Proof. The probability of acceptance is
∑
x q(x)A(x), or∑

x

2−|x|∑
x′ q(x

′)
=

Z

Z +
∑
|x|>d(2

−d − 2−|x|)
>

1

1 + |X|2−d/Z
>

1

1 + |X|2|x∗|−d
. (1)

Proposition 2. The probability of sampling (x, y) is at least 1
|E| ×

1
1+2K/|E| and the probability of

getting any sample at all is at least 1− 2K/|E|.

Proof. The probability of sampling (x, y), given that (x, y) survives the K constraints, is 1
mc , where

mc is the model count (# of survivors). The probability of (x, y) surviving the K constraints is 2−K

and is independent of whether any other element of E survives the constraints [1]. So the probability
of sampling (x, y) is

2−K
|E|∑
i=1

P [mc = i|(x, y) survives]
1

i
(2)

= 2−KE

[
1

mc
|(x, y) survives

]
(3)

> 2−K
1

E[mc|(x, y) survives]
, Jensen’s inequality (4)

= 2−K
1

1 + (|E| − 1)2−K
, pairwise independence (5)

>
1

|E|
× 1

1 + 2K/|E|
. (6)

We fail to get a sample if mc = 0. We bound the probability of this event using Chebyshev’s
inequality: E[mc] = |E|2−K > Var(mc), so

P[mc = 0] ≤ P[|mc− E[mc]| ≥ E[mc]] (7)

≤ Var(mc)

E[mc]2
< 1/E[mc] = 2K/|E|. (8)

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Proposition 3. Write Ar(x) to mean the distribution proportional to A(x)r(x). Then D(p||Ar) <
log
(

1 + 1+2−γ

1+2∆

)
where ∆ = log |E| −K and γ = d− log |X| − |x∗|.

Proof. Define c = 1
1+2K/|E| . As p(x) ∝ A(x)q(x),

D(p||Ar) =
∑
x

p(x) log
p(x)

∑
y A(y)r(y)

A(x)r(x)
(9)

=
∑
x

p(x) log
A(x)q(x)∑
y A(y)q(y)

∑
y A(y)r(y)

A(x)r(x)
(10)

= log

∑
xA(x)r(x)∑
xA(x)q(x)

+
∑
x

p(x) log
q(x)

r(x)
(11)

< log

∑
xA(x)r(x)∑
xA(x)q(x)

− log c (12)

where 12 comes from Proposition 2. We know that A(x) ≤ 1 = A(x∗), that r(x) ≥ cq(x), and∑
x r(x) = P[mc > 0]. Optimizing subject to these constraints,∑

x

A(x)r(x) < P[mc > 0]−
∑
x 6=x∗

cq(x) +
∑
x 6=x∗

cq(x)A(x)

= P[mc > 0] + c
∑
x

A(x)q(x)− c. (13)

So the KL divergence is bounded above by

D(p||Ar) < log

(
c+

P[mc > 0]− c∑
xA(x)q(x)

)
− log c (14)

The quantity
∑
xA(x)q(x) is the probability of accepting a perfect sample from q(·), which Proposi-

tion 1 lower bounds:

D(p||Ar) < log
(
c+ (1− c)(1 + 2−γ)

)
− log c (15)

= log

(
1

1 + 2−∆
+

1 + 2−γ

1 + 2∆

)
+ log(1 + 2−∆) (16)

which for the sake of clarity we can weaken to

D(p||Ar) < log

(
1 +

1 + 2−γ

1 + 2∆

)
. (17)

2 Accuracy/Runtime trade-off

We analyze the runtime of PROGRAMSAMPLE using number of solver calls as a proxy for runtime.
First, we observe that some solver invocations are redundant, as analyzed in Sec. 2.1. Then we give a
more thorough overview of how we navigate the trade-off between accuracy and runtime (Sec. 2.2).

2.1 Efficient enumeration

The embedding E introduces a symmetry into the solution space of the SAT formula, where one
program (an x) corresponds to many points in the embedding (pairs (x, y)). We more efficiently
enumerate surviving members of E by only enumerating unique surviving programs, and then
counting the corresponding members of E implicitly through the following result:

Proposition 4. Let x ∈ X and (x, y) ∈ E satisfy h(x, y)
2≡ b. If |x| ≥ d then (x, y) is the only

surviving member of E corresponding to x. Otherwise there are 2d−|x|−rank(g) survivors where g is
the rightmost d− |x| columns of h.

2



Proof. If |x| ≥ d then there is only one element of E corresponding to x. Otherwise, any assignment
to y satisfying

b
2≡
(
hx

... hy
... g

) x
y≤|x|
y>|x|

 (18)

satisfies the random hashing constraints, where we have partitioned the columns of h into those
multiplied into x, y≤|x|, and y>|x| . Because (x, y) ∈ E the values of x and y≤|x| are fixed, so we

can define a new vector c
2≡ b+ hxx+ hyy≤|x| and rewrite Eq. 18 as c = gy>|x|. Let r = rank(g).

Then there is a coordinate system where Eq. 18 reads

c
2≡


1

. . .
0

. . .




y1+|x|
...

y1+|x|+r
...

 (19)

Eq. 19 is satisfied iff, for all 1 ≤ j ≤ r, yj+|x| = cj . For j > r the entries of yj+|x| are unconstrained,
and so 2d−|x|−r satisfying values for y exist.

This enumeration strategy helps when sampling from sharply peaked posteriors, where there are few
surviving programs; it also bounds the number of solver invocation to |X|.

2.2 Balancing accuracy and runtime

Proposition 5. The expected number of calls to the solver per sample is bounded above by
1+2∆

(1+2−γ)−1(1+2−∆)−1−2−∆ .

Proof. First upper bound the probability of failing, P[fail], to get a sample, which could happen if S
is empty or if the sample from S is rejected, which is distributed according to r(·):

P[fail] < P[reject] + P[mc = 0], union bound (20)

< 1−
∑
xA(x)q(x)

1 + 2K/|E|
+ 2K/|E|, Prop. 2 (21)

< 1− 1

(1 + 2−∆)(1 + 2−γ)
+ 2−∆, Prop. 1 (22)

The expected number of solver invocations per iteration is < 1 + E[mc] = 1 + |E|2−K = 1 + 2∆

and the expected number of iterations is 1/P[¬failure]. Because the iterations are independent the
expected number of solver invocations is just their product, which is the desired result.

Proposition 5 shows that the number of invocations to the solver grows exponentially in ∆, while
Proposition 3 shows that the KL divergence from p(·) decays exponentially in ∆. Algorithm 1
navigates this trade-off through its preliminary model counting steps; see Fig. 1.

3



Figure 1: Accuracy (colored contours) vs Performance (monochrome cells) trade-off for a program
synthesis problem; upper bounds plotted. Performance measured in expected solver invocations;
accuracy measured in log KL divergence. Prop. 1 lower bounds the tilt of performant samplers, while
Prop. 2 upper bounds K to O(d), forcing our sampler into the darker (faster) regions. KL divergence
falls off exponentially fast in ∆ = O(d−K), (Prop. 3) while solver invocations grows exponentially
in ∆ (Prop. 5) but is bounded by |X| (Prop. 4), shown in white.

3 Comparison to other approaches

We compared with the PAWS [2] variant described in the main paper. Like PROGRAMSAMPLEand
other sampling algorithms based on random parity constraints, this algorithm comes with parameters
that trade off performance with accuracy. Our baseline is equivalent to setting the b parameter of [2]
to 1, which maximally prefers performance over accuracy.

We also attempted a random projection baseline that does not use an embedding. This alternative
approach was actually the first we tried, and as far as we know it is unpublished. We now describe
this alternative baseline:

Our prior over programs suggests a particularly simple sampling algorithm. The prior isP(x) ∝ 2−|x|,
where |x| is the number of bits needed to specify the program x. So sampling uniformly over
assignments to all bits would also sample from our description length prior: let n be the number of
Boolean decision variables (bits) that specify the structure of the program. Then the probability of
sampling a program x is just ∝ 2n−|x| ∝ 2−|x|. Here we are now assuming that the mapping from
Boolean decision variables to programs is many-to-one, which contrasts with PROGRAMSAMPLE,
where the mapping is constrained to be one-to-one. Uniform sampling of assignments to these
Boolean decision variables can be accomplished with random XOR constraints.

Because this approach avoids the need for any embedding of the program space, one might think
that it maybe would sample programs faster in practice. However, the number of random constraints
K needed in order to have o(1) survivors is n + logZ − log o(1) ≥ n − |x∗| − log o(1). So for
very large n, which occurs when we consider program spaces that might have long programs, the
number of constraints also becomes very large. This explosion in the number of constraints serves to
further entangle otherwise independent Boolean decision variables. In practice we found that this
baseline causes our solver to timeout after an hour on highly-tilted program induction problems (text
edit/counting), to also timeout on our reversing problems (which are intermediate in their tilt), and

4



to only produce any samples before the timeout on our easiest sorting problem (learning from 5
examples). This pattern of errors is diagnostic of the phenomena we attempt to remedy – namely, the
easiest program induction problem (counting) became intractable with the naive application of these
techniques! Studying these failures led to the development of PROGRAMSAMPLE.

4 Text edit problems

We drew program learning problems from [3] and adapted them to our subset of FlashFill. Below
are the problems we tested on. We systematically used either the first one, two, or three input/output
examples as training data and the remaining as test data. After each program learning problem we
show the program learned from the first three examples, followed by its description length measured
in bits.

Input Output
“My name is John.” “John”
“My name is Bill.” “Bill”
“My name is May.” “May”
“My name is Mary.” “Mary”
“My name is Josh.” “Josh”

Program: SubString(Pos([’ ’],[],2),-2). 20 bits.

Input Output
“james” “james.”
“charles” “charles.”
“thomas” “thomas.”
“paul” “paul.”
“chris” “chris.”

Program: Append(SubString(0,-1),Const([’.’])). 22 bits.

Input Output
“don steve g.” “dsg”
“Kevin Jason Mat” “KJM”
“Jose Larry S” “JLS”
“Arthur Joe Juan” “AJJ”
“Raymond F. Timothy” “RFT”

Program: Append(Append(SubString(0,1),SubString(Pos([’
’],[],0),Pos([’ ’],[],0))),SubString(Pos([’ ’],[],3),Pos([’

’],[],1))). 55 bits.

Input Output
“brent.hard@ho” “brent hard”
“matt.ra@yaho” “matt ra”
“jim.james@har” “jim james”
“ruby.clint@g” “ruby clint”
“josh.smith@g” “josh smith”

Program: Append(Append(SubString(0,Pos([],[’.’],3)),Const([’
’])),SubString(Pos([’.’],[],0),Pos([],[’@’],0))). 57 bits.

5



Input Output
“John DOE 3 Data [TS]865-000-0000 - - 453442-00 06-23-2009” “865-000-0000”
“A FF MARILYN 30’S 865-000-0030 - 4535871-00 07-07-2009” “865-000-0030”
“A GEDA-MARY 100MG 865-001-0020 - - 5941-00 06-23-2009” “865-001-0020”
“Sue DME 42 [ST]865-003-0100 – 5555-99 08-22-2010” “865-003-0100”
“Edna DEECS [SSID] 865-001-0003 –23954-11 09-01-2010” “865-001-0003”

Program: Append(Const([’8’]),SubString(Pos([’8’],[],0),Pos([],[’ ’,
’-’],0))). 44 bits.

Input Output
“Company/Code/index.html” “Company/Code/”
“Company/Docs/Spec/specs.doc” “Company/Docs/Spec/”
“Work/Presentations/talk.ppt” “Work/Presentations/”
“Work/Records/2010/January.dat” “Work/Records/2010/”
“Proj/Numerical/Simulators/NBody/nbody.c” “Proj/Numerical/Simulators/NBody/”

Program: SubString(0,Pos([’/’],[],3)). 20 bits.

Input Output
“hi” “hi hi”
“bye” “hi bye”
“adios” “hi adios”
“joe” “hi joe”
“icml” “hi icml”

Program: Append(Const([’h’, ’i’, ’ ’]),SubString(0,-1)). 34 bits.

Input Output
“Oege de Moor” “Oege de Moor”
“Kathleen Fisher AT T Labs”
“Kathleen Fisher AT T Labs”
“Microsoft Research” “Microsoft Research”
“John Morse Institute” “John Morse Institute”
“Jennifer Smith Law Firm” “Jennifer Smith Law Firm”

Program: SubString(0,-1). 12 bits.

Input Output
“1/21/2001” “01”
“22.02.2002” “02”
“2003-23-03” “03”
“21/1/2001” “01”
“5/5/1987” “87”

Program: SubString(-3,-1). 12 bits.

6



Input Output
“Eyal Dechter” “Dechter, Eyal”
“Joshua B. Tenenbaum” “Tenenbaum, Joshua B.”
“Stephen H. Muggleton” “Muggleton, Stephen H.”
“Kevin Ellis” “Ellis, Kevin”
“Dianhuan Lin” “Lin, Dianhuan”

Program: Append(Append(SubString(Pos([’ ’],[],3),-1),Const([’,’, ’
’])),SubString(0,Pos([],[’ ’],3))). 55 bits.

Input Output
“12/31/13” “12.31”
“1/23/2009” “1.23”
“4/12/2023” “4.12”
“6/23/15” “6.23”
“7/15/2015” “7.15”

Program:
Append(Append(SubString(0,Pos([],[’/’],0)),Const([’.’])),SubString(Pos([’/’],[],0),Pos([],[’/’],3))).

57 bits.
Input Output
“Three <2: vincent> Jeff” “(2: vincent)”
“Don Kyle <3: ricky> virgil” “(3: ricky)”
“herbert is <2: marion> morris” “(2: marion)”
“fransisco eduardo <1: apple trees>” “(1: apple trees)”
“country music <9: refrigerator>” “(9: refrigerator)”

Program:
Append(Append(Const([’(’]),SubString(Pos([’<’],[],3),Pos([],[’>’],3))),Const([’)’])).

47 bits.

Input Output
“3113 Greenfield Ave., Los Angeles, CA 90034” “Los Angeles”
“43 St. Margaret St. 1, Dorchester, MA 02125” “Dorchester”
“43 Vassar St. 46-4053, Cambridge, MA 02139” “Cambridge”
“47 Foskett St. 2, Cambridge, MA 02144” “Cambridge”
“3 Ames St., Portland, OR 02142” “Portland”

Program: SubString(Pos([’,’, ’ ’],[],0),Pos([],[’,’],3)). 34 bits.

Input Output
“Verlene Ottley ” “V.O”
“Oma Cornelison ” “O.C”
“Marin Lorentzen ” “M.L”
“Annita Nicely ” “A.N”
“Joanie Faas ” “J.F”

Program: Append(Append(SubString(0,0),Const([’.’])),SubString(Pos([’
’],[],0),Pos([’ ’],[],0))). 43 bits.

Input Output
“Agripina Kuehner ” “Hi Agripina!”
“Brittany Alarcon ” “Hi Brittany!”
“Adelia Swindell ” “Hi Adelia!”
“Marcie Michalak ” “Hi Marcie!”
“Eugena Eurich ” “Hi Eugena!”

Program: Append(Append(Const([’H’, ’i’, ’ ’]),SubString(0,Pos([],[’
’],0))),Const([’!’])). 51 bits.

7



Input Output
“include <stdio.h>” “stdio”
“include <malloc.h>” “malloc”
“include <stdlib.h>” “stdlib”
“include <sys.h>” “sys”
“include <os.h>” “os”

Program: SubString(Pos([’<’],[],3),-4). 20 bits.

Input Output
“aa” “aaa”
“abc” “abcc”
“xyz” “xyzz”
“4” “44”
“john” “johnn”

Program: Append(SubString(0,-1),SubString(-2,-1)). 24 bits.

Input Output
“3113 Greenfield Ave., LA, CA 90034” “3113”
“43 St. Margaret St. 1, Dorchester, MA 02125” “43”
“43 Vassar St. 46-4053, Cambridge, MA 02139” “43”
“47 Foskett St. 2, Cambridge, MA 02144” “47”
“3 Ames St., Portland, OR 02142” “3”

Program: SubString(0,Pos([],[’ ’],0)). 20 bits.

Input Output
“aa” “aaaa”
“abc” “abcabc”
“xyz” “xyzxyz”
“4” “44”
“john” “johnjohn”

Program: Append(SubString(0,-1),SubString(0,-1)). 24 bits.

References
[1] Carla P Gomes, Ashish Sabharwal, and Bart Selman. Near-uniform sampling of combinatorial spaces using

xor constraints. In Advances In Neural Information Processing Systems, pages 481–488, 2006.

[2] Stefano Ermon, Carla P Gomes, Ashish Sabharwal, and Bart Selman. Embed and project: Discrete sampling
with universal hashing. In Advances in Neural Information Processing Systems, pages 2085–2093, 2013.

[3] Dianhuan Lin, Eyal Dechter, Kevin Ellis, Joshua B. Tenenbaum, and Stephen Muggleton. Bias reformulation
for one-shot function induction. In ECAI 2014, pages 525–530, 2014.

8


	Proofs
	Accuracy/Runtime trade-off
	Efficient enumeration
	Balancing accuracy and runtime

	Baseline comparisons
	Text edit problems

